ICNS 2018

Airport Information Sharing Concept Architecture Development

Rafael Apaza, NASA Glenn Research Center, Cleveland, Ohio
Antonio Correas, Skymantics

April, 2018
Contents

1. Introduction
2. Project Description
3. Architecture Concept
4. Testbed Configuration
5. Test Scenarios and Results
6. Conclusion
Develop an airport network framework architecture that enables seamless exchange of real time information among stakeholders for the improvement of NAS operations.

Objectives
- Increase airport capacity
- Improve gate turn around time
- Improve on time departures
- Improve NAS efficiency and safety
- Optimize Airline, ANSP, Airport operations.
- Increase collaborative information

Benefits
- ATM optimization based on full view, real time airport information and increased system predictability
- Operational improvements by implementing advances in networking and Communications technologies
- Context Awareness – Total view of airport state (facilities/assets, operations, users)
- Improve airport tenant decision making capabilities.

Enable Seamless Information Exchange and activate new NAS Capabilities
Airport Information Sharing Architecture: Objectives

Optimize
- Information sharing
- Airport surface ops
- Air traffic management
- Safety processes
- Business operations

Enable
- Net/Data-centric collaboration
- Total airport management
- Data reliability and timeliness
- Network resilience

Integrate
- Data sources
- Ground and air-ground networks
- ATM tools

Demonstrate
- Prototype template
- System/subsystem performance
- Airport resource sharing policies
Global Airport Architecture System View Framework - Conceptual

- **Airport Network System (ANS):** Repository of relevant global airport information supporting ATM/ATC, AOC, FOC, Airports, Passenger
 - ANS Implementation - options
 - Publish/Subscribe Cloud Enabled – NAS users connect and access information
 - Distributed servers forming a SOA
 - Cloud Computing Environment
 - Data exchange model required (FIXM, WXXM, AIXM)

- **Airport System Information (ASI):** Repository of relevant airport information supporting ATM/ATC, AOC, FOC, Airports, Passenger
 - ASI Implementation - options
 - Publish/Subscribe Cloud Computing Enabled – Connects to ANS for information dissemination
 - Airport tenant publishes to ASI
 - Data exchange model required
Global Airport Architecture System View Framework - Logical

[Diagram showing various components and services related to airport architecture, including Airline OCC (Hybrid Cloud), Flight Database, FBO (Hydrogen/Catering Fuel) Services, Airfield/Terminal Services, Air Traffic Management, and FAA Telecommunications Infrastructure (FTI).]
Data Load Model

Services identified:
- SWIM (APDS, SMES TAIS, TBFM, flight data, weather)
- Airspace user (CDM, scheduling, flight status, OOOI, ground services, logging, NOTAM/NOTOC)
- Airport authority (gate management, slot, CDM, facility status and reporting, airfield status, security)
- ANS to ASI dialogue (ANS report, ASI report, ANS to ASI sync)

For each service:
- Service name and description
- Source
- Destination
- Message name
- Instantiation interarrival distribution (seconds)
- Size distribution (bytes)
- Class of Service
- Availability

<table>
<thead>
<tr>
<th>Service_Name</th>
<th>Service_Description</th>
<th>Source</th>
<th>Destination</th>
<th>Message_Name</th>
<th>Instantiation_Interarrival_Distribution (seconds)</th>
<th>Size_Distribution (Bytes)</th>
<th>CoS</th>
<th>Latency (RCP)</th>
<th>Availability</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight_ID</td>
<td>Update of flight/aircraft identification: GUFI/ACID/UUID/Aircraft type/Equipage</td>
<td>AOC/FOC services</td>
<td>ANS</td>
<td>ID_Update</td>
<td>1 message/flight</td>
<td>100</td>
<td>ATM</td>
<td>10</td>
<td>0.9999</td>
<td>Assumed very small message size. Worst case that it is updated once per flight</td>
</tr>
</tbody>
</table>
Testbed Description

Background:
• A spiral testing approach has been designed to validate increasingly realistic aspects of information sharing in the airport network
• In the first spiral, a message broker implementation to instantiate the ANS and ASI functionality is tested for feasibility

Objectives:
• Validate a message brokering in client-server architecture and IPv6 addressing
• Use sample messages from the data load model (e.g. ASDE-X surface event)
• Use AMQP protocol for subscription, publication, consumption (and, in R/R, acknowledgement)
• No network routing or traffic load effects
• Test message delivery latency depending on:
 – Message size (5 kB+)
 – Exchange pattern (Request/Response or Publish/Subscribe)
• Creates the baseline in “ideal network conditions” to add realistic nation-wide network traffic in future test spirals
Testbed Configuration - Components

Trial Configuration

- Test employed emulated architecture configuration
- IPv6 Network with segmented addressing domains
- System Components
 - ODROID-C2 Single Board Computers running Linux OS
 - Netgear Switch
National Aeronautics and Space Administration

Testbed Configuration – Test Tools

Sample file: ASDEX Surface event (5 MB)
Testbed Configuration - Scenarios

1. Queue Publication (Request/Response Pattern)

- One message goes to one consumer
- If there are no consumers available at the time the message is sent it will be kept until a consumer is available
- If a consumer receives a message and does not acknowledge it before closing then the message will be redelivered to another consumer

2. Topic Publication (Publish/Subscribe Pattern)

- One message goes to all subscribers
- Only subscribers with an active subscription at the time the broker receives the message will get a copy of the message
Testbed Configuration - Results

1. Queue Publication (Request/Response Pattern)

2. Topic Publication (Publish/Subscribe Pattern)
Conclusions

• Airport information sharing architecture designed to exchange real time information among stakeholders for improvement to NAS operations.
• Architecture enables global airport interconnection of multiple airport facilities
• Conducted laboratory test of Airport System Information and Airport Network System concepts using Active MQ
• Results show the message broker solution can support file exchange in line with the data modeling
 – As implementation practice, file fragmentation should be minimized
• Next step: try this service in a realistic network environment (routing, traffic load, network outages)