RESEARCH ON A-PNT IN EUROPE

2018 iCNS Conference

Valeriu Vitan
EUROCONTROL / DATM / RDS / NAV&CNS Research
April 2018
Short/Mid-term A-PNT
Evolution of legacy technologies

- Enhance legacy technologies
- Make use of legacy infrastructure and equipage
- Feasible in short/mid term

Long-term A-PNT
New technologies

- Improve performance to support more demanding procedures
- Increase spectrum efficiency
- Use CNS synergies

Scope limited to enroute and TMA applications
Why A-PNT

- Wide implementation of PBN applications in all phases of flight
 - FRA based on RNAV 5 in en route airspace
 - SIDs/STARs predicated on RNP 1 with RF legs in high density TMAs
 - SIDs/STARs predicated on RNAV 1 in additional TMAs
 - Low altitude helicopter routes predicated on RNP 0.3
 - RNP/APCH (LNAV/VNAV and/or LPV minima) at all instrument RWY ends

- GNSS is the nominal sensor for all PBN operations (required for RNP)

- DF-MC GNSS on the horizon

- Is there still a need for terrestrial backup?
Why A-PNT

- Arguments for terrestrial backup
 - GNSS vulnerabilities
 - Gradual implementation of DF-MC starting not earlier than 2025
 - State liability for navigation service provision
 - Sovereignty

- A-PNT today:
 - DME/DME (+VOR/DME)
 - ILS/DME

- Future A-PNT must be better
 - Performance
 - Spectrum
 - CNS synergies
How good is DME today?

- Measured accuracy twice better than standards
 - Range error: $2\sigma < 0.1$ NM
 - DME/DME NSE: $2\sigma < 0.3$ NM
- Extensive coverage
DME issues

- Low ramp in DME range error (0.01NM/s) not detected in DME/DME/IRS mode

- Range integrity needed to demonstrate suitability for RNP reversion (min 10^{-5}/h)

- Although executive monitors are required, no minimum integrity level in ICAO Annex 10

- Nevertheless integrity requirements included in FAA and EUROCAE specifications and therefore modern transponders comply
 - FAA E-2996
 - EUROCAE ED-57 (for DME-P supporting final approach operations)
DME improvements – Short Term Standardisation

- Update ED-57
 - Reflect actual performance of modern transponders and harmonize with other specifications
 - Include guidelines for integrity derivation of DME ground equipment

- Propose improvements compatible with current technology which can be smoothly deployed (e.g. faster rise time)

- Document the use of DME/DME for RNP 1 reversion

- EUROCAE WG107
 - Update ED-57 MOPS for DME ground equipment
 - Write MASPS RNP Reversion using DME/DME Positioning
DME improvements – Mid Term

Hybrid ranging

- DME is a two-way ranging system
- Transponders overload in high traffic density areas
- One way ranging
 - Broadcast from ground (pseudorandom pulse pair sequence)
 - No capacity limitation
 - Needs time synchronisation

- Hybrid ranging
 - Two-way ranging – relative synchronisation
 - One-way ranging – relative range measurements
 - Reduced risk of transponder overload
 - Compatibility with legacy interrogators
DME improvements – Mid Term
Multi-DME

- Snapshot method to compute 3D position in ECEF with RAIM algorithm
- Minimum number of ground stations
 - 3 (4 to eliminate ambiguity)
 - Additional range for integrity
 - Baro altitude can be used as additional range
- RAIM targets
 - Full OPMA compliance
 - HIL: 10^{-7}/h; PFA: 10^{-4}/h; PMD: 10^{-3}/h
 - Assumed transponder integrity: 10^{-3}/h
- Initial analysis in Paris CDG area
 - RNP1 protection level is achievable
 - Potential complexity of selection algorithm (15504 possible combinations) solved

$2\sigma_{\text{DME}} = 0.2\text{NM}$ (standards)

$2\sigma_{\text{DME}} = 0.1\text{NM}$ (actual)
LDACS-NAV

- ICAO standardization process ongoing
- OFDM system with 500 kHz bandwidth
- Shares the DME band (960 and 1164 MHz)
- One-way ranging

- Initial simulations in German airspace
 - 159 ground stations
 - Time synchronisation 20ns
 - No terrain masking
 - No limitation on # of channels

- Excellent performance but some optimistic assumptions
LDACS-NAV

- The network of ground stations required for COM not sufficient to support NAV
- LDACS-NAV rather a complementary ranging source
- Combined DME-LDACS simulations
 - 69 LDACS stations
 - Accuracy improvement mainly in the vicinity of these facilities

- Main research objectives
 - Characterise threats (multipath, tropospheric delays, sync errors)
 - Define mitigation strategies and integrity monitoring functions
eLoran

- Robust alternative to GNSS
 - Complementary physical characteristics (low frequency, high power)
 - Additional data channel (LDC) to convey corrections for major error sources and integrity data
 - Potential multi-modal use: Maritime, Land-mobile, Aviation, Time source

- eLoran for Aviation
 - Can meet RNP 0.3 requirements
 - The use of ADF antenna may facilitate retrofitting
 - Not a wide agreement in aviation community for the use of eLoran
 - Aviation community not the main driver
One of the main source errors: Additional Secondary Factors (ASF)
- Due to propagation over land and elevated terrain
- Correction provided typically by measurements recorded in transmitter specific maps / databases

Novel performance assessment approach:
- Build accurate ASF model, to be integrated into coverage prediction models or Kalman-based filters
- Quantify accuracy, integrity and obtainable RNP levels by combining various models (ASF, SNR, HDOP)
Multitude of legacy and new positioning sources investigated

One of the key aspects: **Transition**
- Service legacy aircraft
- Gradual deployment of new ground and on-board systems

Potential solution: Modular A-PNT
- Fuse various ranging sources in an aggregated positioning solution with integrity
- Need to handle systems with different performances, failure modes and maturity levels

Concept to be further investigated and developed
A-PNT Transition

- Main factors that may influence the long-term solution and transition
 - GNSS interference environment
 - Availability and robustness of DFMC GNSS
 - Operational need (higher performance)
 - Worldwide agreement
 - Spectrum pressure on L band
 - Incentives

- Coordinate CNS approach to group COM/NAV/SUR upgrades into a single upgrade would facilitate Airspace Users buy-in

- The long-term A-PNT solution may depend on the progress driven by COM/SUR or by non-aviation applications