Loading [MathJax]/extensions/MathZoom.js
Yan Wang - IEEE Xplore Author Profile

Showing 1-11 of 11 results

Filter Results

Show

Results

Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety requirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new data...Show More
Self-driving cars must detect other traffic participants like vehicles and pedestrians in 3D in order to plan safe routes and avoid collisions. State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit domain idiosyncrasies, making them fail in new environments-a serious problem for the robustness of self-driving cars. In this paper, we p...Show More
Semi-supervised domain adaptation (SSDA) aims to adapt models trained from a labeled source domain to a different but related target domain, from which unlabeled data and a small set of labeled data are provided. Current methods that treat source and target supervision without distinction overlook their inherent discrepancy, resulting in a source-dominated model that has not effectively use the ta...Show More
3D object detection is a key component of many robotic applications such as self-driving vehicles. While many approaches rely on expensive 3D sensors such as LiDAR to produce accurate 3D estimates, methods that exploit stereo cameras have recently shown promising results at a lower cost. Existing approaches tackle this problem in two steps: first depth estimation from stereo images is performed to...Show More
In this paper, a Spatial Temporal Graph Neural Network (STGNN) model is developed, including a temporal block and Graph Neural Network (GNN) block, to solve the problem of vehicle trajectory prediction in unstructured scenes. Specifically, a temporal block combines a recurrent neural network and non-local operation to extract the features from past trajectories, and a GNN block models the subtle i...Show More
Reliable and accurate 3D object detection is a necessity for safe autonomous driving. Although LiDAR sensors can provide accurate 3D point cloud estimates of the environment, they are also prohibitively expensive for many settings. Recently, the introduction of pseudo-LiDAR (PL) has led to a drastic reduction in the accuracy gap between methods based on LiDAR sensors and those based on cheap stere...Show More
In the domain of autonomous driving, deep learning has substantially improved the 3D object detection accuracy for LiDAR and stereo camera data alike. While deep networks are great at generalization, they are also notorious to overfit to all kinds of spurious artifacts, such as brightness, car sizes and models, that may appear consistently throughout the data. In fact, most datasets for autonomous...Show More
3D object detection is an essential task in autonomous driving. Recent techniques excel with highly accurate detection rates, provided the 3D input data is obtained from precise but expensive LiDAR technology. Approaches based on cheaper monocular or stereo imagery data have, until now, resulted in drastically lower accuracies --- a gap that is commonly attributed to poor image-based depth estimat...Show More
A vision-only tracking framework is developed and experimentally evaluated for self-driving cars. Vision-only object detection is achieved by transforming stereo depth maps into point clouds, followed by LiDAR-based detectors. Each detection yields location, orientation, and object size. A tracking algorithm is then used to combine the detections with a physics based model to create robust vehicle...Show More
Many applications of stereo depth estimation in robotics require the generation of accurate disparity maps in real time under significant computational constraints. Current state-of-the-art algorithms force a choice between either generating accurate mappings at a slow pace, or quickly generating inaccurate ones, and additionally these methods typically require far too many parameters to be usable...Show More
Object segmentation in three-dimensional (3-D) point clouds is a critical task for robots capable of 3-D perception. Despite the impressive performance of deep learning-based approaches on object segmentation in 2-D images, deep learning has not been applied nearly as successfully for 3-D point cloud segmentation. Deep networks generally require large amounts of labeled training data, which are re...Show More