Abstract:
One challenge present in brain-computer interface (BCI) circuits is finding a balance between real-time on-chip processing in-vivo and wireless transmission of neural sig...Show MoreMetadata
Abstract:
One challenge present in brain-computer interface (BCI) circuits is finding a balance between real-time on-chip processing in-vivo and wireless transmission of neural signals for off-chip in-silico processing. This article presents three potential frameworks for investigating an area- and energy-efficient realization of BCI circuits. The first framework performs spike detection on the filtered neural signal on a brain-implantable chip and only transmits detected spikes wirelessly for offline classification and decoding. The second framework performs in-vivo compression of the on-chip detected spikes prior to wireless transmission for substantially reducing wireless transmission overhead. The third framework performs spike sorting in-vivo on the brain-implantable chip to classify detected spikes on-chip and hence, even further reducing wireless data transmission rate at the expense of more signal processing. To alleviate the on-chip computation of spike sorting and also utilizing a more area- and energy-effective design, this work employs, for the first time, to the best of our knowledge, an artificial neural network (ANN) instead of using relatively computationally-intensive conventional spike sorting algorithms. The ASIC implementation results of the designed frameworks are presented and their feasibility for efficient in-vivo processing of neural signals is discussed. Compared to the previously-published BCI systems, the presented frameworks reduce the area and power consumption of implantable circuits.
Published in: IEEE Transactions on Biomedical Circuits and Systems ( Volume: 13, Issue: 6, December 2019)