Evaluation of Conflict Detection Based on Probability

Přemysl Volf
premysl.volf@agentfly.com

ICNS, April 2018
Conflict Probability

- Conflict detection based on probability, not nominal minimal separation
 - “Richard Irvine (EUROCONTROL): Target Miss Distance to Achieve a Required Probability of Conflict”

- Probability computed based on:
 - Along-track error
 - Angle of approach
 - Speed of aircraft

![Graph showing probability of conflict and minimum displacement distribution](image)
Conflict Probability

- Angle of approach 90 degrees
- Same speed
- Along-track error 0.1 and 0.4 nm / min
- Conflict defined as separation <7 nm
AgentFly Simulation

- Large-scale fast-time simulation
- Modeling environment, aircraft, and air traffic controllers behavior
- Bottom-up approach

- Analysis, Evaluation, Integration, Validation
 - Large-case studies focused on behavior - what-if analysis
 - Development of new tools / features for current / future systems
 - Providing better environment / interaction for HITL experiments
 - Allows to study future concepts - e.g. coordination between ATCo and UAS operators

- Used for FAA NextGen and SESAR projects
Modular architecture used for various actors – air traffic controllers (en-route, TMA, executive, planning),

Behavior model

- Based on simplified Multiple Resource Theory (MRT)
 - pools of resources
 - actions processed sequentially if require the same resources
 - performance is decreasing when model is overloaded and there is no available resource

- VCAP model using four resources
 - Visual, Auditory – models external stimuli
 - Cognitive – information processing
 - Psychomotor – physical actions

- User defined modules
 - Tasks – handoff, conflict detection and resolution, clearance application, etc.
 - Actions – thinking, giving radio instructions, listening, etc.
Cognitive Human Behavior Model

SECTOR RADIO

<table>
<thead>
<tr>
<th>Time</th>
<th>Callsign</th>
<th>Message Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:10:58</td>
<td>[4559]</td>
<td>AUA94, contact LKAA on <NSEL></td>
</tr>
<tr>
<td>6:11:03</td>
<td>[4560]</td>
<td>AUA94, contact LKAA on <NSEL></td>
</tr>
<tr>
<td>6:13:12</td>
<td>[4582]</td>
<td>PBD831, contact LQY on <LQY></td>
</tr>
<tr>
<td>6:13:17</td>
<td>[4626]</td>
<td>PBD831, contact LQY on <LQY></td>
</tr>
<tr>
<td>6:13:22</td>
<td>[5152]</td>
<td>LKAA, NAX84PG, maintain FL 350 (Contact)</td>
</tr>
<tr>
<td>6:13:30</td>
<td>[2902]</td>
<td>NAX84PG, Roger (Contact)</td>
</tr>
<tr>
<td>6:13:39</td>
<td>[4757]</td>
<td>VKG1142, contact LZBB on <LZBB></td>
</tr>
<tr>
<td>6:13:44</td>
<td>[5933]</td>
<td>LKAA, BOX530, climbing FL 350 (Contact)</td>
</tr>
<tr>
<td>6:13:51</td>
<td>[4463]</td>
<td>VKG1142, contact LZBB on <LZBB></td>
</tr>
<tr>
<td>6:13:57</td>
<td>[2947]</td>
<td>BOX530, Roger (Contact)</td>
</tr>
<tr>
<td>6:14:12</td>
<td>[4116]</td>
<td>BOX530, climb FL 350</td>
</tr>
<tr>
<td>6:14:16</td>
<td>[3444]</td>
<td>BOX530, climb FL 350</td>
</tr>
<tr>
<td>6:14:22</td>
<td>[5975]</td>
<td>LKAA, PBD811, maintain FL 340 (Contact)</td>
</tr>
<tr>
<td>6:14:30</td>
<td>[3020]</td>
<td>PBD811, Roger (Contact)</td>
</tr>
<tr>
<td>6:14:52</td>
<td>[4247]</td>
<td>LOT35E, contact LKAA on <WM></td>
</tr>
<tr>
<td>6:14:57</td>
<td>[4743]</td>
<td>LOT35E, contact LKAA on <WM></td>
</tr>
<tr>
<td>6:17:50</td>
<td>[4521]</td>
<td>LOT36A, contact LKAA on <WM></td>
</tr>
<tr>
<td>6:17:55</td>
<td>[4452]</td>
<td>LOT36A, contact LKAA on <WM></td>
</tr>
</tbody>
</table>

KEYBOARD INPUT

<table>
<thead>
<tr>
<th>Time</th>
<th>Key Code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:14:42</td>
<td>[233]</td>
<td>(display velocity vectors)</td>
</tr>
<tr>
<td>6:14:44</td>
<td>[237]</td>
<td>(display velocity vectors)</td>
</tr>
<tr>
<td>6:14:44</td>
<td>[282]</td>
<td>(display velocity vectors)</td>
</tr>
<tr>
<td>6:14:44</td>
<td>[241]</td>
<td>(display velocity vectors)</td>
</tr>
<tr>
<td>6:14:44</td>
<td>[234]</td>
<td>(hide velocity vectors)</td>
</tr>
<tr>
<td>6:14:44</td>
<td>[242]</td>
<td>(hide velocity vectors)</td>
</tr>
<tr>
<td>6:14:44</td>
<td>[241]</td>
<td>(hide velocity vectors)</td>
</tr>
<tr>
<td>6:14:44</td>
<td>[275]</td>
<td>(hide velocity vectors)</td>
</tr>
<tr>
<td>6:14:49</td>
<td>[974]</td>
<td>HOLD 292 to WM</td>
</tr>
<tr>
<td>6:17:49</td>
<td>[899]</td>
<td>HOLD 295 to WM</td>
</tr>
<tr>
<td>6:18:49</td>
<td>[242]</td>
<td>(display velocity vectors)</td>
</tr>
<tr>
<td>6:18:49</td>
<td>[243]</td>
<td>(display velocity vectors)</td>
</tr>
<tr>
<td>6:18:49</td>
<td>[260]</td>
<td>(display velocity vectors)</td>
</tr>
<tr>
<td>6:18:49</td>
<td>[276]</td>
<td>(display velocity vectors)</td>
</tr>
<tr>
<td>6:18:50</td>
<td>[241]</td>
<td>(hide velocity vectors)</td>
</tr>
<tr>
<td>6:18:50</td>
<td>[234]</td>
<td>(hide velocity vectors)</td>
</tr>
<tr>
<td>6:18:51</td>
<td>[266]</td>
<td>(hide velocity vectors)</td>
</tr>
<tr>
<td>6:18:51</td>
<td>[280]</td>
<td>(hide velocity vectors)</td>
</tr>
</tbody>
</table>
Czech Airspace

- Smaller area, medium to high complexity
- Approx. 3000 flights per day
- High number of vertical movements
- Up to 12 en-route sectors (3 horizontal, 4 vertical divisions)
Study within SESAR PJ 10.2a with Czech ANSP and EUROCONTROL

Current traffic, sectorization using 7 sectors

Measuring impact on both Executive (R-side) and Planning (D-side) ATC

Trajectory prediction (TP) error defined for cruise and doubled for climb/descend
 - Measured for 0.05, 0.1, 0.15, 0.2, and 0.3 nm / min
 - Conflict decision threshold 10% - 90%

Measuring
 - Number of conflict resolutions
 - Taskload
 - Cognitive workload
Detected Conflicts

Number of detected conflicts with fixed TP error 0.05/0.1 NM/min

Number of detected conflicts with fixed TP error 0.3/0.6 NM/min
Number of detected conflicts within 15min+ lookahead

Threshold [%]

- 0.05/0.1
- 0.15/0.3
- 0.1/0.2
- 0.2/0.4
- 0.3/0.6

Detected Conflicts
Conclusions

- Improving TP error significantly reduces number of detected conflicts, increases precision of detection and allows greater look-ahead.

- Conflict detection decision threshold needs to be defined carefully to minimize false negatives and false positives.

- Earlier conflict resolution improves trajectories and can save fuel.
Validation of ATCo Behavior Model

- Cooperation with FAA, TASC, Drexel University
- Comparison of Human-in-the-loop (HITL) experiment and AgentFly simulation using similar input data
- Human performance metrics:
 - Workload
 - Simplified Dynamic Density (SDD)
 - Aircrafts under control, handoffs
 - Flight Level (FL) occupancy
 - Aircraft mix, climbing, descending
- System performance metrics:
 - Average sector flight time
 - Minimum separation distance
Executive Controller Workload

EC - Workload

Average Workload

Decision threshold [%]

0,05/0,1 EC
0,1/0,2 EC
0,15/0,3 EC
0,2/0,4 EC
0,3/0,6 EC