Cloud and edge computing are currently undergoing a substantive transformation on several fronts, from applications to hardware, and from architectures to devices. This issue of the Cloud and Edge Computing Series solicited articles in the area of cloud and edge computing to address the main issues concerning evolving processes and supporting pedagogies and applications in cloud computing, networking, and storage technologies. There have been advances on both the cloud and edge computing fronts that have affected this line of technology. Paradigms such as computing in virtualization-based architectures, issues of geographical constraints for deploying clouds, and the use of SDN/NFV in clouds, for example, were of special interest for this issue of the Series. Nevertheless, our attention was also focused on data center network (DCN) architectures, security, load balancing, and application data streaming supported by evidence from simulations, analysis, or experiments. Cloud and edge computing is also incorporated with the Internet of Things (IoT) ecosystem. IoT, requiring multiple access edge computing systems, is gaining momentum and considered to be deployed in smart cities, public safety, and e-health. The last but not least important factor we expected to see in articles was the standardization aspects of cloud and edge computing technology. We were especially interested in articles that could address communications standards in networking for clouds, fogs, and edge computing.

This issue of the Series presents two articles in the area of cloud and edge computing. The first article is an exemplary of the IoT ecosystem that receives momentum for use in smart cities, public safety, and e-health. Fabio Giust et al. present a multi-access edge computing (MEC) architectural solution that allows for seamlessly integrating existing and future IoT platforms. The authors additionally present an IoT gateway middleware that enables running low-latency and/or computationally intensive applications on generalized MEC-based systems.

The second article is “A Standard to Rule Them All: Redfish” by Glauco Gonçalves et al. In this article, the authors describe the coordination between a data center manager and a multitude of tools, protocols, and standards. The article mainly focuses on Redfish and the recent collaborations to leverage the management standard. The authors hope that this article can be used as a starting point to understand how Redfish and its extensions are being targeted as the main management standard for next-generation data centers.

Biographies

Nader F. Mir (nader.mir@sjsu.edu) is a professor and former associate chair of electrical engineering at San Jose State University in California. He received his Ph.D. degree from Washington University, and has consulted for leading companies such as Google and Cisco. Internationally known for his scholarly work, he has spoken at many leading conferences, and has published nearly 100 refereed papers and a successful textbook, *Computer and Communication Networks*. He has held several IEEE journal editorial positions, and served on many organizing committees of conferences. He was granted a U.S. patent, and is the recipient of several prestigious research and teaching excellence awards.

Salvatore Loreto (salvatore.loretotericcson.com) works as a strategic product manager within the Digital Services business unit at Ericsson. He holds an M.Sc. and a Ph.D. in computer networking, both from Federico II University in Napoli, and an executive M.B.A. from SDA Bocconi in Italy. His current work is focused on 5G core network architecture, specifically on edge computing, distributed cloud, media distribution, and virtual and augmented reality. He has several publications in peer-reviewed conferences and journals, international patents, and IETF RFCs.