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ABSTRACT Solar photovoltaic (PV) systems are increasingly recognized as crucial sustainable energy
sources with diverse applications. Their implementation leverages rapid advancements in material
engineering, communication systems, and computational intelligence tools. This paper focuses on selected
mathematical methods for analyzing time series of power generated by PV systems, including numerical
methods and algorithms for multichannel signal processing, digital filtering, and signal feature extraction.
These methods monitor the characteristics of individual PV panels and identify their feature clusters.
Specifically, it examines systems with east/west oriented photovoltaic panels, employing statistical methods
and computational tools to analyze power signals, assess time and positioning data, evaluate symmetry
coefficients, and apply machine learning tools to detect potential panel failures. Additionally, a general
graphical user interface for data analysis is proposed. A detailed case study is presented, analyzing the
distribution of selected features over time segments of a PV system comprising seven east-oriented and
seven west-oriented panels, with data recorded over a selected set of days at a sampling rate of 15 minutes.
The results reveal distinct and well-separated feature clusters for healthy PV panels. General conclusions
underscore the effectiveness of signal processing tools in the statistical analysis of PV systems and the
potential of feature clustering and symmetry estimation for evaluating disorders of system behaviour using
communication technologies, data storage, and remote system monitoring.

INDEX TERMS Photovoltaic systems, renewable energy, computational intelligence, multichannel signal
processing, signal features evaluation, fault detection.

I. INTRODUCTION
Due to the exponential growth of large-scale photovoltaic
(PV) systems, automatic approaches for PV system anal-
ysis, optimization, and protection are becoming increas-
ingly important. This progress includes advancements in
both technological systems and artificial intelligence for

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

controlling and monitoring their behavior [1], [2]. Globally,
solar PV is projected to generate around 8.2% of total
electricity in 2024, up from 6.7% in 2023. This increase
is driven by the rapid expansion of solar installations
worldwide [3], particularly in leading solar markets like
China, the United States, and the European Union. The share
of renewables in electricity generation is forecast to rise
from 30% in 2023 to 37% in 2026, largely supported by
the expansion of increasingly cost-effective solar systems.
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More than 61 countries worldwide support renewable energy
(RE) systems research [4] to achieve 100% RE targets.
The growing electricity demand of data centers [5], crucial
for current information technology systems, highlights the
need for improved energy efficiency to be entirely powered
by renewable energy by 2032. These trends underscore
the global push for renewable energy and technological
advancements in solar power generation.

Photovoltaics, which involve the conversion of light into
electricity, are based on the photovoltaic principle first
demonstrated by French physicist Edmond Becquerel in
1839. The first solar cell, consisting of a layer of selenium
covered with a thin film of gold, was created by Charles Fritts
in 1884. In addition to the direct photovoltaic excitation of
free electrons, an electric current can also arise through the
Seebeck effect, first discovered in 1794 by Italian scientist
Alessandro Volta and independently rediscovered by German
physicist Thomas Johann Seebeck in 1821.

Photovoltaic systems have long been used in specialized
applications such as stand-alone installations and space
stations. Since the 1990s, grid-connected PV systems have
become widely adopted as renewable energy sources, along-
side wind, solar, geothermal, and hydropower. Modern home
and large-scale photovoltaic systems employ solar modules,
each comprising numerous solar cells that generate electrical
power. Modeling these systems provides information about
solar cell current/voltage curves [6] for a given radiation level,
which is essential for configuring a solar system to operate
near its optimal peak power point.

Physical PV configurations [7], [8] depend onmany factors
that aim to maximize system efficiency, minimize environ-
mental degradation [9], [10], extend their lifetime [11], and
consider architectural aspects of their implementation [12],
[13]. The sensitivity of solar panels is mostly optimized
for the 400-1100 nm wavelength range, allowing them to
achieve high efficiency by focusing on the most abundant
and energetically favorable parts of the solar irradiance
spectrum [14] reaching the Earth. Studies in material
engineering further optimize the transmission through panel
materials [15], [16] and increase the ratio of electrical output
to incident solar energy.

Solar photovoltaics are among the most prominent sustain-
able energy sources, representing an increasing percentage
of renewable energy generation. Due to the rapidly growing
number of PV systems, there is a need for improvements
in monitoring technologies [17], [18], fault detection using
spectral methods and thermal images [19] among others,
integration with data transmission [20], and the development
of fast communication systems [21], [22].
Many studies are devoted to the physical principles of

photovoltaic systems, advancements in material engineering,
and the rapid technological progress in energy acquisition,
transmission, storage, and electrical power system architec-
ture [23]. Selected studies focus on data processing and
the optimization of PV system behavior. An important
associated area is the monitoring of solar systems [24] and

remote sensing to detect failures [25], [26] through infrared
thermography [27], [28], [29], [30], [31], as well as general
data processing methods [32], [33], [34], [35], and software
tools for the analysis and modelling of PV systems [36].

Monitoring technologies play a crucial role in improving
the performance and reliability of PV systems by tracking
their operation and identifying potential failures. Basic
monitoring systems focus on simple parameters like energy
output, voltage, and current. Advanced real-time monitoring
systems of large-scale PV installations measure a wide
range of parameters including solar irradiance, module
temperature [37], ambient temperature, shading, and wind
speed. They can remotely detect system performance issues
in real-time and suggest maintenance needs [38].

The orientation of photovoltaic panels [7], [39] plays a
crucial role in their efficiency and energy output. In the
northern hemisphere, south-facing PV panels are positioned
to receive maximum sunlight throughout the day, especially
around solar noon. Studies suggest that south-facing panels
can capture up to 15% more energy than east/west-oriented
panels under ideal conditions. While south-facing panels
provide a higher total energy yield, east/west panels offer
better alignment with energy consumption patterns and allow
for more compact and potentially cost-effective installations.

Computational methods, artificial intelligence algorithms,
and digital signal processing tools are pivotal in moni-
toring, optimizing, and addressing abnormal behavior in
PV systems. Specific projects focus on signal processing
for solar panel analysis, advanced algorithms for PV array
monitoring, fault detection, and segmentation of solar PV
systems [40], [41]. Mathematical methods include numerical
and statistical methods, digital filtering tools, machine
learning, and spectral analysis methods, which are especially
useful for detecting and smoothing fluctuations in solar
irradiance time series [42].
Special attention is paid to integration of artificial intel-

ligence (AI) into photovoltaic systems [43], [44], [45], [46],
[47] to improve their efficiency, reliability, to optimize system
performance, and to detect faults [48]. Its application is

FIGURE 1. Positioning of photovoltaic panels on the flat roof with the
east/west orientation and their description on the web model used for
data acquisition from individual panels with the selected sampling period.
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FIGURE 2. Graphical user interface that allows processing of power data
from individual east/west oriented panels with selected parameters
allowing selection of filtering methods and days for detail processing
presenting (a) an area for data import and location of panels, (b) an area
for parameters selection, (c) the total power of selected string, (d) the
mean power from east and west oriented panels, (e) normalized power
ratio of east/west oriented panels, (f) the peak power features, (g) the
numerical results, and (h) the 3D power distribution at a selected time.

mostly in maximizing the potential of east/west-oriented
solar installations, data processing, and model management
in different conditions [49]. Computational intelligence
techniques help optimize power generation by addressing
challenges such as fluctuating solar irradiance and system
orientation. Specific research is devoted to AI application in
advanced remote supervision and control [50].
This paper reflects the focus on advanced computational

tools, signal processing, and a specific case study, as well
as the practical applications and implications of the research
of the east/west oriented system presented in Fig. 1.
It contributes to the mathematical analysis of signals recorded
from individual panels and their systems installed in specific
locations. The goal of the paper is in the use of computa-
tional intelligence and digital signal processing methods for
(i) remote monitoring of signals acquired from panels with
different orientations for detection of possible defects and for
system optimization, (ii) determination of time and location
factors from different power patterns acquired from the set of
panels, (iii) classification of power data using pattern vectors
acquired during different time periods, and (iv) studies of
specific areas of AI implementation in PV systems research
and education.

The rest of the paper is organized as follows. Section II
discusses data acquisition, describes the proposed methodol-
ogy, and summarizes signal processing methods. Section III
presents selected results of multichannel power signal
analysis associated with the specific case study and describes
the proposed general graphical user interface. Section IV
contains the discussion. Section V presents the conclusions
and remarks on possible future research.

II. METHODS
The dataset comprises data captured through an Internet
connection to photovoltaic solar systems. The proposed

FIGURE 3. Power generated by individual panels with (a) the east and
(b) the west orientation during selected 6 days.

methodology utilizes both systemmonitoring via smartphone
technology and data processing in the computational envi-
ronment of Matlab 2024a (MathWorks, Natick, MA). The
evaluation algorithm in the suggested graphical user interface
is presented in Fig. 2. The data processing steps include the
following:

(a) Downloading power data from individual east/west
oriented panels recorded by the PV system, stored
in the form of a CSV table containing timestamps
and the power output of individual panels.

(b) Selecting processing parameters, including the
definition of digital filtering and the selection of the
data subset.

(c) Filtering the total power of the selected string.
(d) Estimating the mean power from the east and west

oriented panels to identify power peaks for both sets
of panels.

(e) Evaluating the normalized power ratio of east/west
oriented panels to detect midday.

(f) Computing peak power features of individual
panels and their mean values to identify potential
defects in individual panels.

(g) Evaluating numerical results.
(h) Visualizing the 3D power distribution at a selected

time.

A. DATA ACQUISITION
Figure 1 presents a selected configuration of photovoltaic
panels on a flat roof with east/west orientation, along
with their description in the web model used for data
acquisition from individual panels with the selected sampling
period. Figure 3 shows the power generated by individual
panels with east and west orientation over a selected time
period.

Detailed descriptions of observations can be found
on IEEE DataPort (Solar PV Data Analysis, 10.21227/
n891-rw53, [51]) for further investigation. This repository
contains a selected dataset of power generation by the PV
system, comprising seven east-oriented and seven west-
oriented panels, with data recorded over a period of several
days at a sampling interval of 15 minutes. Additionally,
a graphical abstract of the paper is available in the repository.
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B. SIGNAL PROCESSING
The database of records was organized into a matrix with
timestamps in the first column and records of generated
power in the subsequent columns, each associated with
individual panels through their titles. The sampling period
Ts was constant, set to Ts = 15 minutes, in the ideal
case, making resampling unnecessary. This data was used
for (i) evaluating midday by analyzing the time evolution
of the power ratio between east and west-oriented panels,
(ii) estimating sunrise and sunset times, (iii) potentially
estimating the PV system’s longitude and latitude, and
(iv) evaluating selected panel features to detect possible panel
failures. Additional analysis included interpolating energy
production over the PV system area for potential comparison
with infrared images to further investigate panel failures.

Time series N values long of energy data defined simulta-
neous vectors {sp(n)}Nn=1 for each panel p = 1, 2, · · · ,P out
of their set of P units and for each time instant t = n× Ts for
n = 1, 2, · · · ,N . These vectors formed columns of the data
matrix A = [s1, s2, · · · , sP].

Signal preprocessing included digital filtering of the given
data as the first step. Due to the nature of the data values,
median filtering of a selected order was applied to each
column of the matrix A to reduce isolated peaks in the
data. This step was necessary because fluctuations in data
from photovoltaic panel optimizers can occur due to variable
sunlight intensity, temperature variations, grid instability,
the presence of harmonics, or the algorithms used by the
optimizers to maximize power. Digital filtering was then
performed using a low-pass finite impulse response (FIR)
filter of the selected order M and its cutoff frequency fc was
the optional next step of data preprocessing. For each panel
p = 1, 2, · · · ,P, the new sequence:

Sp(n) =

M∑
m=1

b(m) sp(n− m) (1)

was evaluated for values n = 1, 2, · · · ,N and coefficients
{b(m)}Mm=1 associated with the selected cutoff frequency fc.
Power generated by individual panels was then evaluated by
the simple rectangular integration rule.

The least squares method was then used to estimate
key features associated with the PV location. A linear
approximation of the signal, defined as the ratio of power
generated by east- and west-oriented panels, was employed
to estimate midday, with this value being close to one.
A cubic approximation of the power generated by these
two panel categories helped identify morning and afternoon
power peaks for these two categories of panels, detecting their
individual and mean characteristics crucial for identifying
potential panel failures. These signals were also used to
monitor the initial and final times of power generation during
selected days.

Additional information was derived from the specification
of panel locations within the selected coordinate system.
Two-dimensional spline interpolation of power generated by

individual panels across the entire PV system area enabled the
visualization of power generated from east- andwest-oriented
panels at chosen time instants. These results provide a basis
for further potential correlation of power data with infrared
images of individual panels to detect possible panel failures.

Fundamental statistical methods were used to evaluate
selected features for both individual panels and the global
analysis of the entire PV system. Features associated with
east- and west-oriented panels were then used to define their
clusters and for further analysis.

Evaluating the symmetry coefficient of an east- and
west-oriented photovoltaic system involves comparing the
performance or output characteristics of the PV arrays
oriented in these two directions. The calculation of this
coefficient includes:

• Gathering of data on the power output generated by
both the east and west-oriented PV arrays. This data
should be collected over the same time periods to ensure
comparability.

• Selecting a time frame, which can include daily, weekly,
monthly, or yearly data, depending on the required level
of detail.

• Normalizing the power output data to account for
differences in the number of panels or the installed
capacity between the east and west arrays, if they are not
identical in size. This can be done by dividing the power
output by the total installed capacity of each array.

• Calculatinng the symmetry coefficient (SC), defined as
the ratio of the total power produced by the east-oriented
array (Peast ) to power produced by the west-oriented
array (Pwest ):

SC =
Peast
Pwest

(2)

Additional statistical analysis can further explore symmetry
coefficient changes with seasons, related to the variation of
the sun’s angle and daylight hours.

The performance ratio (PR) can then be estimated from the
daily mean power output Pactual [kWh/day] of the PV system
by relation:

PR =
Pactual

Ptheoretical
(3)

where the theoretical power outputPtheoretical [kWh/day] with
its seasonal variations can be calculated from the average
solar irradiance Gavg [kWh/m2/day], the area of the PV
system A [m2], and module efficiency η as

TP = Gavg × A× η × PR (4)

The east/west oriented PV system are very efficient with
this metric usually higher than 0.8 [39], [52]. In these
systems, the calculation must account for different solar
angles throughout the day, which leads to variations of solar
irradiance. East/west systems tend to produce more power in
the morning and afternoon compared to south-facing arrays
that peak at midday. Machine learning models are applied

VOLUME 12, 2024 165045



A. Procházka et al.: Advanced Signal Processing Techniques

to predict the most efficient configuration for east/west
arrays. These algorithms can process large datasets, including
weather patterns and shading effects, to find the optimal
design parameters.

Fundamental statistical methods were used to evaluate
selected features for both individual panels and the global
analysis of the entire PV system. Additional statistical
analysis can further be employed to analyze the symmetry
coefficient, comparing the distributions of the outputs from
the two arrays by calculating the mean and standard deviation
of the output ratios over multiple time periods.

III. RESULTS
During the signal preprocessing stage, median filtering of the
third order was applied followed by FIR low-pass filtering of
order M = 20 with the normalized cutoff frequency fc =

0.1 to remove fast signal fluctuations. Detailed numerical
results of the power generated by the east- and west-oriented
panels over six consecutive days are presented in Table 1. The
normalized symmetry coefficient in the last column should
be close to one for a healthy system. If a panel fails, this
equilibrium changes, indicating the need for a more detailed
system analysis.

Figure 4 presents an analysis of the power generated by
east/west oriented PV panels. The mean power generated

TABLE 1. Power generated by the east/west oriented PV panels, the total
value of power produced during 6 subsequent days, and the symmetry
coefficient.

FIGURE 4. Analysis of the power generated by PV panels presenting
(a) the mean power generated by east and west oriented panels after the
application of median filtering, (b) power difference, and (c) power ratio
during selected 6 days.

FIGURE 5. Analysis of the PV system features defined by the maximum
power value and its associated time for each east- and west-oriented
panel presenting (i) distribution of these features for individual panels for
the period of selected days with the c multiples of standard deviations
for c = 1.0, 1.2, · · · , 1.5, (ii) mean power values over individual panels
(with asterisks and pentagrams for east- and west-oriented panels), and
(iii) global mean values for the two categories of panels.

by these panels is shown in Fig. 4(a). The difference and
the ratio of power generated by the east- and west-oriented
panels are presented in Figs. 4(b) and 4(c), respectively. These
signals were used to estimate midday and the active power
generation period each day. These values can then be used to
estimate the observation date and the latitude/longitude of the
PV system, as described in some papers. The datasets used
for this analysis are stored in IEEE DataPort, as mentioned
above.

The behavior of the PV system can be analyzed in more
detail through signal features estimated from data that specify
power generation by individual panels. Figure 5 presents an
analysis of the PV system features defined by the maximum
power value and its associated time for each east- and west-
oriented panel, showing the distribution of these features for
individual panels over the selected number of days. Detailed
distribution of these features is associated with individual
panels for the period of selected days with the c multiples
(c = 1.0, 1.2, · · · , 1.5) of standard deviations S1, S2 of
features standing for maximum power time f1(i) and their
values f2(i) for individual east- and west-oriented panels for
i = 1, 2, · · · ,N related to their mean values where

Sk =

√√√√ 1
N

N∑
i=1

(fk (i) − mean(fk ))2 (5)

for k = 1, 2. The mean power values over individual panels
(specified by asterisks and pentagrams for east- and west-
oriented panels) should form compact clusters for the healthy
system. The specific markers show global mean values for
east- and west-oriented panels.

The position of the PV panel set shown in Fig. 1
was specified in the selected coordinate system, enabling
visualization of the time evolution of power generated
by individual units. Figure 6 presents the results of 3D
interpolation of the generated power, depicted in mesh and
contour plots at the selected time. This allows tracking the
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FIGURE 6. Positioning of 7 east-oriented (numbered in red) and
7 west-oriented photovoltaic panels (numbered in blue) in the selected
coordinate system and the 3D interpolation of the generated power at the
selected time instant.

peaks of power generated by the east- and west-oriented
panels.

The proposed graphical user interface, shown in Fig. 2,
facilitates processing power data from individual east- and
west-oriented panels recorded by the solar system with
the given sampling period. his environment allows remote
selection and import of any PV system segment, data
preprocessing with chosen parameters by selected digital
filtering methods, their processing, and analysis including
classification of signal features. Results display the total
power of a selected string, the mean power from east- and
west-oriented panels, and the normalized power ratio of east-
to west-oriented panels. Additional windows present peak
power features (values and associated time) of individual
panels, numerical results, and the 3D power distribution at
a selected time, based on the panel localization within the
selected coordinate system.

Numerical results presented by the graphical user interface
in Fig. 2 provide fundamental information related to the
selected database of power records over the chosen time
period. Information about the selected PV system includes
the mean daily power generated during the chosen period
and the area of solar panels, which can be used to evaluate
the performance ratio according to Eq. (3) for the mean solar
irradiance in that period.

IV. DISCUSSION
The widespread availability of photovoltaic systems, com-
binedwith rapid advancements inmaterial engineering, artifi-
cial intelligence, and communication technologies, is driving
the rapid development of solar systems. This progress is
enabling the application of innovative computational and
machine learning methods.

This paper focuses on the study of east/west architecture
in solar systems and the use of computational methods

for analyzing signals acquired from individual panels.
It demonstrates the potential of these methods for system
analysis and anomaly detection in power supply.

The results indicate that the east/west orientation of
panels is beneficial not only for efficiently distributing
power generation throughout the day but also for conducting
additional system analysis and fault detection. The symmetry
coefficient canmonitor the health of the entire system through
a simple evaluation of acquired signals. Further analysis
can then be based on more sophisticated computational
tools and artificial intelligence methods to predict power
generation, optimize design parameters, and assess overall
system efficiency.

The presented case study analyzed 14 panels, with half
oriented east and the other half west. The mean symmetry
coefficient evaluated from observations over six days was
1.013, with a standard deviation of 0.041 and well-separated
clusters of selected panel features. The mean difference
between peak power supply from east- and west-oriented
panels was 2 hours and 30 minutes.

The reliability of the proposed computational system is
closely related to the quality of data available from the
remote database system, the sampling period, and time
synchronization of signals from individual panels. Higher
sampling rates (typically with Ts = 1s) are recommended
for advanced fault detection [20] and real-time performance
optimization, especially for individual panels. In the given
case, the sampling period Ts = 15min was selected
as a recommended standard monitoring setup providing
a balance between capturing performance variations and
minimizing data storage/processing demands. Recording was
reliable with time-synchronized signals. In case of not so
sophisticated systems, the time interpolation of missing
values and resampling can cause additional processing errors.

V. CONCLUSION
The global use of solar energy is projected to rise significantly
in the coming years, becoming a primary energy source that
supports economic growth. This progress must be driven by
high-quality research from both academic institutions and
industrial sectors. Recent studies focus on advancements in
material engineering, the integration of artificial intelligence,
improvements in energy storage systems, and the devel-
opment of new technologies, including concentrated solar
power systems. These efforts aim to enhance the efficiency,
reliability, and sustainability of solar energy solutions to meet
future energy demands effectively.

This paper addresses the analysis of east/west photovoltaic
systems using data from individual panels and the application
of computational methods for their processing. The proposed
algorithm evaluates the symmetry coefficient and the distri-
bution of selected signal features.

The results indicate that this method could be beneficial
for distinguishing between the behavior of east- and west-
oriented panels, optimizing system performance, and detect-
ing possible failures. Future work should focus on more
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sophisticatedmethods and the application of infrared cameras
for a more detailed analysis of potential panel failures.

Further research should be devoted to developing algo-
rithms and software tools for improving the performance
of the associated hub inverter, its integration into the grid,
and the construction of battery systems. The entire inter-
disciplinary field of solar energy utilization requires a deep
understanding of electrical engineering, material science,
communication technologies, and artificial intelligence, with
a wide range of applications.
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