Low-Dispersive Leaky Wave Antennas for mmWave Point-to-Point High-Throughput Communications

O. Zetterstrom, Student Member IEEE, E. Pucci, P. Padilla, L. Wang, Senior Member IEEE, and O. Quevedo-Teruel, Senior Member IEEE.

Abstract—In this article, we present two efficient leaky wave antennas with stable radiation pattern, operating at 60 GHz. Both antennas exhibit attractive properties such as significantly reduced beam-squint, low loss, low side lobes, high directivity and simple manufacturing. The beam-squint of conventional leaky wave antennas is reduced by refracting the leaked waves in a dispersive lens and the low side lobe levels are achieved by tapering the leakage rate along the aperture. Since the antennas are implemented in groove gap waveguide technology, the losses are low. The two antennas are different in terms of their asymmetric/symmetric leakage tapering with respect to the broadside direction. Both designs are optimized for low side lobes, but since symmetry is enforced in one, the resulting performance in terms of side lobes is sub-optimal. However, in the symmetric design, multiple stable beams can be obtained, simultaneously or independently. 20% bandwidth is obtained with less than ±0.5° beam-squint. In this frequency range, the gain is stable at 17 and 15 dBi for the asymmetric and symmetric designs, respectively. The designs are intended for point-to-point links in mmWave communication networks where low losses, directive beams and low side lobes are expected to be key features.

Index Terms—Leaky wave antenna, reduced beam-squint, gap waveguide, mmWave, 5G.

I. INTRODUCTION

Gap waveguide technology provides attractive characteristics for high frequency communications, for instance relatively low manufacturing cost for low loss guiding structures [1], [2] and straightforward implementation of microwave devices [3]–[5]. However, the design of directive antennas implemented in gap waveguide technology is still a challenge. The challenge arises due to the high operating frequency in which gap waveguides are advantageous compared to conventional technologies. The high frequency translates into a need for fully metallic structures and small manufacturing details. Due to the intrinsic layered nature of gap waveguides, two-dimensional (2D) array solutions, in which multiple layers are used to construct the feeding network and radiating elements, were initially proposed as a means of achieving high gain [6], [7]. While resulting in relatively simple and reliable manufacturing, the complex and cumbersome design of the feeding network, which is obstructed by the space required for the electromagnetic band gap (EBG) structure at the lateral sides of the waveguides, results in large inter-element distance in the array which produces high side lobes.

Recently, gap waveguide leaky wave antennas (LWAs) were proposed [8], [9]. The main benefit of LWAs, especially in high frequency applications, is their ability of producing directive radiation with a very simple feeding structure, in contrast to the previously proposed 2D arrays. Moreover, it has been shown that an increased control of the aperture fields can be exerted in this type of antennas [10]. This additional control can be used to produce desired far-field properties, such as low side lobes or broad beam width. However, the inherent dispersion of the feeding waveguide causes the radiated beam to scan with frequency [11]. While sometimes desired (for instance in radar and imaging applications), this beam scanning limits the applicability of LWAs in many scenarios, e.g. high frequency point-to-point communications. Moreover, as directivity increases the beam width decreases, and the scanning becomes more detrimental, which further limits the effective bandwidth of the antenna.

The beam scanning of LWAs is well-known and several techniques to reduce or cancel it completely have been proposed [12]–[23]. The reported techniques can be divided into 5 categories. Firstly, in [12], it is demonstrated that a reduced scanning in the radiation pattern can be obtained if the radiating aperture is divided into several sub-apertures, each responsible for the radiation in a narrow frequency range. However, since the aperture is divided, this results in reduced directivity. The same concept is used in [13] and
of [14], resulting in similar deterioration. Secondly, in [15], a technique for reduced beam-squint, which does not suffer from reduced directivity, is proposed. The authors demonstrated that a wideband squint-free radiation of energy can be obtained if a non-dispersive guided wave is traveling at the interface between two medias. A "leaky-lens" can be designed by printing a slot on the back of a dielectric and the guided wave in the slot is leaked into the dielectric. However, since the leakage only occurs in the presence of a dielectric, this technique is inherently lossy, especially at high frequencies. Thirdly, in [16], [17], the beam-squint is reduced by coupling the leaked energy through one or multiple cavities, placed in front of the radiating aperture. While reducing the beam-squint significantly, the resulting radiation pattern is distorted and high side lobes appear. Fourthly, in [18], non-Foster circuits which can be used to eliminate the beam-squint in a finite frequency range are proposed. This method is quite general and can be applied to arrays as well as LWAs, but active components and biasing are required, resulting in decreased overall efficiency of the system. Finally, several attempts to reduce the beam scanning using metamaterials/metasurfaces have been reported. In [19], a one-dimensional (1D) non-reciprocal transmission line was proposed, in which the beam-squint reduction is achieved through the radiation of two waves traveling in opposite directions on the line, with different phase velocities (due to non-reciprocity). However, since non-reciprocal materials are required, the realization of such a system is difficult. Similarly, in [20], squint-free radiation is achieved by combining two leaky-waves travelling in opposite directions along a 1D transmission line. However, while the main beam is squint free, the radiation pattern changes over the operation bandwidth. In [21], the authors proposed a method of reducing the dispersion of a leaky wave antenna by refracting the radiated fields through a Huygens metasurface. The dispersion of the metasurface must be such that waves of different frequencies, impinging from different directions, are refracted into one direction at the other side of the metasurface. Although it is theorized that a complete squint-free radiation is possible, the beam-squint is only reduced by a factor of 2 in [21]. In [22], [23], a similar concept is applied, but instead of a Huygens metasurface, a dispersive lens is placed in front of the radiating aperture. The lenses are implemented using metasurfaces. Again, the dispersion of the lens must be such that the refracted fields in the lens are focused into one direction. In these works, an almost full cancellation of the beam squint is achieved.

In this work, we apply the same concept as in [22], [23] in the design of two directive antennas at mmWave frequencies. Similar to [23], the antennas are implemented in groove gap waveguide technology, resulting in low losses. The novelty of this work is three-fold. Firstly, we demonstrate how reduced side lobes can be obtained simultaneously to reduced beam-squint. Secondly, we demonstrate how the technique in [22] and [23] can be used to design directive multi-beam antenna systems. Thirdly, we have significantly increased the operational frequency, compared to [23], which implies technological and manufacturing challenges. The intended application for the proposed systems is point-to-point communications for future mobile communication networks (5G and beyond), where high directivity, low side lobes, low losses and multi-beam capabilities are desired [24]. The paper is outlined as follows: in Sec. II the operational principle of the antenna is explained. In Sec. III two design examples are detailed. In Sec. IV the design examples are experimentally verified and finally, in Sec. V, conclusions are drawn.

II. DESIGN PRINCIPLES OF LOW DISPERSIVE LWAS WITH REDUCED SIDE LOBE LEVELS

An illustration of the design used for both antennas is presented in Fig. 1 and it consists of two main components: the leaky waveguide (in yellow) and the dispersive prism (in blue). The design procedure is similar to the one in [22] and [23] but, for completeness, the important steps are repeated below. The additional techniques employed in order to improve the radiation performance are indicated in the following as well. First, the technique used for the reduction of side lobes is discussed (Sec. II-A). Secondly, the reduction of the beam-squint is presented (Sec. II-B).

A. LWA with reduced side lobe levels

In point-to-point communications, a low side lobe level (SLL) is desired in order to reduce interference. Such characteristics in the far-field pattern can be obtained by illuminating the aperture with a sinusoidal distribution [11]. The relationship between the magnitude of the complex aperture distribution, \(A(z) \), and the imaginary part \((\alpha)\) of the complex propagation constant in the leaky guiding structure \((\beta - j\alpha)\) is given by

\[|A(z)| = \sqrt{\alpha(z)e^{-\int_0^z \alpha(t)dt}}, \]

where \(z \) is the position along the aperture. By solving Eq. (1) for \(\alpha/k_0 \) (as is done in [26]) under the assumption that a sinusoidal aperture distribution (i.e. \(|A(z)| = \sin(\frac{\pi z}{L_A}) \)) is desired, we obtain

\[\frac{\alpha}{k_0}(z) = \frac{1}{L_A} \int_0^{L_A} \frac{1}{|\sin(\frac{\pi z}{L_A})|^2d\xi - \int_0^z |\sin(\frac{\pi z}{L_A})|^2d\xi}, \]

where \(L_A \) is the length of the leaking aperture, \(k_0 \) is the free-space propagation constant. In order to radiate efficiently over some bandwidth, the radiation efficiency \(\eta \) is set to 90-95%. Additionally, the real part of the propagation constant, \(\beta \), must remain fixed throughout the aperture in order to radiate coherently from every section of the structure. The desired aperture distribution for reduced side lobes, and the corresponding \(\alpha/k_0(z) \)- and \(\beta \)-profiles are illustrated in Fig. 2.

The tapered leakage can be obtained by gradually changing the dimensions of the waveguiding structure along the aperture. Therefore, this leakage is structure-independent and low side lobe LWAs can be implemented in different technologies, e.g. gap waveguide [10], substrate integrated waveguide (SIW) [27], and microstrip [28]. Far-fields with other properties, for instance near-field focusing, control of the radiation nulls and broad bandwidth, can be obtained if other leakage profiles are employed [25], [27].
In conventional LWAs, the beam-squint arises from the dispersive nature of the waveguide mode. The direction of maximum radiation is given by

$$\sin[\theta_i(f)] = \frac{\beta_1}{k_0} = n_{\text{eff,leaky}}(f),$$

where β_1 and k_0 are the propagation constants in the leaky waveguide and free-space, respectively. The scanning of the leaky-wave radiation is illustrated at the left of Fig. 3. There, the radiation from the leaky structure is spatially divided into its spectral components, and in conventional LWAs the direction of maximum radiation scans from broadband to endfire when the frequency increases. By placing a prism in front of the leaky aperture, this scanning can be cancelled.

The required characteristics of the prism can be found through Snell’s law, which describes the refraction through an interface:

$$n_1 \sin(\theta_i) = n_2 \sin(\theta_i),$$

where n_1 and n_2 are the refractive indices on each side of the interface and θ_i and θ_t are the impinging and refracted angles, respectively. n_1 and/or n_2 may be, in general, frequency dependent. For this analysis, the first medium is assumed to be air ($n_1 = n_0 = 1$). The second medium corresponds to the prism, which we will assume is frequency dependent ($n_2 = n_p(f)$). The impinging angle is given by the direction of maximum radiation of the leaky waveguide, i.e. $\theta_i = \theta_t(f)$. By substituting these assumptions in Eq. [3] we obtain

$$\sin(\theta_t) = n_p(f) \sin(\theta_i) \Rightarrow \theta_t = \arcsin\left(\frac{\sin(\theta_i)}{n_p(f)}\right).$$

It is clear that, since the impinging angle varies with frequency, the light of different wavelengths is refracted into one single direction, given that the refractive index in the prism neutralizes this variation. For conventional LWAs, $\sin[\theta_t(f)]$ increases with frequency, and hence, in order to reduce the beam-squint, the refractive index of the prism must also increase with frequency. Furthermore, in order to avoid to again spatially divide the spectral components of the light at the second interface of the prism, the prism inclination, δ_p, is chosen so that θ_t (i.e. the refracted angle) is normal to the second interface. In conclusion, if a prism can be devised with the correct frequency behaviour of the refractive index $n_p(f)$, a non-squinting LWA can be realized. Noteworthy is that, throughout this analysis, no assumption on the type of guiding structure has been made, and thus, this technique is structure independent, in contrast to for instance the technique used in [15]. In fact, it has been used successfully for both SIW LWAs [22] and groove-type gap waveguide LWAs in the X-band [23].

B. LWA with reduced beam-squint

In this work, the beam-squint of conventional LWAs is reduced by coupling the leaked energy through a dispersive prism-lens. A similar approach was followed in [22] and [23]. Prisms are structures that, for impinging waves of different wavelengths, refract the light in different directions. This spatial division of the spectral components of the impinging light occurs due to the frequency dependent refractive index in the prism. Prisms can operate in one of two modes. In the first operational mode, prisms split the spectral components of white light (i.e. light with a wide range of wavelengths) incident from a single direction into several directions depending on frequency. In the second operational mode, prisms gather a colored light (i.e. light concentrated in a narrow range of wavelengths) impinging from different directions into white light traveling in one direction. In this work, the employed prism is operated in the second mode. Although prisms exist in a variety of shapes, we will focus our analysis to triangular prisms. The operating principle of the antenna is illustrated in Fig. 3.

![Fig. 3: Illustration of working principle for reduced beam-squint. For a range of frequencies, the dispersive radiation from the leaky waveguide is refracted into a single direction with a dispersive prism. The prism inclination, δ_p, is chosen so there is no refraction at the edge of the prism and hence, $\theta_l = \theta_{\text{final}} = \delta_p$.](image)
direction. Thus, the symmetric design enables beam-switching by feeding from either end of the leaky waveguide \(P_1 \) and \(P_2 \) in Fig. 1. Both antennas have a center frequency of 60 GHz. The realized prototypes are shown in Figs. 4 and 5 for the asymmetric and symmetric designs, respectively.

![Realized prototype of the asymmetric design](image)

(a)
(b)
(c)

Fig. 4: Realized prototype of the asymmetric design: (a) closed, (b) bottom piece, and (c) far-field measurement setup. A 1€ coin has been included for reference.

![Realized prototype of the symmetric design](image)

(a)
(b)
(c)

Fig. 5: Realized prototype of the symmetric design: (a) closed, (b) bottom piece, and (c) far-field measurement setup. A 1€ coin has been included for reference.

![Simulation results assuming infinitely periodic structures](image)

(a)
(b)
(c)

Fig. 6: Simulation results assuming infinitely periodic structures: (a) dispersion curves for the different components with the unit cells in the insets, (b) effective refractive index for the leaky-mode and the prism, and (c) calculated final (leaky-mode and prism combined) direction of maximum radiation.

A. Leaky groove gap waveguide

Since the target is mmWave communications, the antennas are implemented in groove gap waveguide technology [1], [2], [29]–[31]. Due to the high operating frequency, the EBG-structure in the groove gap waveguide, opposite to the prisms as showed in Fig. 1, consists of a 2D periodic repetition of glide-symmetric holes [32], [33]. A glide-symmetric structure is, in contrast to purely periodic structures, composed of two sub-unit cells. The geometrical operation, applied to the sub-unit cells in a glide-symmetric structure, consists of a translation of \(p/2 \), where \(p \) is the translational period of the full unit cell, and a mirroring [34]. In the case of Cartesian glide symmetry, which is the symmetry employed here, the mirroring is done with respect to a plane. Glide-symmetric metasurfaces have shown attractive properties such as very low frequency dispersion [35], [36], increased equivalent refractive index [37], [38] (extremely large indices reported [39]) and huge stop bands at selected frequencies [32], [33]. Moreover, glide-symmetric holey EBG-structures have larger unit cells, are less expensive to manufacture and more robust, compared
to a bed-of-nails structure [5], [32], [33]. These interesting properties of glide symmetry have been extensively studied over the last few years and several numerical methods have been reported which give valuable physical insight on this technology [40]–[43].

Due to their larger physical dimensions, glide-symmetric EBG structures are especially attractive at high frequencies (sub-millimeter wavelength). As a matter of fact, gap waveguides employing a glide-symmetric holey EBG structure operating up to 170 GHz have been presented [44]. Additionally, by decreasing the undesired gap between the two parallel plates, the width of the stop band increases while remaining centered at the same frequency, which further simplifies manufacturing and assembly [32], [45]. In [43], it was shown that a single row of a glide-symmetric holey EBG is enough to suppress the leakage in a straight waveguide. The unit cell of the EBG-structure used in the gap waveguide is shown in Fig. 6a (in red), together with the dispersion diagram (red curve). The dimensions used for the simulation are: $r_h = 1.3\, \text{mm}$, $d_h = 1.1\, \text{mm}$, $g = 0.05\, \text{mm}$, and $p_{EBG} = 3.2\, \text{mm}$. A full stop band is obtained, ranging from 45 to 80 GHz. In Fig. 6a only the first part of the Brillouin diagram is presented. However, the full stop band (i.e. for the full irreducible Brillouin diagram), is marked by the red area.

In [9], it was shown that a groove-type gap waveguide can be transformed into a leaky-wave antenna by removing the EBG-structure on one of the sides of the groove. Furthermore, if the removed EBG-structure is instead replaced by a longitudinal structure (with respect to the waveguiding direction), the leakage can be controlled along the aperture, and the profile necessary for reduced side lobes can be obtained. In this work, similarly to the designs presented in [9], [10], [23], periodically repeated square pins, placed along the groove, are employed to control the leakage (in order to reduce the side lobes). These pins are here denoted leaky pins and are marked with green in Figs. 1 and 6a. The leakage rate is mainly determined by the height, ph_1, and periodicity, pl, of the leaky pins. The control of propagation constant of the waveguide mode, β_l, is mainly exerted through the width of the leaky waveguide, w_{wg}. Since the geometry of the waveguide is varied, the dispersion diagram changes along the structure, but for reference, the dispersion diagram for one sample of the leaky-mode, β_l, is presented in Fig. 6a (yellow curve). For this sample, the dimensions are: $h_{wg} = 2.39\, \text{mm}$, $pw_3 = 0.7\, \text{mm}$, $pl = 1.5\, \text{mm}$, $ph_1 = 1.5\, \text{mm}$, and $w_{wg} = 4.8\, \text{mm}$.

The dependencies of α/k_0 and β_l on these parameters are obtained through curve-fitting of simulation data. More specifically, in this analysis, the parameters are assumed to be independent. This allows us to write α/k_0 and β_l as a sum of four terms:

$$\alpha/k_0 = c_1 + c_2 \cdot \kappa(ph_1) + c_3 \cdot \nu(pl) + c_4 \cdot \tau(w_{wg})$$ (6)

$$\beta_l = c_5 + c_6 \cdot \gamma(ph_1) + c_7 \cdot \chi(pl) + c_8 \cdot \psi(w_{wg})$$ (7)

where $\kappa(\cdot)$, $\nu(\cdot)$, $\tau(\cdot)$, $\gamma(\cdot)$, $\chi(\cdot)$, and $\psi(\cdot)$ are curve-fitted with a suitable function and c_1–c_8 are obtained through multivariate linear regression. More details can be found in [46].

The correct aperture illumination is obtained by mapping the desired $\alpha/k_0\$ and β-profiles to the corresponding waveguide parameters through the fitted curves. The $\alpha/k_0\$ and β-profiles are presented in Figs. 7a and 8a for the asymmetric and symmetric designs. The corresponding waveguide dimensions are presented in Figs. 7b and 8b for the asymmetric and symmetric designs. The mapping is only done for one frequency (60 GHz). The dimensions are indicated in the insets of Fig. 6a.

Fig. 7: Design profiles in the asymmetric design: (a) targeted leakage profile, and (b) waveguide parameter profiles to synthesize the leakage profile in (a). The mapping is done at 60 GHz.

Fig. 8: Design profiles in the symmetric design: (a) targeted leakage profile, and (b) waveguide parameter profiles to synthesize the leakage profile in (a). The mapping is done at 60 GHz.

B. Metasurface prism

In Sec. 1B the requirements on the refractive index inside the prism were outlined. Ideally, it should follow that of the effective refractive index of the leaky-mode, which is increasing rapidly close to the cut-off of the guiding structure and then converges to 1 at high frequencies. However, such prisms are difficult to conceive in reality and we will therefore, in this work, limit the targeted bandwidth in which a reduced beam-squint is obtained. Moreover, we will allow for a small variation of the direction of maximum radiation ($\pm 0.5^\circ$) after the waves are coupled through the prism. Taking these last two considerations into account, the constraints on the prisms’ refractive index are alleviated significantly since the only requirement is to have a proper derivative of the refractive index with respect to frequency, in some frequency range.

An index-profile consistent with the above requirements is readily achieved using a metasurface. Moreover, since
metasurfaces can be made fully metallic, they are attractive for high frequency applications such as the one considered. In this work, the metasurface is implemented in a parallel plate bed-of-nails structure. Again, a holey metasurface could be used for increased robustness and decreased cost. However, due to the small air gap needed in the holey structure, which both requires accurate manufacturing and sophisticated impedance matching (to match to free-space), the bed-of-nails structure requires accurate manufacturing and sophisticated impedance matching (to match to free-space), the holey structure, which both requires accurate manufacturing and sophisticated impedance matching (to match to free-space), the bed-of-nails structure is preferred here.

The unit cell of the prism is depicted in Fig. 6a (in blue), together with the dispersion diagram (blue curve). The dimensions for the simulation are: \(h_{eg} = 2.39 \text{ mm}, \ \rho h_p = 0.7 \text{ mm}, \ \rho w_p = 0.7 \text{ mm}, \ \text{and} \ \rho d = 1.3 \text{ mm}. \) From the dispersion curve, the effective refractive index of the prism is calculated as \(n_{eff,\text{prism}} = \rho_p/k_0, \) where \(\rho_p \) and \(k_0 \) are the propagation constants in the prism and in free-space, respectively.

The effective refractive index of the leaky waveguide (for one sample along the waveguide) and the prism are presented in Fig. 6b. For a range of frequencies (indicated with green in the figure), the ratio between the two indices remains approximately constant. Using Eq. 5 the final direction of maximum radiation (calculated based on infinite structures) is found, as illustrated in Fig. 6c. A stable radiation, allowing \(\pm 0.5^\circ \) squinting, is obtained in the range 54 to 64 GHz and hence, roughly 20% bandwidth is achieved.

The two designs are simulated in a full-wave solver. The asymmetric structure is only excited from one end of the leaky waveguide, while the symmetric structure is excited from both ends, sequentially (although simultaneous excitation is possible for a dual-beam radiation pattern). The waves travel along the leaky waveguide, slowly leaking their energy into the prism. The remaining energy at the far side of the waveguiding structure (\(P_{\text{diss}} = P_{\text{in}} |S_{21}|^2 \)) is dissipated in a matched load. The length of the leaky waveguides is \(L = 100 \text{ mm} (=20\lambda) \) and the prism inclination is, in both designs, \(\delta_p = 45^\circ. \) The remaining dimensions are as defined in the unit cell simulations and are given in Figs. 6, 7, and 8.

The S-parameters are presented in Figs. 9a and 9b for the asymmetric and symmetric structures. For clarity, only the response from one port is shown in the symmetric design. The other port behaves the same due to the symmetry. A good matching is obtained throughout the band, with an \(|S_{11}| \) below -15 dB in both designs. The periodic ripples in the \(|S_{11}| \) are attributed to the presence of internal reflections in the antennas. The periodicity of the ripples, \(\rho \text{ripple}, \) gives the distance from the excitation to the location at which the reflection occurs

\[
d_{\text{eff}} = \frac{c}{2\rho_{\text{ripple}}},
\]

Fig. 9: S-parameters for the two designs: (a) asymmetric, and (b) symmetric. The dimensions used for the simulations are given in Figs. 6 and 8. Additionally, the length of the leaky waveguide is \(L = 100 \text{ mm} \) and the prism inclination is \(\delta_p = 45^\circ, \) in both designs.

![Simulated electric field distribution (log-scale) for the asymmetric design: (a) 54 GHz, (b) 58 GHz, (c) 62 GHz, and (d) 66 GHz.](image1)

![Simulated electric field distribution (log-scale) for the symmetric design: (a) 54 GHz, (b) 58 GHz, (c) 62 GHz, and (d) 66 GHz.](image2)

IV. ANTENNA PERFORMANCE

The periodicity of the ripples, \(\rho \text{ripple}, \) gives the distance from the excitation to the location at which the reflection occurs.
where c is the speed of light. In our case, d_{eff} corresponds to the interface between the prism and free-space. The power transfer between the two ends of the waveguide, i.e., $|S_{21}|$, is below -15 dB ($\approx 3\%$ power dissipated in the second port) throughout the band in both designs. Such a low value is usually not desired in LWAs since it might result in inefficiently used aperture (i.e. too fast leakage). However, since a leakage tapering is performed, the aperture is well illuminated in both designs, as illustrated with the x-component of the electric field in Figs. 10 and 11. Additionally, a low $|S_{21}|$ results in higher radiation efficiency, as the power is not dissipated in the load at the second port. In the measurements of the S-parameters, the effect of the transitions from waveguide to coaxial cable have been calibrated away since they introduced significant reflections in the upper parts of the frequency band. The discrepancies between measurements and simulations in...
the $|S_{21}|$ are attributed to increased metallic losses due to the surface roughness (not included in simulations).

The normalized H-plane far-fields are presented in Figs. 12 and 13 for the asymmetric and symmetric designs, respectively. By comparing the results in Fig. 12a with Fig. 12c and Fig. 13a with Fig. 13c which corresponds to the simulated cases of a leaky waveguide with and without prism, for the asymmetric and symmetric designs, respectively, it is clear that the beam-squint is significantly reduced by coupling the radiation through a prism. The measurements of the far-field, presented in Figs. 12b and 13b for the two designs, corroborates the simulations. The radiation pattern at a specific direction, normalized to the peak value is presented in Figs. 14 and 15 for the two designs, together with the realized gain and side lobe level. Again, it is clear that by coupling the radiation through a prism, decreased beam-squint is obtained. At 45°, a maximum of 0.5 and 1 dB scan-loss is obtained in the asymmetric and symmetric designs, respectively. Moreover, the realized gain is stable at roughly 17 and 15 dBi for the two designs throughout the band. The observed ripples in the S-parameters are small and they have no noticeable effect on the gain. Side lobes below -20 and -17 dB are obtained in the asymmetric and symmetric designs, respectively. In the asymmetric design, the measured side lobes are higher than the simulated in the upper part of the operating band. A similar increase in the side lobes is observed in simulations for higher frequencies (66-70 GHz). Due to the high reflections from the transitions at the higher frequencies, the gain is not measured at frequencies above 62 GHz. A small drop in the measured gain is observed at 58 GHz. Other than that, the measurements agree well with simulations in all the far-field characteristics. The obtained total efficiency for the two antennas (in simulation) is presented in Tab. I. Almost 90% efficiency is achieved throughout the band.

TABLE I: Simulated total efficiency of the two antennas.

<table>
<thead>
<tr>
<th>Frequency [GHz]:</th>
<th>54</th>
<th>58</th>
<th>62</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric</td>
<td>68%</td>
<td>89%</td>
<td>87%</td>
<td>85%</td>
</tr>
<tr>
<td>Symmetric</td>
<td>90%</td>
<td>90%</td>
<td>89%</td>
<td>85%</td>
</tr>
</tbody>
</table>

V. CONCLUSION

In this article, two novel non-dispersive leaky wave antennas are presented, operating at 60 GHz. The antennas utilize a dispersive lens to cancel the dispersion of the feeding leaky waveguide, thus obtaining a non-squinting radiation pattern with respect to frequency. Unlike previous works, a leakage tapering is performed along the aperture which results in reduced side lobe levels. One asymmetrically and one symmetrically tapered antenna is designed and manufactured. The asymmetric antenna is optimized for lowest possible side lobes with single beam operation and the symmetric antenna is optimized for lowest possible side lobes, under the constraint of symmetric tapering with respect to broadside. The symmetry in the latter design results in slightly increased side lobes, compared to the asymmetric design, but enables two beams that can be obtained either independently or jointly. To the best of our knowledge, this is the first multi-beam low-dispersive LWA reported in the literature. High efficiency and low losses are achieved at 60 GHz by implementing the antennas in groove gap waveguide technology. Both antennas achieve a beam-squint smaller than 1° over a 20% bandwidth and the total efficiency is almost 90% throughout the band in both designs. A stable gain of 17 and 15 dB is achieved in the asymmetric and symmetric designs, respectively. The antennas are manufactured and measurements corroborates simulations. No LWA with similar or better performance in terms of radiation pattern stability, SLL, bandwidth and efficiency (90%) has been reported in the literature, especially considering the high operating frequency. The antennas are intended for mmWave point-to-point links in future communication systems (5G and beyond).

ACKNOWLEDGMENT

The authors would like to thank Antonio Alex-Amor and Ángel Palomares-Caballero for their help during the far-field measurement of the prototypes.

REFERENCES

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2019.2943437, IEEE Transactions on Antennas and Propagation

Elena Pucci received the MSc degree in Telecommunication Engineering from University of Siena, Italy, in 2008, and the PhD degree from Chalmers University of Technology, Sweden, in 2013. She joined Ericsson AB, Stockholm, Sweden, in 2014, where she is currently working as a researcher in antenna technologies for 5G. Her main area of expertise includes antenna design for millimeter wave applications, antenna arrays, metasurfaces, and OTA testing. She has authored and co-authored several publications in journals and conferences. She received the Second-Best Student Paper Award at the European Conference on Antennas and Propagation (EuCAP 2012) in 2012 and the Best Poster Award at Micromechanics and Microsystems Europe Workshop in 2012.

Pablo Padilla was born in Jan, Spain, in 1982. He received the Telecommunication Engineering degree and the Ph.D. degree from the Technical University of Madrid (UPM), at the Radiation Group of the Signal, Systems and Radio communications Department, Spain, in 2005 and 2009, respectively. In 2007, he was with the Laboratory of Electromagnetics and Acoustics, cole Polytechnique Fdrale de Lausanne, Switzerland, as an invited Ph.D. Student. In 2009, he carried out a Postdoctoral stay at the Helsinki University of Technology (AALTO-TKK). In 2009, he became Assistant Professor with the Signal Theory, Telematics and Communications Department of the University of Granada, Spain, where he is currently Associate Professor, since 2012. In 2017, he was a Visiting Professor in the Royal Institute of Technology of Stockholm, Sweden. He has authored more than 60 high-impact journal contributions and more than 50 contributions to international symposia. His research interests include a variety area of knowledge related mainly to electromagnetism and communication topics (radio frequency devices, antennas, and propagation).

Lei Wang received the Ph.D. degree in electromagnetic field and microwave technology from the Southeast University, Nanjing, China in 2015. From September 2014 to September 2016, he was a Research Fellow and Postdoc in the Laboratory of Electromagnetics and Antennas (LEMA), Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland. From October 2016 to November 2017, he was a Postdoc Research Fellow in Electromagnetic Engineering Laboratory of KTH Royal Institute of Technology in Stockholm, Sweden. From November 2017 to present, he is an Alexander von Humboldt Fellow in the Institute of Electromagnetic Theory of Hamburg University of Technology (TUHH) in Hamburg, Germany. His research includes the antenna theory and applications, active electronically scanning arrays (AESAs), integrated antennas and arrays, substrate-integrated waveguide antennas, leaky-wave antennas and wireless propagation.

He was awarded the Chinese National Scholarship for PhD Candidates in 2014 and was granted the Swiss Government Excellence Scholarship to conduct research on SIW horn antennas and applications in 2014 too. He was also granted by the Alexander von Humboldt Research Foundation to take research on antenna modelling and optimization in 2016. Moreover, he received the Best Poster Award in 2018 IEEE International Workshop on Antenna Technology (iWAT).

Oscar Quevedo-Teruel is a Senior Member of the IEEE. He received his degree in Telecommunication Engineering from Carlos III University of Madrid Spain in 2005, part of which was done at Chalmers University of Technology in Gothenburg, Sweden. He obtained his PhD from Carlos III University of Madrid in 2010 and was then invited as a postdoctoral researcher at the University of Delft (The Netherlands). From 2010-2011, Dr. Quevedo-Teruel joined the Department of Theoretical Physics of Condensed Matter at Universidad Autonoma de Madrid as a research fellow, and went on to continue his postdoctoral research at Queen Mary University of London from 2011-2013.

In 2014, he joined the Electromagnetic Engineering Division, in the School of Electrical Engineering and Computer Science at KTH Royal Institute of Technology in Stockholm, Sweden where he is an Associate Professor and director of the Master Programme in Electromagnetics Fusion and Space Engineering. He is an Associate Editor of the IEEE Transactions on Antennas and Propagation since 2018, and he is the delegate of EurAAP for Sweden, Norway and Iceland for the period 2018-2020. He is a distinguished lecturer of the IEEE Antennas and Propagation Society for the period 2019-2021.

He has made scientific contributions to higher symmetries, transformation optics, lens antennas, metasurfaces, leaky wave antennas, multi-mode microstrip patch antennas and high impedance surfaces. He is the co-author of 77 papers in international journals, 130 at international conferences and has received approval on 4 patents.