Characterization of Wideband Antennas for Point-to-Point Communications
Mohammed A. Almoteriy, Student Member, IEEE, Mohamed I. Sobhy, Life Member, IEEE, and John C. Batchelor, Senior Member, IEEE

Abstract—Antenna frequency response can be characterized in terms of effective aperture and gain. Antennas can also be characterized as a two-port network to ascertain the antenna transfer function \(S_{21} \). This characterization is important in point-to-point (P2P) communication, as the frequency response can vary due to changes in the radiation pattern in the physical channel. This paper presents a process to investigate the frequency response of a wideband antenna in order to identify the best orientation of the antenna for P2P communication. The process predicts the antenna’s effective aperture and gain for each orientation. An equivalent circuit for the wideband antenna is also derived to obtain the total radiated power. The frequency-variant radiation pattern is ascertained from the \(S_{21} \) phase. This characterization is important in point-to-point (P2P) communication, as the frequency response can vary due to changes in the radiation pattern in the physical channel. This paper presents a process to investigate the frequency response of a wideband antenna in order to identify the best orientation of the antenna for P2P communication. The process predicts the antenna’s effective aperture and gain for each orientation. An equivalent circuit for the wideband antenna is also derived to obtain the total radiated power. The frequency-variant radiation pattern is ascertained from the \(S_{21} \) phase.

Index Terms—Circuit modeling, digital systems, phase distortion, transfer functions, ultra-wideband (UWB) antennas.

I. INTRODUCTION

A CONVENTIONAL antenna design procedure starts by designing the antenna for a low reflection coefficient \((S_{11}) \), following which the radiation pattern, antenna gain, effective aperture, and polarization are obtained for certain frequencies of operation. However, these steps do not provide the performance of the antenna with respect to its physical orientation, especially for point-to-point (P2P) communication applications and situations where the direction of the main beam may be a function of frequency. The \(S_{11} \) value alone allows the total radiated power to be appreciated but provides no insight into the beam direction or its frequency dependence. It is important to distinguish between the total radiated power and the radiated power in the direction of the physical channel. The conventional procedure to obtain the frequency response in terms of effective aperture and gain requires measurement or simulation of the radiation pattern at a large number of frequencies, which is often impractical.

Ultra-wideband (UWB) antennas have an operating bandwidth from 3.1 to 10.6 GHz [1], where the function is to achieve high data rates without errors. For most UWB antennas in P2P communications, the frequency response of the physical channel between the transmitting and receiving antennas is dependent upon the orientation of the antennas [1]. The physical channel is usually selected based on the direction of the main beam of the fundamental radiation pattern (i.e., the principal axis). Further parameters such as the frequency-variant radiation pattern and current distribution are also required for designing UWB antennas [2]–[5]. Although various techniques have been proposed recently by modifying the geometry of the UWB antenna in order to have a frequency-invariant radiation pattern [2]–[5], the radiation patterns are only represented at certain discrete frequencies, which does not predict the performance or the behavior of the antenna over the entire operating bandwidth.

Representing an antenna as a two-port equivalent circuit would help the designer relate the frequency response to the antenna’s physical structure. The antenna’s equivalent circuit can be derived from the amplitude and phase of \(S_{11} \), and researchers have expressed interest in the development of an accurate equivalent lumped circuit for UWB antennas. Studies to date have primarily considered the amplitude response of \(S_{11} \) and ignored the phase [6]–[8], which does not provide an accurate complex transfer function \(S_{21} \) of the antenna. Including the phase as well as the amplitude of \(S_{11} \) preserves information about antenna parameters and properties such as input impedance \((Z_{11}) \) and \(S_{21} \) as well as the behavior of the antenna as a resonant structure and the antenna’s frequency-variant radiation pattern.

Antennas can be categorized into minimum and nonminimum phase [9]–[11]. The phase of \(S_{21} \) is related to the path of energy transmission across its equivalent circuit [12]. Therefore, the minimum phase of \(S_{21} \) can occur only if one path exists through the circuit. For instance, a ladder network has minimum phase. Research shows that not all antennas provide a minimum phase. Well-known minimum-phase examples include the horn and Vivaldi designs [9]–[11], both of which are minimum phase only at their principal axes [12], [13]. To the best of the authors’ knowledge, no comprehensive studies have yet been conducted to determine the transmission phase response in the performance of nonminimum-phase antennas.
In a wideband communication system, the variation of group delay (GD) is critical, in that a large variation can distort the signal, and the GD depends on the phase of S_{21} [14]. Modulated symbols emitted from a nonminimum-phase antenna on its principal axis can be distorted because different frequencies manifest different delays through the system. This distortion further increases the symbol scattering and leads to performance degradation. To avoid signal distortion, the GD over the frequency range should be constant. Therefore, designing an antenna to be minimum phase can mitigate the symbol scattering and also minimize the error vector magnitude (EVM) and bit error rate (BER).

Modeling the antenna as a system allows for antenna simulation in an end-to-end wireless link. Antenna models can be derived as a finite impulse response (FIR) to confirm the compatibility of the antenna with digital communication system simulation [15] and by measuring the full four-set of S-parameters using two identical antennas, which increases the antenna’s modeling accuracy. A previous study has found that some antenna behavior distorts the signal at certain frequencies in the operating range [15], although the effects of antennas at different orientations also need to be analyzed with respect to the symbol scatter that occurs due to the radiation pattern.

In Section II, the Friis equation is modified in terms of total radiated power and radiated power in a certain direction. The effective aperture and gain are then derived for identical antennas with respect to the frequency axis. Section III presents the design and the electromagnetic (EM) simulation of a nonminimum-phase monopole UWB antenna. In Section IV, an equivalent circuit is derived to obtain the S_{21} from the radiation resistance, and to study the antenna behavior. Section V analyzes the amplitude and phase of the S_{21} obtained from the port-to-port transmission using CST, the equivalent circuit, and the measurements at two specific orientations in order to select the best antenna orientation. The variation of GD for each orientation is then calculated and compared. Finally, the two identical antennas with the free-space channel are modeled and simulated in a digital communication system to investigate the effect of the antenna in the two orientations.

II. MATHEMATICAL FORMULATION

The performance of the antenna in the free-space far-field region can be described by the Friis equation in terms of effective aperture [16]

$$P_r = P_t A_t A_r \frac{1}{\lambda^2 R^2} \tag{1}$$

where P_t and P_r are the total transmitted and received power, respectively; A_t and A_r are the effective apertures in the direction of the link for the transmitting and receiving antennas, respectively; λ is the wavelength; and R is the path length of the physical channel.

The effective aperture is given by [16]

$$A_e = \frac{\lambda^2}{4\pi} G \tag{2}$$

where G is the gain of the antenna.

In terms of the port-to-port S_{21} between the transmitting and receiving antennas, the frequency response of the S_{21} depends on orientations of both antennas. As a result, there are two different transfer scattering parameters, S_{21}^a and S_{21}^b.

1) $|S_{21}^a|^2$ is the power ratio, representing the total radiated power (radiated power in all directions) for each antenna. S_{21}^a can be calculated from S_{11} for a lossless antenna or from the antenna equivalent circuit as well as antenna simulation. Fig. 1 shows the steps for deriving an equivalent circuit and obtaining S_{21}^a.

2) $|S_{21}^b|^2$ is the power ratio, representing the measured S_{21} between the transmitting and receiving antennas and their physical channels over distance R. S_{21} for each antenna can be calculated from S_{21}^b after de-embedding the free-space channel and dividing by two in dB and radians for the amplitude and phase, respectively. S_{21} of each antenna represents the directional dependence of S_{21}^b.

$|S_{21}^a|^2$ and $|S_{21}^b|^2$ can be represented mathematically as

$$|S_{21}^a|^2 = \frac{P_r}{P_{av}} \tag{3}$$

$$|S_{21}^b|^2 = \frac{P_r}{P_{av}} \tag{4}$$

where P_{av} is the power available from the source.

From (3) and (4), (1) can be written in terms of S_{21}^a and S_{21}^b:

$$|S_{21}^b|^2 = |S_{21}^a|^2 A_t A_r \frac{1}{\lambda^2 R^2} \tag{5}$$

Note that the received power in the direction of the physical channel is a function of frequency, distance, and the effective apertures of the transmitting and receiving antennas. Equation (5) can be applied for nonidentical antennas. For identical antennas, the effective aperture and gain can be calculated, respectively,

$$A_e = \lambda R \frac{|S_{21}^b|}{|S_{21}^a|} \tag{6}$$

$$G = \frac{4\pi R}{\lambda} \frac{|S_{21}^b|}{|S_{21}^b|} \tag{7}$$

For a lossless network, the amplitude of the S_{21}^b can be calculated from the amplitude of S_{11} [17]

$$|S_{21}^b| = \sqrt{1 - |S_{11}|^2} \tag{8}$$

The phase of S_{21} of each antenna can be separated into three components—the minimum, linear, and all-pass phases—as shown in Fig. 2. The linear-phase component represents a constant time delay due to the effective length of the phase.
center [18], whereas the minimum-phase component represents the amplitude response of the antenna S_{21}. An all-pass component is an additional phase at certain frequencies in the band. This component arises due to the resonant structure, which affects the frequency-invariant radiation pattern. The all-pass component does not exist in minimum-phase antennas (such as horn and Vivaldi antennas) in their principal axes.

The Hilbert transform provides the relationship between the real and imaginary part of a function $F(j\omega)$, which is analytic in the right-hand side of the s-plane [19]

$$F(j\omega) = e^{-[\alpha(\omega) + j\Phi(\omega)]}$$

where $\alpha(\omega)$ and $\Phi(\omega)$ are the attenuation and phase of the function, respectively. The attenuation $\alpha(\omega)$ can be calculated by taking logarithms of (9), and the Hilbert transform is used to derive the phase $\Phi(\omega)$ [19]

$$\alpha(\omega) = -{\ln}|F(j\omega)|$$

$$\Phi(\omega) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\alpha(\zeta)d\zeta}{\omega - \zeta}.$$

The Hilbert transform extracts a minimum-phase component without any associated linear or all-pass components and can be used to derive the minimum-phase component of the antenna S_{21} obtained from the measurements at different orientations.

III. ANTENNA DESIGN

A monopole UWB antenna with a coplanar waveguide (CPW) feed [20] was designed and simulated using Computer Simulation Technology (CST) Microwave Studio Suite. Fig. 3 shows the structure of the antenna, which was etched on a Rogers RT5880 dielectric substrate with a thickness of 1.575 mm and a dielectric constant ε_r of 2.2.

The power stimulated in CST was 0.5 W, and the accepted power was obtained from the antenna layout simulation to obtain

$$|S_{21}|^2,$$

which represents the total radiated power. The S_{21} antenna-to-antenna transmission was also simulated in CST using open boundaries with a 50 cm distance between two identical antennas in the broadside direction. The S_{21} simulation is compared with the results from the equivalent circuit and the measurements in Section V.

IV. EQUIVALENT CIRCUIT

In antenna two-port equivalent circuits, the second port impedance represents the radiation resistance. The equivalent circuit for the UWB antenna in Fig. 6 was developed by identifying the topology and calculating the element values by applying an iterative optimization process to match the S_{11} measurement. Advanced design system (ADS) software was used for the simulation and optimization of the equivalent circuit. Transmission lines were included in the equivalent circuit to represent the distributed elements of the antenna.

As Fig. 7 indicates, the amplitude and phase of S_{11} from the measurement and the ADS equivalent circuit are in agreement. The radiation resistance of the UWB antenna was calculated.
Fig. 6. Equivalent circuit for the UWB antenna.

Fig. 7. S_{11} of the UWB antenna from measurement and equivalent circuit.

Fig. 8. Antennas at (a) broadside and (b) second orientation (aligning main beam at 7 GHz).

Fig. 9. Comparison of S_{21}^b between simulation and measurement in the broadside direction.

A similar trend can be seen in the S_{21}^b between simulation and measurement. The difference between the plots is a result of inaccurate meshing. Due to the electrically large simulation, domain adaptive mesh refinement is not practical, and so the discretization of the antennas may not be sufficiently accurate to simulate full-wave antenna-to-antenna transmission.

The free-space channel was then de-embedded from the measured and simulated S_{21}^b based on the distance (50 cm). The amplitude response was obtained based on the Friis transmission equation, and the delay was de-embedded from the phase. This step was done to obtain the amplitude and phase of S_{21} for each antenna at the two orientations. The S_{21} of each antenna represents the directional dependence of S_{21}^a. The measurements were made within a frequency range of 1–12 GHz. The data were then analyzed and presented from 2 to 11 GHz to avoid band-edge effects.

The amplitude and phase of S_{21}^a were also obtained from the equivalent circuit. S_{21}^a and S_{21} of the antenna were then compared and analyzed. The variation of GD was obtained for S_{21} of the antenna at the two orientations in order to identify the best orientation for the UWB antenna in P2P communication. Finally, the S_{21}^b measurement (two identical antennas with free-space channel) for the two orientations was modeled and simulated in a digital communication system to observe the antenna effects at the two orientations in the digital system, which is discussed in Sections V-A–V-D.

A. S_{21} Amplitude Response

Fig. 10 shows agreement between S_{21}^a (which represents the total radiated power) obtained from the antenna simulation, the equivalent circuit, and the calculation from the S_{11} measurement using (8). This agreement confirms the validity of the proposed method to obtain the total radiated power from the antenna equivalent circuit shown in Fig. 1. The agreement also confirms that the antenna is effectively lossless. Fig. 10 also shows agreement in the S_{21} of the antenna between the measurement and simulation in the broadside direction. Fig. 10 also illustrates S_{21} of the antenna obtained from the measurement in the two orientations: broadside and the 7 GHz beam orientation (second orientation). These values represent the radiated power from the transmitting antenna in both directions at the same time versus the frequency. The remaining power
As expected at 7 GHz, the transmitted power is not steadily radiated in the broadside direction (principal axis). The variation between S_2^{a} and S_2 of the antenna is due to the angular direction of the radiation patterns at each frequency.

Next, (6) and (7) are applied to calculate the effective aperture and gain, which are then compared with the results from the antenna simulation and gain measurements. Fig. 11 illustrates the variation of the effective aperture for broadside and the second orientation. Fig. 12 depicts the difference in the gain of the antenna at the two orientations. The effective aperture at 7 GHz at broadside is very low, and the gain is around −10 dB, whereas the gain in the second orientation generally is more acceptable over the whole frequency band. This scenario indicates that the antenna performance is acceptable for P2P communication when both antennas are positioned in the second orientation.

The gain was also measured in the broadside orientation using a calibrated reference antenna in an anechoic chamber from 4 to 7 GHz. The gain was then compared with that obtained from the proposed process and EM simulation. The measured gain at discrete frequencies is approximately the same as those obtained from the proposed process and the EM simulator, as shown in Table I.

It should also be noted that the current distributions on the antenna are mostly concentrated around the edges, as observed in Fig. 5(a) and (b). This causes a delay in the antenna phase response which is represented by a pair of transmission lines, as shown in the antenna equivalent circuit (Fig. 6). The two different paths in the equivalent circuit indicate that the antenna is a nonminimum phase in at least some rotations.

B. S_{21} Phase Components

Fig. 13 illustrates the S_{21} phase of each antenna in the two orientations and the phase of S_{21}^{a} obtained from the antenna equivalent circuit. The phase obtained from the equivalent circuit matches the phase of the broadside S_{21}, because the broadside measurement was in the principal axis direction. As a result, the radiation pattern of the antenna is variant with respect to the frequency due to the nonlinearity in the phase of the broadside S_{21} [1], whereas the S_{21} phase in the second orientation is similar to a linear phase.

The second orientation’s phase indicates that no additional phase component in S_{21} exists over the frequency band. The S_{21} phase is almost linear because the minimum-phase
component is insignificant compared to the linear-phase component. Recalling that the antenna S_{21} phase consists of three components—minimum, linear, and all-pass phases [9]—the phase of S_{21} with the two orientations is then analyzed from the frequency response to study the antenna’s behavior.

The minimum-phase component is computed by applying the Hilbert transform method to the S_{21} amplitude, whereas the linear-phase component is calculated with respect to the antenna’s phase center [18]. By identifying the phase center for each orientation, the linear-phase component can be isolated. The all-pass-phase component is obtained after removing the linear and minimum-phase components from the total S_{21} phase obtained from the S^b_{21} measurement. The phase components were then characterized for the two orientations as follows.

1) Broadside S_{21}: Fig. 14 shows a comparison between the measured phase after removing the linear phase and minimum-phase components. Note the differences in phase because of the existing all-pass component within the frequency range 6 to 8 GHz. The large variation of the antenna gain in this direction, as shown in Fig. 12, can only be attributed to the all-pass component of S_{21}, and not to the minimum- or linear-phase components. This variation is also clear from the antenna equivalent circuit because of the existence of more than one path across the equivalent circuit for the energy transferred through the circuit, which again confirms that the antenna is a nonminimum phase on the principal axis due to the resonant structure at certain frequencies.

2) Second Orientation S_{21}: Fig. 15 illustrates a comparable trend between the phases of S_{21} with the linear-phase component removed as well as S^b_{21}’s minimum phase. The antenna is nearly minimum phase in this orientation, because the deviation of the calculated gain versus frequency is small, as illustrated in Fig. 12, meaning that the radiated power in this direction continues to radiate over the entire band, with little variation.

This scenario confirms that the antenna is nonminimum phase in the principal axis because of the existing all-pass component. But because there is no all-pass component in the S_{21} phase in the second orientation, the antenna is minimum phase in this particular angular direction (the second orientation) when the antenna continues to radiate the power over the entire band with little variation, thus indicating that the radiation patterns can provide acceptable gain in this direction over the frequency band.

C. Group Delay

The GD was obtained for the UWB antenna from S_{21} as a function of frequency with the two orientations. Fig. 16 shows the GDs from S_{21} in the broadside and second orientation. The positive large peak within the frequency range 6 to 8 GHz of the GD was obtained from the broadside measurement, which has a negative impact on symbol scattering and the resulting BER at the receiver. This setup also means that the attenuation at the broadside direction was extremely high and that the gain dropped sharply in this range, as shown in Fig. 12. In contrast, the GD obtained from the second orientation S_{21} has little variation over the UWB frequency band, which will introduce a low level of symbol scattering and BER. The second orientation is thus the best choice for P2P communication for this antenna.

D. Digital System Simulation With Two Orientations

FIR filter models were derived for all S-parameters obtained from the measurements for each orientation, the S^b_{21} having been measured in the anechoic chamber between the two identical antennas with a distance of 50 cm. The complete system models from the measurements at the two orientations
were included in a digital communication system, as shown in Fig. 17, which was done to predict the effect of the antenna on the digital system and to calculate the EVM and the BER for characterizing the symbol scatter.

The simulation was done in SIMULINK for 10^6 symbols, with the complete digital communication system having a 64-QAM modulation when a carrier frequency was selected at 3.5 and 6 GHz, respectively. The antenna effects on the 64-QAM modulated signal for the two orientations were examined for each carrier frequency. Fig. 18(a) and (b) shows constellation diagrams for the broadside and second orientation (respectively) at the receiver with a carrier frequency of 3.5 GHz. The constellation diagrams at 6 GHz are shown in Fig. 19(a) and (b) for the same orientations.

The communication properties as well as the EVM and BER results for the two carrier frequencies at the two orientations are summarized in Table II. The EVM for the digital communication system at 6 GHz was found to be 3.25% and 0.91% for the broadside and second orientation, respectively. The receiver was able to recover the symbols for both carrier frequencies at the two orientations, and the BER was found to be zero. The reason for the symbol scattering in the broadside is the low transmission at 6 GHz caused by the large variation of antenna gain within the frequency range of 6–8 GHz in this direction. The second orientation was found to have a higher UWB than does the broadside. The EVM can be further improved if equalization is applied at the receiver. These simulations thus confirm that the second orientation is preferable for the whole UWB in digital communication systems because of the low symbol scattering at 6 GHz.

Although the antenna itself is wideband—in terms of total radiated power (S_{21}^2)—for P2P communications, the antenna provides different frequency response patterns for different orientations. A system operating at 3.5 GHz showed no difference in EVM values between the two orientations. At 6 GHz, however, the second orientation performs better than the broadside orientation, where symbol scattering can be observed. The P2P communication thus primarily depends not only on the bandwidth or the carrier frequency of the system but also on the antenna orientation. This situation enables P2P communication system designers to choose the proper operating frequency according to antenna orientation.

VI. Conclusion

In this paper, a process was developed to characterize the frequency response of UWB antennas for P2P communications. The Friis equation was modified in terms of total
radiated power and measured radiated power in the physical channel to calculate the effective aperture and gain. This process will provide antenna designers with useful insights into the variation of radiation patterns across the frequency band in certain directions. The frequency response of the nonminimum-phase UWB antenna was also investigated in two orientations. A frequency-dependent equivalent circuit was derived from only measuring S_{11} in amplitude and phase. The total radiated power calculated from the equivalent circuit was shown to provide the radiated power in all directions from the antenna. In addition, designers can use the phase of S_{21} obtained from the equivalent circuit to determine the predicted behavior of the antenna over the frequency band.

The phase of S_{21} for each orientation was separated into three components: linear, minimum, and all-pass phases. Having an all-pass component means that there is a resonant structure in the frequency band, resulting in a variant radiation pattern with respect to the frequency. A minimum-phase antenna will have a frequency-invariant radiation pattern and nonresonant structure over the band on its principal axis. Constant gain means that the GD of S_{21} is constant and that there is no all-pass component. The frequency response in terms of the effective aperture, gain, phase of S_{21}, and GD confirmed that the antenna performance was acceptable for P2P communications in the second orientation, where the azimuth and elevation angles were 90° and 45°, respectively. The effects of the antenna on digital modulation were also observed for the two orientations, which demonstrated that the effects of the antenna in the second orientation were acceptable compared to the broadside. Future work will include a multipath-rich environment in P2P communications and a study of the performance and behavior of the antenna as well as the S_{21} transmission phase.

REFERENCES

Mohammed A. Almoteriy (S’17) received the B.Sc. and M.Sc. degrees in electronics and communications engineering from the University of King Abdulaziz, Jeddah, KSA, in 1998 and 2005, respectively. He is currently pursuing the Ph.D. degree with the Communication Research Group, University of Kent, Canterbury, U.K.

His current research interests include antenna and channel modeling for indoor applications.

Mohamed I. Sobhy (LM’90) received the B.Sc. degree in electrical engineering from the University of Cairo, Cairo, Egypt, in 1956, and the Ph.D. degree from the University of Leeds, Leeds, U.K., in 1966. He is an Emeritus Professor of Electronics with the University of Kent, Canterbury, U.K. His current research interests include analysis and applications of nonlinear electronic systems.

John C. Batchelor (S’93–M’95–SM’07) received the B.Sc. and Ph.D. degrees from the University of Kent, Canterbury, U.K., in 1991 and 1995, respectively.

He was a Research Assistant with the Electronics Department, University of Kent, from 1994 to 1996, where he became a Lecturer of Electronic Engineering in 1997. He currently leads the Antennas Group, University of Kent, where he is also a Professor of Antenna Technology. His current research interests include ultrahigh-frequency radio frequency identification tag design, passive sensing, body-centric antennas, printed antennas, compact multiband antennas, electromagnetic bandgap structures, and long-wavelength frequency-selective surfaces.