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Proprioceptive State Estimation for Amphibious
Tactile Sensing
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Jian Lin , Jian S. Dai , Fellow, IEEE, Fang Wan , Member, IEEE, and Chaoyang Song , Senior Member, IEEE

Abstract—This article presents a novel vision-based propriocep-
tion approach for a soft robotic finger that can estimate and recon-
struct tactile interactions in terrestrial and aquatic environments.
The key to this system lies in the finger’s unique metamaterial
structure, which facilitates omnidirectional passive adaptation dur-
ing grasping, protecting delicate objects across diverse scenarios.
A compact in-finger camera captures high-framerate images of
the finger’s deformation during contact, extracting crucial tactile
data in real time. We present a volumetric discretized model of
the soft finger and use the geometry constraints captured by the
camera to find the optimal estimation of the deformed shape. The
approach is benchmarked using a motion capture system with
sparse markers and a haptic device with dense measurements.
Both results show state-of-the-art accuracy, with a median error of
1.96 mm for overall body deformation, corresponding to 2.1% of
the finger’s length. More importantly, the state estimation is robust
in both on-land and underwater environments as we demonstrate
its usage for underwater object shape sensing. This combination of
passive adaptation and real-time tactile sensing paves the way for
amphibious robotic grasping applications.

Index Terms—Proprioception, shape reconstruction, soft
robotics, state estimation, vision-based tactile sensing (VBTS).

I. INTRODUCTION

PROPRIOCEPTIVE state estimation (PropSE) refers to the
process of determining the internal state or position of
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a robot or a robotic component (such as a limb or joint) by
measuring the robot’s internal properties [1], [2]. PropSE is
particularly important in soft robotics, especially in terrestrial
and aquatic environments, where these robots’ flexible and
deformable nature makes traditional position and orientation
sensing challenging [3]. During the robot’s physical exchange
with the external environment, the moment of touch holds the
truth of the dynamic interactions [4]. For most living organisms,
the skin is crucial in translating material properties, object
physics, and interactive dynamics via the sensory receptors
into chemical signals [5]. When processed by the brain, they
collectively formulate a feeling of the external environment
(exteroception) [6] and the bodily self (proprioception) [7].
Toward tactile robotics, one stream of research aims at repli-
cating the skin’s basic functionality with comparable or supe-
rior performances [8]. For example, developing novel tactile
sensors [9] represents a significant research focus. Another
stream of research considers robots while developing or uti-
lizing tactile sensors [10]. It requires an interdisciplinary ap-
proach to resolve the design challenge involved [11], foster-
ing a growing interest in tactile robotics among academia and
industry [12].

We previously conducted a preliminary investigation on
vision-based tactile sensing (VBTS) [13], which leverages the
visual features of a series of soft metamaterial structures’ large-
scale, omnidirectional adaptative deformation. The design of
these metamaterial structures was subsequently generalized as
a class of soft polyhedral networks (SPNs) [14], for which
high-performance proprioceptive learning in object manipula-
tion was achieved via a node-based representation. Recent liter-
ature shows the growing adoption of volumetric representation
with finite element modeling as the de facto ground truth for
soft, dynamic interactions [15]. Yet, the high computational cost
limits its application in robotic tasks, where real-time perception
is critical [16]. Aquatic machine vision remains difficult [17]
for unstructured underwater exploration with changing turbidity
[relative clarity of a liquid measured by nephelometric turbidity
unit (NTU)]. Finger-based PropSE complements aquatic ma-
chine vision by providing localized tactile perception in simul-
taneous localization and mapping (SLAM) [18]. It is a research
gap to investigate the design and learning tradeoff between
high-fidelity PropSE and real-time perception in an amphibious
environment [3], [15], [19]. In such scenarios, in-finger vision
with soft robotic fingers may provide a promising solution to
advance the field of tactile robotics.
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This article introduces a VBTS approach for real-time
and high-fidelity PropSE with demonstrated amphibious
applications in the lab and field. This is achieved using the
SPN structure with marker-based in-finger vision as the soft
robotic fingers for large-scale, omnidirectional adaptations with
amphibious tactile sensing capability. We proposed a model-
based approach for PropSE by introducing rigidity-aware ag-
gregated multihandle (AMH) constraints to optimize a volumet-
ric parameterization of the soft robotic finger’s morphological
deformation. This enabled us to restructure the VBTS problem
as an implicit surface model using Gaussian processes (GPs)
for object shape reconstruction. We benchmarked our proposed
method in shape reconstruction against existing solutions with
verified superior performances. We also conducted experiments
using commercial-grade motion-capture systems and touch-
haptic devices, demonstrating our solution’s large-scale recon-
struction and touch-point estimation performances. Finally, we
demonstrated the application of our proposed solutions for
amphibious tactile sensing in three experiments, including a
shape reconstruction experiment, a turbidity benchmarking ex-
periment, and a tactile grasping experiment on an underwater
remotely operated vehicle (ROV). The following are the contri-
butions of this study.

1) Modeled PropSE via rigidity-aware AMH constraints.
2) Formulated VBTS via an implicit surface model for object

shape reconstruction.
3) Achieved PropSE for VBTS using SPNs with in-finger

vision as robotic tactile fingertips.
4) Benchmarked PropSE for amphibious tactile reconstruc-

tion with demonstrated applications and testing.
The rest of this article is organized as follows. Section II

briefly reviews related literature about the role of PropSE in
tactile robotics and its application in amphibious tactile sensing.
Section III introduces the soft robotic fingertips for this study
and presents our proposed model for PropSE via rigidity-aware
aggregated multihandle constraints. This section also formulates
our proposed VBTS method via implicit surface modeling. All
experimental results are presented in Section IV, including those
for benchmarking our proposed method’s performance and those
conducted explicitly for amphibious tactile sensing underwater.
Finally, Section V concludes this article.

II. LITERATURE REVIEW

A. Toward Dense Sensing for Tactile Robotics

Tactile sensory generally involves many properties that can be
digitized for robotics [20]. For mechanics-based dynamics and
control, the interactive forces and torques on the contact surface
are a primary concern in robotics [21]. It usually involves a
certain level of material softness or structural deformation for an
enhanced representation of the mechanic interactions as tactile
data. The following are the three general research streams in this
field.

1) Pointwise Sensing in 6-D FT: Estimating forces at contact
points is paramount in robotic systems, enabling awareness of
physical interaction between the robot and its surrounding ob-
jects [22]. Robotic research, especially when dynamics and me-
chanics are involved, is generally more interested in utilizing the

force-and-torque (FT) properties for manipulation problems by
robotic hands [23] or locomotion tasks by legged systems [24].
The FT properties could be succinctly represented by a 6-D
vector of forces and torques for a single reference point, making
it comparable to the joint torque sensing in articulated robotic
structures. However, the shortcut between physical contact and
a pointwise 6-D FT measurement may not capture the full extent
of contact information for further algorithmic processing [25].

2) Bioinspired Sparse Sensing Array: Similar to the biolog-
ical skin’s super-resolutive mechanoreception for tactile sens-
ing [26], a common approach in engineering is to place an
array of sensing units on the interactive surface [27]. Instead of
going for a localized 6-D force and torque contact information,
researchers usually tackle the problem with enhanced pressure
sensing across its entire surface from spatially distributed sens-
ing elements [28]. As a result, one can build models or implement
learning algorithms to achieve superresolution by sampling the
discrete sensory inputs. This approach continuously estimates
the tactile interaction on the surface at a much higher resolution
than the sensing array arrangement. Yan et al. [29] showed that
one can leverage magnetic properties to achieve decoupled nor-
mal and shear forces with simultaneous superresolution in tactile
sensing of the normal and frictional forces for high-performing
grasping.

3) Visuo-Tactile Dense Image Sensing: VBTS recently
emerged as a popular approach to significantly increase the sens-
ing resolution [30]. This approach leverages the modern imaging
process to visually track the deformation of a soft medium as the
interface of physical interaction [31], [32], eliminating the need
for biologically inspired superresolution [33]. Robotic vision
has already become a primary sensing modality for advanced
robots [34]. The maturity of modern imaging technologies drives
the hardware to be more compact while the software is more ac-
cessible to various algorithm libraries for real-time processing.
While the high resolution of modern cameras offers significant
advantages, the infinite number of potential configurations of
the soft medium introduces a considerable challenge [35].

B. Proprioceptive State Estimation

For tactile applications in robotics, proprioceptive perception
of joint position and body movement plays a critical role in
achieving state estimation. The tactile interface is a physical
separation between the intrinsic proprioception concerning the
robot and the extrinsic perception concerning the object-centric
environment. We focus on vision-based proprioception, which
also applies to analyzing the abovementioned methods.

1) Intrinsic Proprioception in Tactile Robotics: For vision-
based intrinsic proprioception, the analysis is usually centered
on estimating the state of the soft medium during contact, infer-
ring tactile interaction [36]. To establish a physical correspon-
dence between a finite parameterization state estimation model
and an infinite configuration of soft deformation [37], markers
that are easy to track are often used to discretize the displacement
field of soft mediums. Yamaguchi and Atkeson [38] introduced
a simple blob detection method to track uniformly distributed
markers in a planar transparent soft layer for deformation ap-
proximation. Advanced image analysis [39] is also adopted to
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utilize machine learning algorithms to extract high-level defor-
mation patterns from randomly spread markers over the entire
3-D volume of soft medium for robust state estimation [40].
Zhang et al. [41] showed a promising approach to integrate
physics-based models that capture the dynamic behavior of the
soft medium under deformation.

2) Extrinsic Perception for Tactile Robotics: For extrinsic
perception, the focus is shifted to estimating the object-level
information. Tactile sensing data such as object localization,
shape, and dynamics parameters could be used for task-based
manipulation and locomotion [20]. Using contact to estimate an
object’s global geometry is instrumental for intelligent agents to
make better decisions during object manipulation [42]. Usually,
tactile sensing is employed for estimating the object’s shape in
visually occluded regions, thus playing a complementary role to
vision sensors [43], [44]. However, in scenarios where a struc-
tured environment with reliable external cameras is unavailable
or impractical, such as during exploration tasks in unstructured
environments, tactile sensing can provide valuable feedback to
achieve environmental awareness [45].

C. Amphibious Tactile Robotics

Amphibious environments present a unique and dynamic
challenge for robotic systems [46]. Robots operating in these
environments must contend with vastly different physical prop-
erties, including changes in buoyancy, friction, and fluid dy-
namics [47]. Furthermore, the transition between water and
air requires robots to adapt their sensory systems and control
strategies to function effectively in each medium [48].

Developing effective tactile sensors for amphibious robots
presents several challenges. Sensors must be robust enough
to withstand the harsh aquatic environment and be sensitive
enough to detect subtle changes in water and air [49]. The
transition between these two media can also cause sensor drift
and require calibration to maintain accuracy [50]. Despite these
challenges, there are exciting opportunities in amphibious tactile
robotics, with improved sensitivity, durability, and resistance to
environmental factors [51]. However, a research gap remains
in developing an effective tactile sensing method with an inte-
grated finger-based design that directly applies to amphibious
applications.

III. MATERIALS AND METHODS

A. SPN With In-Finger Vision

Soft grippers can achieve diverse and robust grasping behav-
iors with a relatively simple control strategy [52]. In this study,
we adopted our previous work in a class of SPNs with in-finger
vision as the soft robotic finger [13], [14]. As shown in Fig. 1(a),
the specific design is modified using an enhanced mounting plate
to fix the soft finger and made waterproof for amphibious tactile
sensing. The soft finger features a shrinking cross-sectional
network design toward the tip, capable of omnidirectional adap-
tation during physical interactions, as shown in Fig. 1(b). We
fabricated the finger by vacuum molding using Hei-cast 8400, a
three-component polyurethane elastomer. Based on our previous

Fig. 1. Assembly and omniadaptive capability of the soft finger. (a) Assembly
consists of a soft finger, a rigid plate pasted with an ArUco tag, a mounting plate,
a support frame, and a camera. (b) Finger deformation by forward push, oblique
push, and twist shows the omniadaptive capability.

work, we mixed the three components with a ratio of 1:1:0,
producing a hardness of 90 (Type A) to achieve reliable spatial
adaptation for grasping.

An ArUco1 tag [53] is attached to the bottom side of a rigid
plate mechanically fixed with the four lower crossbeams of the
soft finger. A monocular RGB camera with a field of view (FOV)
of 130◦ is fixed at the bottom inside a transparent support frame
as in-finger vision, video-recording in a high frame rate of 120
frames per second (FPS) at 640 × 480 pixels resolution. When
the soft robotic finger interacts with the external environment,
live video streams captured by the in-finger vision camera pro-
vide real-time pose data of the ArUco tag as rigid-soft kinematics
coupling constraints for the PropSE of the soft robotic finger.
This marker-based in-finger vision design is equivalent to a
miniature motion capture system, efficiently converting the soft
robotic finger’s spatial deformation into real-time 6-D pose data.

B. Volumetric Modeling of Soft Deformation for PropSE

Our proposed solution begins by formulating a volumetric
model of the soft robotic finger in a 3-D space Ω ∈ R3 filled
with homogeneous elastic material. The distribution of the
internal elastic energy within the volumetric elements varies
significantly depending on the boundary conditions defined. The
PropSE process requires an accurate determination of a smooth
deformation map, Φ : Ω→ Ω̃, that facilitates the geometric
transformation of the soft body from its initial state, represented
by Ω, to a deformed state, denoted as Ω̃. This transformation
is characterized by minimizing a form of variational energy
measuring the distortion of the soft body [54]. As a result, the
PropSE performance depends on finite element discretization
and the choice of energy function that characterizes deformation.

1) Volumetric Parameterization of Whole-Body Deforma-
tion: We denote a tetrahedral mesh of the discretized soft

1http://sourceforge.net/projects/aruco/

http://sourceforge.net/projects/aruco/
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Fig. 2. Proprioceptive deformation modeling and estimation of omniadaptive
soft finger. (a) Representation of the proprioceptive model, including i) initial
undeformed configuration Ω of the soft finger, discretized using tetrahedral
mesh; ii) local affine mapping Φtj applies on tj element, transforming each

vertex from Xi
tj
∈ R3 to xi

tj
∈ R3, i ∈ {1, 2, 3, 4}; iii) approximation of

visual observed marker area as AMH on the tetrahedral mesh (purple); and
iv) applies uniform rigid motion g ∈ SE(3) on all AMH that drives soft finger
to a deformed configuration Ω̃. (b) Demonstration of soft finger deformation
reconstructions under a series of rigid motions applied on AMH, including
bending and twisting.

body usingM = {V, T }, where V = {x1, . . .,xn} is the set of
vertices xi ∈ R3, and T = {t1, . . ., tm} is the set of tetrahedra
elements, as shown in Fig. 2(a)(i).

When the soft body deforms, a collection of chosen linearly
approximated local deformation maps are applied to M over
each tetrahedron element tj via an affine transformation

Φ|tj (X) = AtjX+ btj (1)

where X ∈ R3 stands for all points inside element tj , Atj ∈
R3×3 is the differential part of the deformation map, and
btj ∈ R3 is the translational part. We choose this piecewise
linear deformation map for computational efficiency. High-order
deformation functions can be used for better approximation if
needed [55].

As shown in Fig. 2(a)(ii), for any tj element, the local affine
transformation applied on each vertex is denoted as

[Atj btj ]·
[
X1

tj
X2

tj
X3

tj
X4

tj

1 1 1 1

]
= [x1

tj
x2
tj
x3
tj
x4
tj ] (2)

where xi
tj
∈ R3, i ∈ {1, 2, 3, 4} are the deformed vertices lo-

cation of tj tetrahedron, and Xi
tj
∈ R3 are the corresponding

initial vertices location.
Therefore, the deformation gradient Atj in the chosen piece-

wise linear transformation in (1) can be expressed as a linear
combination of unknown deformed element vertices location

xtj using the following formulation:

Atj (xtj ) =
∂Φ|tj
∂X

= Ds(xtj ) ·D−1m (Xtj ) (3)

where

Ds(xtj ) = [x2
tj
− x1

tj
x3
tj
− x1

tj
x4
tj
− x1

tj ] (4)

Dm(Xtj ) = [X2
tj
−X1

tj
X3

tj
−X1

tj
X4

tj
−X1

tj ]. (5)

For a discretized tetrahedral meshM, the collection of deforma-
tion maps {Φtj}tj∈T for all tetrahedra elements should uniquely
determine the deformed shape of the soft body [56].

2) Geometry-Related Deformation Energy Function: To
mimic the physical deformation behavior, the specific energy
function form of the deformation map Ψ(Φtj ) needs to be
specified. Several formulations of geometry-related deformation
energies, such as as-rigid-as-possible (ARAP) [57], conformal
distortion [58], and isometric distortion [59], have been proposed
in recent literature.

Instead of deriving the energy of the system explicitly using
constitutive relation and balance equations [60], we choose
a symmetric Dirichlet form of energy function [61] to char-
acterize the deformation, which indicates isometric distortion
and behaves well in the case of our soft finger. Since the
deformation should be irrelevant to the translation, the discrete
element energy function only takes the gradient augment of each
deformation maps {Φtj}tj∈T as

Ψ(Φtj ) = Ψ(Atj ) = ||Atj ||2F + ||A−1tj
||2F (6)

where || · ||F is the Frobenius norm. The accumulated discrete
element energy functional of the soft body denotes

E(x) =
∑
tj∈T

Ψ(Atj (x)) (7)

where x ∈ R3×n contains all discretized vertices location of the
soft bodyM.

3) Rigidity-Aware AMH Constraints: Monocular cameras
are generally considered the primary sensory for environmental
perception due to their ease of use and availability, compared to
multiview systems. However, deformable shape reconstruction
from 2-D image observations is well-known as an ill-posed
inverse problem and has been actively researched [62]. We
leverage the proposed volumetric discretized model and in-
troduce rigidity-aware AMH constraints to make this problem
trackable, aiming at reconstructing the soft finger’s deformed
shape reliably.

We model the mechanical coupling of the rigid plate for the
fiducial marker in Fig. 1(a) as a uniform rigid transformation g
for each attached node in the discrete model M , as shown in
Fig. 2(a) (iii) and (iv)

xh = g(Xh) (8)

where xh ∈ R3×p contains deformed location of p vertices
related to the rigidity-aware AMH constraints whileXh ∈ R3×p

contains the corresponding undeformed vertices location. The
rigid transformation g is estimated by fiducial markers widely
used in robotic vision.
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Algorithm 1: Projected Hessian Algorithm.
1: Input: Rigid transformation of AMH g
2: Output: Estimated positions of deformed vertices x∗

Require:
Vertices positions of current shape x0

Convergence tolerance ε
Maximum number of iterations Nmax

3: k ← 0
4: Compute gradient dk = ∇Ẽ(xk)
5: And Hessian Hk = ∇2Ẽ(xk)
6: while ‖dk‖ > ε and k < Nmax do
7: Solve HkΔxk = −dk for Δxk

8: Project Δxk onto the feasible region
9: Update iterate: xk+1 ← xk +Δxk

10: k ← k + 1
11: end while
12: iteration stop x∗ = xk

4) Geometric Optimization for Shape Estimation: With the
discrete energy function (7) of the given soft bodyM and ob-
served kinematics constraints (8), soft body shape estimation can
be directly translated into a constrained geometry optimization
problem as

min
x

∑
tj∈T

Ψ(Atj (x))

s.t. xh = g(Xh). (9)

Instead of considering kinematics constraints as hard boundary
conditions, we enforce them by appending quadratic penalty
terms to E(x) in (7) for easier handling, which results in

Ẽ(x) =
∑
tj∈T

Ψ(Atj (x)) + ω||xh − g(Xh)||2. (10)

As illustrated in Fig. 2(a)(v), we can achieve deformed shape
estimation by minimizing the augmented energy function in (10)
as

x∗ = argmin
x

Ẽ(x;ω, g) (11)

where ω is the penalty parameter for the corresponding un-
constrained minimization problem. A greater penalty weight
will lead to better constraint satisfaction but poorer numerical
conditions.

In practice, we set ω = 105 and compute the deformed ver-
tices positions V by iteratively minimizing (11) using a Newton-
type solver shown in Algorithm 1. As shown in Fig. 2(b), a
series of physically plausible deformations of the soft finger
under observed constraints are reconstructed in real time using
our proposed optimization approach.

C. Object Shape Estimation Using Tactile Sensing

While proprioception refers to being aware of one’s move-
ment, tactile sensing involves gathering information about the
external environment through the sense of touch. This section
presents an object shape estimation approach by extending the

PropSE method proposed in the previous section to tactile sens-
ing.

Since our soft finger can provide large-scale, adaptive defor-
mation conforming to the object’s geometric features through
contact, we could infer shape-related contact information from
the finger’s estimated shape during the process. We assume the
soft finger’s contact patch coincides with that of the object during
grasping. As a result, we can predict object surface topography
using spatially distributed contact points on the touching inter-
face.

1) Contact Interface Points Extraction: Based on the spatial
discretization model in Section III-B1, an indexed set I =
{c1, c2, . . ., ck} of nodes located at the upper area of the soft
finger mesh M are extracted as contact interface points, as
shown in Fig. 3(a).

With each of the observed AMH constraints input, we could
determine the positions of these contact interface points by first
solving (11), then extracting corresponding nodes using indexed
set I by solving the deformed positions of vertices V: xc =
{xi|xi ∈ V, i ∈ I}.

2) Implict Surface Representation for Object Shape: Con-
sidering the grasping action using a soft finger as a multipoint
tactile probe, the object surface patches could be progressively
reconstructed by these gripping actions with collected positions
of contact interface points xc extracted from the soft finger.

An implicit surface representation is defined by a function that
can be evaluated at any point in space, yielding a value indicating
whether the point is inside the object, outside the object, or on the
object’s surface. For the 3-D space considered in our problem,
this function f : R3 → R is defined as

f(x)

⎧⎪⎨
⎪⎩
< 0, if x inside the object

= 0, if x on the surface

> 0, if x outside the object.

(12)

As is shown in Fig. 3(b), we only collected positions of partial
contact interface points xc, which are assumed to coincide with
the object surface for each gripping action. While surface points
are observed, we do not explicitly observe off-surface or internal
point exemplars. For those unobserved cases in (12), we generate
control points of the corresponding two types to express the di-
rectional information of the surface using the method described
in [63].

3) GPIS for Surface Estimation: An object’s shape is esti-
mated by finding the points with zero value of implicit surface
function (12) (i.e., the isosurface) in the 3-D region of interest.
The Gaussian process implicit surface (GPIS) method can be
used as a tool for object surface reconstruction from partial or
noisy 3-D data. It is a nonparametric probabilistic method often
used for tactile and haptic exploration [64], [65].

A GP is a collection of N random variables with a joint
Gaussian distribution which can be specified using its mean
and covariance functions. The collected contact interface point
and the generated control point positionsX = {x1,x2, . . .,xN}
for each grasping action and the corresponding observed values
are denoted as Y = {y1,y2, . . .,yN}. Here, yi = f(xi) + ε,
where ε ∼ N (0, σ2

ε ) denotes Gaussian noise with zero mean
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Fig. 3. Pipeline for contact interface geometry sensing using deformed positions of soft finger mesh nodes. (a) Contact interface points extraction: Because the
soft finger can deform and adapt its shape to fit the contours of the object being grasped, we take the deformed soft finger mesh nodes as approximate multicontact
points on the contact interface. (b) Implicit surface representation: In addition to the mesh nodes xc on the contact interface, auxiliary training points x−c and x+

c

are generated in this step to increase the accuracy of the implicit surface reconstruction. (c) GPIS for shape estimation: GPIS model is adopted for contact object
surface patch estimation.

and σ2
ε variance. As a result, the GP can be written as f(x) ∼

GP(m(x), k(x,x′)), where m(x) is the mean function and
k(x,x′) is the covariance function [66].

In our implementation, we used the radial basis function
kernel, which is characterized by the two hyperparameters,
the variance σ2

f and the length scale l, expressed as the
following:

k(x,x′) = σ2
f exp (−

||x− x′||2
2l2

). (13)

With the covariance function and the observation data, the
predictive mean f̄(x∗) and variance V̄(x∗) at a query point x∗

are

f̄(x∗) = E[f(x∗)|X ,Y,x∗] = k(X ,x∗)TΣY (14)

V̄(x∗) = k(x∗,x∗)− k(x∗,x)TΣk(x∗,x) (15)

where Σ = (k(X ,X ) + σ2
εI)−1. After voxelizing the bounding

box volume enclosing the partially deformed finger-object inter-
face, the zero-mean isosurface can be extracted from posterior
estimation, which approximates the local shape of a grasped
object, as is shown in Fig. 3(c).

IV. RESULTS

A. On Vision-Based PropSE

Here, we first present the benchmarking results against two
widely adopted methods to demonstrate the superior perfor-
mance of our proposed vision-based PropSE method. Then, we
present the results of our proposed vision-based PropSE method
using two experiment setups. One leverages motion capture
markers as ground truth, providing high-precision but sparse
measurements. The other uses a touch-haptic device for ground
truth data collection, which is less accurate but contains larger
measuring coverage on the soft finger.

The implementation of the proposed geometric optimization-
based algorithm (Algorithm 1) was developed in C++ and
evaluated on a computer with an Intel Core i7 3.8 GHz
CPU and 16 GB of RAM. By leveraging the capabilities of

TABLE I
RUN TIME AND MEAN ERROR COMPARISONS OF ABAQUS,

ARAP, AND OUR METHOD

algorithmic differentiation within the numerical solver,
Eigen [67], this system demonstrated the ability to compute
deformations involving 1500 tetrahedra in real-time, achieving
frame rates up to 20 FPS.

1) Comparison With the Conventional Methods: We per-
formed a comparative analysis with two widely adopted tech-
niques to showcase the efficacy of our shape estimation method.
One is Abaqus, a premier finite element analysis (FEA) software
extensively applied in structural analysis and deformation mod-
eling across various engineering disciplines. This comparison
aims to highlight the versatility and precision of our approach
within contexts requiring intricate modeling capabilities. (Please
refer to Appendix A for further details concerning the Abaqus
simulation.)

The other is the ARAP method [68], a widely adopted method
in digital geometry processing for estimating object shapes
through minimal rigid deformation. This comparison is particu-
larly valuable, as ARAP’s principles of shape preservation align
closely with the core objectives of our shape estimation task,
providing valuable benchmarking. (Please refer to Appendix B
for further details regarding our implementation.)

Table I compares our proposed method’s run time and mean
error with those mentioned earlier. Each method is evaluated
on five meshes with increasing resolutions, resulting in 1, 1.5,
3, 6, and 12 k elements. The soft finger underwent six motions
applied to the AMH shown in Fig. 2(b) with all the deformation
data recorded. We treat the results from Abaqus as the ground
truth. Results show that our method is 40 to 700 times faster



4668 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

than Abaqus and 1 to 2 times faster than ARAP at different
resolutions. We also compared the mean errors of all nodes
estimated by our method and ARAP when benchmarked against
Abaqus. The results show that our method’s mean error de-
creases significantly, from 0.346 to 0.086 mm, as the number
of elements increases. The ARAP’s error ranges from 0.7 to
1.0 mm for different meshes. Our approach shows significant
advantages over Abaqus and ARAP regarding running time and
accuracy.

The optimization solver deployed to minimize the ARAP
energy leverages the local/global method (as detailed in
Appendix B). While this solver efficiently approximates the
local minimum, its approach to convergence toward a numerical
minimum necessitates a considerable number of iterations, a
characteristic underscored during implementation [61]. We fixed
the number of iterations at 10 for our benchmarking procedure
to achieve convergence. This predefined iteration limit could
account for the observed comparative slowness of the ARAP op-
timization solver relative to our proposed method. Regarding the
evaluation of mean error, the suboptimal performance of ARAP,
as compared to ours, might be attributed to the local/global
optimization solver settings. Moreover, the deformation energy
model used by ARAP might not fully encompass the nonlinear
deformation behaviors of our soft robotic fingers.

We also observe that the error of our method decreases most
dramatically when the number of elements increases from 1
to 1.5 k, and the error reduction from 1.5 to 6 k is marginal.
Hence, the mesh with 1.5 k elements is the most appropriate for
our method, achieving both faster run speed and minor error,
which was selected for real-time estimation in the following
experiments. (Please refer to Appendix C for additional results
on Algorithm 1 parameter.)

2) Deformation Estimation With Motion Capture Markers:
Shown in Fig. 4(a) is the soft robotic finger mounted on a three-
axis motion platform for interactive deformation estimation. The
test platform is operated manually to generate a set of contact
configurations between the soft finger and the indenter. During
the process, the in-finger camera streams real-time image data at
a resolution of 640 × 480 pixels. Using an off-the-shelf ArUco
detection library, the detected AMH rigid motion is fed into our
implemented program for deformation estimation.

A motion capture system (Mars2H by Nokov, Inc.) was used
to track finger deformations through nine markers with an 8 mm
radius. Among them, six markers were divided into three pairs,
which were rigidly attached to the fingertip (m5,m6), the first
layer (m3,m4), and the second layer (m1,m2) of the soft
finger, respectively. The other three markers were attached to the
platform and used as the reference reading to align the motion
capture system’s reference frame with the platform’s coordinate
frame.

The markers were attached to the soft finger with rigid links,
as shown in Fig. 4(b). We designed the connecting links to be
three lengths to avoid occlusion during tracking. We assume
each marker is rigidly attached to the nearest tetrahedron on
the parameterized mesh model M, representing the estimated
marker location using barycentric coordinates of the correspond-
ing tetrahedron element in the soft robotic finger’s deformed

Fig. 4. Estimated marker deformation obtained by the proposed PropSE
method. (a) Experimental setup, including the soft finger, embedded with an
RGB camera, a manual three-axis motion test platform, and six motion capture
markers m1,m2, . . .,m6, rigidly attached to the soft finger. (b) Estimated
position of the marker x′mk

is calculated using the barycentric coordinate of
the corresponding attached tetrahedron tk , while the ground truth reading xmk

is obtained from the motion capture system. (c) Corresponding error for each
marker’s 3-D deformation and total norm.

states

x′mk
=

4∑
i=1

λi
tk
· xi

tk
, k ∈ {1, 2, . . ., 6} (16)

4∑
i=1

λi
tk

= 1, tk ∈ T . (17)

Due to the rigid connection assumption, the barycentric co-
ordinates λtk are constant during deformation. We solve the
barycentric coordinates in (16) using the tetrahedron’s initial ver-
tex position and corresponding tracked marker position without
contact. The marker position prediction model is a linear com-
bination of the deformed vertex position of the corresponding
tetrahedron resulting from geometric optimization in Algorithm
1 using calibrated barycentric coefficients. (See Movie S1 in the
Supplementary Materials for a video demonstration.)

We visualize the error distribution with 3 k pairs of the six
markers’ estimated and ground truth positions as illustrated in
Fig. 4(c). The norm of the six markers’ total error is within
3 mm, while the error distribution along each axis is centered
around the (−2, 2)mm range. As the marker prediction model in
(16) comprises calibration and geometric optimization, the error
distribution of six sparse markers may only partially validate the
proposed method, leading to the next experiment.

3) Deformation Estimation Using Touch Haptic Device: We
designed another validation experiment using the pen-nib’s
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Fig. 5. Estimated deformation field of the soft finger using the PropSE method. (a) Touch haptic device is used to make contact with the soft finger at different
locations while simultaneously recording the ground-truth positions and the reconstructed positions of contact points. (b) Three sampled pushing trajectories of the
pen-nib and corresponding measurements from the PropSE method. Total errors are reported in the last column. The pen-nib of the touch haptic device is pushed
forward and backward five times at each location. (c) Fifty testing locations sampled are spread over half of the side of the soft finger. The mean error norm map
is interpolated using the values of the fifty sampled contact locations. (d) Distribution of the total errors along the height (Z-axis) of the soft finger. (e) Distribution
of the total errors of sampled contact points.

position of a haptic device (Touch by 3D Systems, Inc.) as
ground truth measurement. As shown in Fig. 5(a), an operator
holding the pen-nib initiated contact at a random point on the
soft robotic finger by pushing it five times. Fifty points were
sampled, spreading over half of the soft robotic finger with
recorded pen-nib position and the corresponding point of contact
on the estimated deformation in the mesh model.

Similar to the calibration process when using the motion
capture system, we solve the barycentric coordinates in (16)
using the initial contact position of pen-nib and the undeformed
vertex position of the tetrahedron nearest to the contact point.
Since there is no slipping between the contact point and the
pen-nib, recording the pushing position of the pen-nib for a
randomly selected point is equivalent to collecting the ground
truth deformation field of the soft finger evaluated at that point.
Fig. 5(b) shows three selected pushing trajectories and the
corresponding errors between estimation and ground truth. The
pushing duration lasts around ten seconds for each location and
is rescaled to 1 in the plot. The data is recorded at 20 Hz. Due to
the variations among the pushing trajectories among the three
locations, the errors are slightly different, but all lie within a
2.5 mm range.

The haptic device measurements cover an extensive portion
of the soft robotic finger, revealing further details regarding
the spatial distribution of the estimation errors. We visual-
ize the mean errors of deformation estimation evaluated at

the fifty randomly selected contact locations in Fig. 5(c). We
interpolated two side views of continuous error distribution for
the soft robotic finger with errors of all sampled locations using
a Gaussian-kernel-based nearest-neighbor method [69].

Contact locations near the observed AMH constraint are
expected to exhibit fewer errors due to penalized computation
near this region during deformation optimization. We plot the
error distribution of all sampled locations along the Z-axis
in Fig. 5(d). Contact locations with a similar height to the
AMH constraint exhibit a smaller and more concentrated error
distribution. Fig. 5(e) shows the error histogram of the overall
experiment records, where the median of estimated error for the
whole-body deformation is 1.96 mm, corresponding to 2.1%
of the finger’s length. (See Movie S2 in the Supplementary
Materials for a video demonstration.)

B. On Amphibious Tactile Sensing for PropSE

Here, we further investigate our proposed method in amphibi-
ous tactile sensing through three experiments in lab conditions.
We begin by benchmarking our proposed VBTS method at
controlled turbidity underwater. Then, we present a touch-based
object shape reconstruction task to demonstrate the application
of our proposed solution for amphibious tactile sensing. Finally,
we present a full-system demonstration by attaching our robotic
finger to the gripper of an underwater remotely operated vehicle
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Fig. 6. Benchmarking results in different turbidity conditions underwater in a lab tank. (a) Experiment was set up in a room with controlled ambient lighting of
3000 lumens placed atop the tank (not shown in this picture). (b) Images taken by adding condensed standard turbidity liquid to increase the water turbidity from 0
to 160 NTU, including i) experiment pictures taken by an external camera at the same angle as (A); ii) raw images captured by the in-finger vision overlayed with
triad coordinates to indicate successful pose recognition; and iii) digitally enhanced images overlayed with triad coordinates to indicate successful pose recognition.
(c) Results on the pose recognition success rate of the ArUco marker from the in-finger vision under increasing tank turbidity when pushing the soft robotic finger
at different target displacements, with or without image enhancement.

(ROV) for underwater grasping in a water tank, which we plan
to implement further in the field test soon.

1) Benchmarking VBTS Underwater Against Turbidity: Our
proposed rigidity-aware AMH method effectively transforms the
visual perception process for deformable shape reconstruction
into a marker-based pose recognition problem. Therefore, the
benchmarking of our VBTS solution underwater is directly de-
termined by successfully recognizing the fiducial marker poses
used in our system under different turbidity conditions. Turbidity
is an optical characteristic that measures the clarity of a water
body and is reported in NTU [70]. It influences the visibility
of optical cameras for underwater inspection, inducing light
attenuation effects caused by the suspended particles [71]. As
one of the critical indicators for characterizing water quality,
there have been rich studies on the turbidity of large water bodies
worldwide. For example, Li et al. [72] showed that the Yangtze
River’s turbidity was measured between 1.71 and 154 NTU.

We investigated the robustness of our proposed VBTS solu-
tion in different water clarity conditions by mixing condensed
standard turbidity liquid with clear water to reach different
turbidity ratings. Fig. 6(a) shows the experiment setup. Our
proposed soft robotic finger is installed on a linear actuator
in a tank filled with 56 liters of clear water. A probe is fixed
under the soft robotic finger, inducing contact-based whole-body
deformation when the finger is commanded to move downward.
The tank is placed in a room with controlled ambient lighting
of 3000 lumens placed atop the tank. We controlled the linear
actuator for each turbidity condition so that the finger moved
downward along the x-axis. This enabled us to record the ArUco
image streams when fixed 0, 2, 4, 6, and 8 mm displacements
in Dx are reached. For example, the three images shown in the
first column of Fig. 6(b) are i) the experiment scenario taken at
the same angle as Fig. 6(a) when the turbidity is zero (before

adding condensed standard turbidity liquid), ii) a sample of
the raw image captured by our soft robotic finger’s in-finger
camera, and iii) image enhancement based on the image shown
in ii), respectively. The water tank’s clarity is modified by adding
specific portions of condensed standard turbidity liquid to reach
different turbidity ratings at 10 NTU per step (images for 20
NTU per step increase are shown in Fig. 6(b) for the ease
of visualization), increasing from 0 to 160 NTU, covering the
Yangtze River’s turbidity range.

For each of the Dx positions, we recorded 1000 images using
our soft robotic finger’s in-finger camera to obtain the pose
recognition success rate (%) under each turbidity rating, before
or after image enhancement, reported in Fig. 6(c). The results
reported in Fig. 6(c) involve data aggregated from 85 000 raw
images (1000 images per NTU step per ArUco position × 17
NTU steps×5 ArUco positions) from in-finger vision for ArUco
pose recognition, which is doubled after image enhancement,
resulting a total of 170 K images.

In our experiment, for the turbidity range between 0 and 40
NTU, the raw images captured by our in-finger vision achieved
a 100% success rate in ArUco pose recognition. At 50 NTU
turbidity, the first sign of failed marker pose recognition was
observed when the most considerable deformation was induced
at 8 mm of Dx. Our experiment shows that this issue can
be alleviated using simple image enhancement techniques to
regain a 100% marker pose recognition success rate. How-
ever, the marker pose recognition performance under large-scale
whole-body deformation quickly deteriorated when the turbidity
reached 60 NTU and eventually became unusable at 70 NTU.
Image enhancement could effectively increase the upper bound
to 100 NTU to reach an utterly unusable marker pose recognition
in large-scale whole-body deformation. However, for small or
medium whole-body deformations measured by Dx ≤ 6 mm,
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Fig. 7. Underwater shape estimation of a vase using PropSE of the soft finger. (a) Experimental setup for underwater shape estimation. A Robotiq Hand-E gripper,
installed with two proprioceptive soft fingers and an extension link, is mounted on a Franka Emika Panda robot arm. The gripper is programmed to periodically
perform a series of actions, including gripping, releasing, and moving along the x-axis for a fixed distance. At the same time, a vase is fixed at the bottom of the tank
in the lab. (b) Contact surface patch prediction using GPIS with the soft finger. (c) Experiment pipeline for underwater shape estimation of a vase. (d) Evaluation
of the reconstructed vase shape on some cutting sectional planes, measured in CD.

our system remains functional until around 100 NTU in tur-
bidity, where simple image enhancement techniques help for a
balanced consideration between algorithmic cost, engineering
complexity, and system performance.

For turbidity above 100 NTU, simple image enhancement
provides limited contributions to our system. Our experiment
shows that when the turbidity reached 160 NTU, our in-finger
system failed to recognize any ArUco pose underwater, even
after image enhancement. Since blurry images of the marker
remain visible in the captured images, we can: 1) use more
advanced image processing algorithms; 2) use better imaging
hardware; 3) apply stronger ambient lighting; and 4) redesign
the marker pattern specifically for underwater usage to systemat-
ically increase the upper bound of the turbidity rating for marker-
based posed estimation in contact-based amphibious grasping
using VBTS methods. Results obtained from this experiment
provide a general understanding of the potential regions for
amphibious grasping characterized by turbidity with possible
solutions to improve further.

2) Underwater Exteroceptive Estimation of Object Shape:
In this experiment, we apply our soft robotic finger with in-
finger vision to a contact-based shape reconstruction task to
demonstrate our solution’s capabilities in underwater extero-
ceptive estimation. Shown in Fig. 7(a) is the experimental setup

conducted in the lab condition using the same water tank as the
one used in the previous experiment. In this case, we used a
parallel two-finger gripper (HandE from Robotiq, Inc.) attached
to the wrist flange of a robotic manipulator (Franka Emika)
through a 3-D-printed cylindrical rod for an extended range of
motion. Our soft robotic fingers are attached to each fingertip of
the gripper through a customized adapter fabricated by 3-D print-
ing. Our previous work extensively tested this IP67 gripper’s
underwater servoing capabilities for reactive grasping during
temporary submergence under the water [73]. In this study, we
use the same gripper for underwater object shape estimation in
a lab tank. One can always replace the Hand-E gripper with a
professional underwater gripper for more intensive underwater
usage in the field.

With the gripper submerged underwater, the system is pro-
grammed to sequentially execute a series of actions, including
gripping and releasing the object and moving along a prescribed
direction for a fixed distance to acquire underwater object shape
information, as shown in Fig. 7(b)(i). By mounting the target
object at the bottom of the tank, we assume that: 1) the object’s
pose is fixed and calibrated with the gripper and 2) passive
object shape exploration is considered for object coverage. The
inference of the GPIS model is computationally intractable for
the large N measurement that accrues from high-dimensional
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tactile measurements. Instead of predicting the whole object
surface by accumulating all the collected data, we only query a
local GPIS model approximated using current observed contact
data in a local focus area and build the surface incrementally, as
shown in Fig. 7(b)(ii) and (iii).

a) Local GPIS Model Inference: A training set containing
contact interface points xc and corresponding augmented con-
trol points are collected each time a grasping action is performed.
Before querying the local GPIS model in the interested area,
hyperparameters σ2

f and l associated to (13) are optimized first
using the standard training method for GPs, i.e., maximizing the
marginal likelihood. Then, we evaluate the local GP on voxel
grid points at a resolution of 0.2 mm in the interested area and
keep those points with zero mean of (14) as estimated points on
the surface patch of the object.

b) Local Patches Concatenation: After calibrating the ob-
ject pose to the gripper, we programmed the grasping system
to follow a predefined path for object shape exploration. As
is shown in Fig. 7(b)(iv), each time after GPIS query in the
local 3-D region, a global registration action is performed by
transforming these local iso-surface points into the global space.
Leveraging the continuous nature of the predefined exploration
path, a simple surface concatenation strategy is used, where
only the points of the estimated surface patch corresponding
to moving distance are kept, and points of overlapping intervals
belonging to the latest estimated surface patch are rejected. As
is shown in Fig. 7(c), after initialization of the relative pose
between the gripper and the object, the shape of the object is
continuously reconstructed using the described passive explo-
ration strategy.

c) Object Shape Estimation Evaluation: In Fig. 7(d), we
present our method on actual data collected during the underwa-
ter tactile exploration experiment. The shape estimates at each
cutting sectional plane are compared concerning the ground
truth using the Chamfer distance (CD) [74], a commonly used
shape similarity metric. We chose five vertical cutting planes
and one horizontal sectional plane for reconstructed object
surface evaluation. For each cutting plane, a calibration error
exists between the vase and the Hand-E gripper, leading to
the expected gap between the reconstructed and ground truth
points. In addition to the systematic error, we have observed a
slight decrease in the CD metric values between planes 1 and
5 compared to planes 2, 3, and 4, which could be attributed to
the limitations of the soft finger in adapting to small objects
with significant curvature. On the other hand, by employing
tactile exploration actions with a relatively large contact area
on the soft finger’s surface, the shape estimation of objects
similar in size to the vase can be accomplished more efficiently,
typically within 8–12 touches. The 3-D-printed vase has di-
mensions of approximately 80 mm by 80 mm by 140 mm.
(See Movie S3 in the Supplementary Materials for a video
demonstration.)

3) Vision-Based Tactile Grasping With an Underwater ROV:
Here, we provide a full-system demonstration using our vision-
based soft robotic fingers on an underwater remotely operated
vehicle. (ROV, FIFISH PRO V6 PLUS by QYSEA.)2 It includes

2https://www.qysea.com/

Fig. 8. Demonstration of our soft robotic finger with in-finger vision for tactile
sensing underwater. (a) Key components involved in the test. (b) Screenshot
of a 4K image captured by the underwater ROV’s onboard camera when our
fingers are holding a conch after successfully grasping. (c) and (d) Screenshot
of the images captured by an in-finger vision camera in the left and right fingers
while holding the conch. (e) and (f) Whole-body deformation reconstruction
for both fingers based on the images captured by the in-finger vision cameras,
respectively.

a single-DOF robotic gripper, which can be modified using the
proposed soft fingers with customized adaptors.

The experiment results reported in Section IV-B1 already
benchmark our system’s promising capabilities for real-time
underwater tactile sensing. As shown in Fig. 6(b), the water
at 20 NTU or above is already very challenging to observe from
a third-personal perspective. Experiments underwater would
require additional cost to prepare a second underwater ROV
to record videos when the water is clear enough. However, as
analyzed above, our in-finger vision could perform nicely at a
much higher NTU range. Therefore, in this section, we only
conducted this experiment in a lab tank to demonstrate our
system’s integration with an existing underwater ROV system
during an underwater task.

Shown in Fig. 8(a) is a brief overview of the system and the
scene. Our fingers are attached to the underwater ROV’s gripper
through 3-D-printed adaptors to replace the default rigid fingers.
Our design conveniently introduced omnidirectional adaptation
capability to the gripper’s existing functionality with added
capabilities in real-time tactile sensing underwater. Shown in
Fig. 8(b) is a screenshot of the image taken by the ROV’s
onboard camera, recording 4K videos in real-time. In this ex-
periment, both soft robotic fingers are installed with in-finger
vision, capturing images shown in Fig. 8(c) and (d). Using these
in-finger images, we can use the methods proposed in this work
to achieve real-time reconstruction of contact events on our soft
robotic finger in Fig. 8(e) and (f), while performing grasping
tasks underwater.

See Movie S4 in the Supplementary Materials for a video
demonstration. Besides the capabilities demonstrated in this
article, we also identified an interesting observation during the
experiment, adding to the benefits of having soft robotic fingers
for underwater ROVs compared to the traditional rigid ones.
While performing grasping underwater, the target objects are
usually at the bottom. It is challenging for the underwater ROV
to approach the target object smoothly and slowly, even in
the lab tank with no water disturbances, which is also highly
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related to the pilot skills. Our soft fingers offer an added layer
of production when the fingers collide with the bottom or
other obstacles underwater, providing impact absorption for the
underwater ROV while providing capable grasping and tactile
sensing capabilities. If the original rigid fingers were installed,
sudden impacts would occur when a collision happens, causing
damage to the robot, the finger and gripper, and the underwater
environment.

V. DISCUSSION

A. Encoding Large-Scale, Whole-Body Deformation by
Tracking a Single Visual Representation

This study presents a model-based representation by tracking
a single visual feature to achieve high-performing reconstruc-
tion of large-scale, whole-body deformation for PropSE. We
introduced rigidity-aware AMH constraints during the model-
ing process. This problem is usually characterized by infinite
degrees of freedom (DOFs) via a single visual feature in a
6-D pose. As a result, we effectively reduced the dimension-
ality in representing soft, large-scale, whole-body deforma-
tion. Our method shows 40 to 700 times faster run-time than
commercial software such as Abaqus at different resolutions
while exhibiting superior accuracy in deformation reconstruc-
tion. Our method also shows 1 to 2 times faster than the widely
adopted ARAP algorithm. It should be noted that it remains
theoretically unsolved to provide a model-based explicit proof
regarding this problem, requiring further research in future
works. However, our study shows promising capabilities of
this approach toward a high-performing solution with real-time
reconstruction efficiency and accuracy that can be used for tactile
robotics.

B. Rigid-Soft Interactive Representation in Tactile Robotics

The guiding principle behind our solution is a physical rep-
resentation process shared by many existing solutions in VBTS
technologies. Robotics usually interprets the physical world as
an object-centric environment, which can be modeled as rigid
bodies, soft bodies, or realistic bodies depending on predefined
assumptions. A critical task in robotics is to provide a struc-
tured, digitalized representation of the unstructured, physical
interactions so that the robotic system can make reliable action
plans. The various designs of the soft medium in VBTS gen-
erally function as a physical filter to transform unstructured,
object-centric properties from the external environment into a
constrained problem space within the finger toward a refined
representation. In this study, we propose a rigid-soft interactive
representation using a rigid body (the marker plate) attached to
the soft body (the adaptive finger) during contact-based interac-
tions (filled with realistic bodies with various material stiffness).
This process is similar to the mass-point model in physics,
which provides a succinate placeholder for deriving various
physical properties without losing generality in the mathematical
formulation. Further development following such representation
principle may give researchers a novel perspective to model

robotic dynamics as a tactile network of rigid-soft interactive
representations, as demonstrated by results reported in this study.

C. Vision-Based Multimodal Tactile Sensing for Robotics

In this study, we focus our investigation in VBTS on
deformation reconstruction only, which can further implement
tactile sensing of other perceptual modalities, as demonstrated in
our previous work. For example, our recent work [14] achieved
state-of-the-art performance in 6-D force-and-torque (FT) esti-
mation using a similar design, where a fiducial marker is also
attached inside the finger to provide a convenient representation.
Combining both methods will achieve a vision-based multi-
modal tactile Sensing system in our soft robotic finger design,
simultaneously providing high-performing tactile sensing in
6-D FT and continuous whole-body deformation reconstruction.
This will address a significant challenge in robot learning from
demonstration [75], [76], [77]. Wan and Song [78] also showed
the possibility of achieving object detection in the external envi-
ronment using the in-finger vision with a markerless design by
implementing the in-painting technique. Our research provides
a comprehensive demonstration regarding the robotic potentials
of VBTS technology in fundamental theory and engineering
applications, contributing to tactile robotics as a promising
direction for future research [25].

D. VBTS for Amphibious Robotics

Another novelty of this study is the application of VBTS in
amphibious robotics. Our study presents comprehensive results
and demonstrations in benchmarking performances, shape re-
construction tasks, and system integration with an underwater re-
motely operated vehicle. Many VBTS solutions require a closed
chamber for the miniature camera to implement the photometric
principle for tactile sensing, which may become challenging or
even unrealistic for a direct application underwater. It should be
noted that even after filling the closed chamber with a highly
transparent resin to seal the camera, the layer of soft material
used on the contact surface needs a depth-dependent calibration
that is unrealistic to perform underwater. Furthermore, the soft
material, such as silicon gel, will become brittle as the water
depth increases [79]. Our previous work already showcased the
engineering benefits of our soft robotic finger design, which can
be used to reliably estimate 6-D FT from on-land to underwater
scenarios [73]. In this work, we further demonstrate the applica-
tions of VBTS in high-performing shape reconstruction through
our soft robotic finger design for amphibious applications. Our
soft finger’s metamaterial network leverages structural adapta-
tion by design instead of being solely dependent on the material
softness. This significantly reduces the fluidic pressure on our
finger’s adaptive behavior. Further discussion of this topic is
outside the scope of this study, which we will address in an
upcoming work with more details.
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VI. CONCLUSION

In conclusion, this study presented a novel VBTS approach for
proprioceptive state estimation focusing on amphibious appli-
cations. Utilizing an SPN structure coupled with marker-based
in-finger vision, our method achieved real-time, high-fidelity
tactile sensing that accommodated omnidirectional adaptations.
Introducing a model-based approach with rigidity-aware AMH
constraints enabled effective optimization of the soft robotic
finger’s deformation. Furthermore, restructuring our proposed
approach as an implicit surface model demonstrated superior
shape reconstruction and touch-point estimation performance
compared to existing solutions. Experimental validations af-
firmed its efficacy in large-scale reconstruction, turbidity bench-
marking, and tactile grasping on an underwater ROV, thereby
highlighting the potential of tactile robotics for advanced am-
phibious applications.

However, the study had several limitations. Manufacturing
inconsistencies inherent to soft robots can impact the accuracy
of our method, and algorithmic parameters required precise cali-
bration through physical experiments. Additionally, using a rigid
plate for boundary condition acquisition slightly hampered the
finger’s compliance, affecting the contact-based conformation
between the object and our finger. The object surface estimation
pipeline was also sensitive to contact geometry, restricting its
use to local surface patches with smooth curvature changes.

Future research aims to optimize the system for versatile
tactile grasping and expand its integration into robotic grippers
for diverse on-land and underwater applications. The vision-
based proprioception method holds the potential for developing
advanced robotic necks for underwater humanoids with precise
state estimation driven by parallel mechanisms or pneumatic
actuation. These advancements will pave the way for the broader
application and utility of VBTS technologies in robotic systems
operating in complex environments.
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