I. Introduction
The ability to automatically and reliably identify tree species from images of bark is an important problem, but has received limited attention in the vision and robotics communities. Early work in mobile robotics has already shown that the ability to recognize trees from non-trees in combined LiDAR+camera sensing can improve localization robustness [1]. More recent work on data-efficient semantic localization and mapping algorithms [2], [3] have demonstrated the value of semantically-meaningful landmarks; In our situation, trees and the knowledge of their species would act as such semantic landmarks. The robotics community is also increasingly interested in flying drones in forests [4]. In terms of forestry applications, one could use this visual species identification to perform autonomous forest inventory. In the context of autonomous tree harvesting operations [5], the harvester or forwarder would be able to sort timber by species, improving the operator's margins. Similarly, sawmill processes such as debarking could be fine-tuned or optimized based on the species knowledge of the currently processed log.