Decoding neural metabolic markers from the carotid sinus nerve in a type 2 diabetes model

Marina Cracchiolo, Joana F. Sacramento, Alberto Mazzoni, Alessandro Panarese, Jacopo Carpaneto, Silvia V. Conde and Silvestro Micera, Senior Member, IEEE

Abstract— Recent studies showed that the carotid sinus nerve (CSN) and the sympathetic nervous system (SNS) are overactivated in type 2 diabetes and that restoring the correct CSN neural activity can re-establish the proper metabolism. However, a robust characterization of the relationship between CSN and SNS neural activities and metabolism in type 2 diabetes is still missing. Here, we investigated the relationship between neural activity of CSN and SNS in control rats and in rats with diet-induced type 2 diabetes and the animal condition during metabolic challenges. We found that the diabetic condition can be discriminated on the basis of CSN and SNS neural activities due to a high-frequency shift in both spectra. This shift is suppressed in the SNS in case of CSN denervation, confirming the role of CSN in driving sympathetic overactivation in type 2 diabetes. Interestingly, the Inter-Burst-Intervals (IBIs) calculated from CSN bursts strongly correlate with perturbations in glycaemia levels. This finding, held for both control and diabetic rats, indicates the possibility of detecting metabolic information from neural recordings even in pathological conditions. Our results suggest that CSN activity could serve as a marker to monitor glycaemic alterations and, therefore, it could be used for closed-loop control of CSN neuromodulation. This paves the way to the development of novel and effective bioelectronic therapies for type 2 diabetes.

Index Terms— carotid sinus nerve, carotid sinus nerve resection, glucose intolerance, insulin resistance, sympathetic nervous system activity, type 2 diabetes.

I. INTRODUCTION

The autonomic nervous system is essential for the maintenance of body homeostasis. The antagonistic effects of its sympathetic and parasympathetic divisions regulate several basic functions, including heart rate, breathing rate, and metabolism. Overactivation of the sympathetic nervous system (SNS) is an autonomic dysfunction associated with hypertension (HT) as well as to insulin resistance (IR) and glucose intolerance, typical features of type 2 diabetes mellitus [1]–[4]. Studies suggest that SNS overactivity is related to the deregulation of the carotid bodies (CB), peripheral chemoreceptors located bilaterally at the bifurcation of the common carotid artery, and of its sensitive nerves, the carotid sinus nerves (CSN) (for a review see [5]). The CSN is a branch of the glossopharyngeal nerve which conveys information from both the CB and the baroreceptors of the carotid sinus. This double sensory innervation elicits opposite responses and inhibits each other in the solitary tract nucleus [6]. More in detail, the baroreceptor component leads to the sympathetic inhibition, decreasing blood pressure and leading to bradycardia, while the chemoreceptor component activates the sympathetic system [6]. Chemoreceptors in the CB are known to respond to hypoxia, hypercapnia, and acidosis [7], but have recently been also proposed to act as a metabolic sensor (see Conde et al. 2014 for a review) due to their sensitivity to insulin blood concentration and to the involvement in glucose homeostasis. Moreover, the CB and the CSN have been shown to be both overactivated in IR and HT animal models induced by hypercaloric diets [9], [10].

Supporting this hypothesis, CSN bilateral denervation was shown to prevent and reverse glucose intolerance, IR and HT as well as to avoid the increasing of sympathoadrenal activity in diet-induced prediabetic and type 2 diabetic rats [9], [11]. Unfortunately, surgical resection of the CSN is not a clinically usable solution since it produces side effects as the loss of the peripheral hypoxic response, decreased sensitivity to CO2 [12], [13], impaired response to exercise [14]–[16] and fluctuations in blood pressure [17].

A recent work showed that chronic high-frequency bilateral electrical modulation (KHFAC) of CSN activity can be used to achieve a similar effect, since restores glucose tolerance and insulin sensitivity in a reversible way [18]. However, this approach can also generate negative side effects due to the loss of chemoreceptor functions and information conveyed by baroreceptors.

An interesting and valuable alternative would be the development of closed-loop neuromodulation solutions to adjust in real-time the neural activity related to metabolism and re-establish, as much as possible, the natural condition. This closed-loop neuromodulation device could possibly lead to chronic disease treatment by means of miniaturized electronic devices for peripheral nerve stimulation [19], [20].

To be pursued, however, this approach requires a detailed description of the modifications of CSN neural activity related to metabolism or induced by type 2 diabetes.
Such newly acquired knowledge would allow the identification of a suitable way to decode metabolic information from the CNS, and to close the control loop in an effective way.

Few studies have recently been published on the decoding of neural markers from the activity of autonomic nerves, mainly from the vagus nerve (VN). Sevcencu et al. correlated neurograms from the left VN in pigs with the respiratory cycle [21] and blood pressure [22] or both [23] during baseline activity. Other studies in mice demonstrated that the neural signals recorded from the VN are cytokine-specific [24]. CSN signals related to metabolic conditions have been, so far, analysed only with biochemical tools and surgical manipulations, but no studies have been yet performed to identify informative neural markers. In this study, we therefore aimed at addressing this issue by evaluating and characterizing the normal and pathological neural response of CSN to metabolic stimuli. In particular, we described in both frequency and time domain the neural activities recorded in the CSN and in the cervical sympathetic nerve, during in vivo experiments performed in control rats (CTL), and rats with type 2 diabetes induced by high-fat/high-sucrose diet (HFHSu). Furthermore, we quantified the effect of bilateral CSN denervation on SNS activity in randomly selected HFHSu rats, revealing the neural signature of SNS overactivation previously observed in metabolic diseases [9], [11]. Finally, the relationship between CSN activity and glycaemia was also investigated to show the possibility of extracting neural markers of glucose temporal evolution.

II. MATERIALS AND METHODS

A. Animals and experimental procedure

Experiments were performed in male Wistar rats (8-9 weeks old) obtained from the vivarium of the NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal. After randomisation, the animals were divided into two groups: (1) the control group that fed a regular chow (7.4% fat, 17% protein and 75% carbohydrate (4% sugar); Dietex International Limited, France) and (2) the high-fat high-sucrose (HFHSu) group that fed a 60% lipid-rich diet (61.6% fat + 20.3% carbohydrate + 19.1% protein; Mucedola, Milan, Italy) plus 35% sucrose (PanReac, Madrid, Spain) in drinking water during 14-15 weeks to induce a type 2 diabetes stage as previously described by Sacramento et al. [18]. This method has been previously validated as an early phase type 2 diabetes model [18], [25], as it produces insulin resistance, glucose intolerance, increased glycemia and serum insulin levels. Animals were kept under temperature and humidity control (21 ± 1°C; 55 ± 10% humidity) with a 12 h light/12 h dark cycle. Body weight was recorded and food and liquid intake were monitored twice per week. Principles of laboratory care were followed in accordance with the European Union Directive for Protection of Vertebrates Used for Experimental and Other Scientific Ends (2010/63/EU). Experimental protocols were approved by the ethics committee of the NOVA Medical School|Faculdade de Ciências Médicas.
B. Bilateral CN resection protocol

After 14 weeks of diet period, animals were evaluated for insulin sensitivity and glucose tolerance through an insulin tolerance test (ITT) and an oral glucose tolerance test (OGTT), respectively. Afterwards, the groups were randomly divided and animals were submitted to bilateral CN resection under ketamine (30mg/kg)/xylazine (4mg/kg) anaesthesia and buprenorphine (10µg/kg) analgesia (n=10) [9], [11]. The other animals were submitted to a sham procedure (n = 13).

C. Insulin and glucose tolerance test

Insulin sensitivity was evaluated through an ITT [26] in conscious animals. Briefly, in overnight fasted animals blood glucose was measured prior and immediately after an intravenous insulin bolus (100 mU/kg, Humulin Regular, Lilly) in the tail vein. The decline in plasma glucose concentration was measured over a 15 min period. The constant rate for glucose disappearance (KITT) was calculated according with [26]. Glucose tolerance was evaluated through an oral glucose tolerance test. After an overnight fast, a bolus of glucose (2g/kg body weight, Sigma, Madrid, Spain) was administered by oral gavage. Blood samples were collected by tail snipping at regular intervals (0, 15, 30, 60, 120, and 180 min) and glucose levels were measured with a glucometer (Precision Xtra Meter, Abbott Diabetes Care, Portugal). If on the day of insulin sensitivity and glucose tolerance evaluation, animals exhibited any signs of high glycemic values, not due to the pathological condition, values were excluded for that time point.

D. Electrophysiological recordings

After twenty-five weeks of diet, neural signals from CN and sympathetic nervous system (SNS) from the superior cervical nerve were recorded on the right-side of the animal with hand-made silver hook electrodes (diameter = 0.25 mm) in animals anaesthetized with pentobarbital (60 mg/kg i.p.) (Fig. 1a). The electrode tip was in selective contact with the selected nerves and the open preparation was covered with mineral oil to better isolate from activity of nearby nerves and environmental noise. Note that we have chosen to record in the cervical sympathetic chain since our aim was to evaluate the effect on the overall sympathetic activity, and not a regional activity as if we recorded at renal, lumbar or splanchnic sympathetic nerves. CN and SNS were recorded in vivo in CN-intact animals. Sympathetic activity was also recorded in CN-denervated animals of the HFHsu diet group (Fig. 1b). No recordings of sympathetic activity were performed in the control denervated group since no changes in metabolic profile were observed (see Fig.2). Glycaemia levels and blood pressure were monitored throughout the experiment. Glucose levels were measured by tail tipping using a glucometer (Precision Xtra Meter, Abbott Diabetes Care, Portugal). CN activity as well as sympathetic activity were recorded with a sampling rate at 20 kHz, amplified (Neurolog Digimizer, Hertfordshire, UK), band-pass filtered (2 to 8000] Hz) and digitized (Axonscope, Axon Instruments, Molecular Devices, Wokingham, UK). Fig. 1c shows a typical raw signal obtained from electrophysiological recordings of the CN.

E. Measuring glucose and insulin administration effects on CN and SNS neural activity

Baseline activity for the CN and SNS was recorded for 5-10 min. The effects of glucose and insulin on CN and SNS activity were evaluated by recording the electrical activity of the nerves while performing glucose and insulin administrations in fasted animals (Fig. 1d). The glucose challenge was performed through an intravenous glucose tolerance test after the measurement of baseline levels. The test consisted in the administration of a glucose bolus (0.75 g/Kg body weight) in the femoral vein. Blood samples were taken from the tail vein at regular intervals (0, 2, 5, 8, 10, 15, 20, 30 min until the glycaemia fell to basal levels) and the neural signals were simultaneously recorded (for at least 30 minutes from the glucose bolus). As insulin is a stimulus for the carotid body and, as a consequence, for the carotid sinus nerve [8] we delivered insulin to the animal to investigate insulin effects on CN and SNS neural activities. A bolus of insulin (100nM) was administered in the femoral vein and nerves were recorded for 20 minutes.

Additionally, to evaluate if the effect of the injection on neural activity was not due to volume administration, neural activity of the CN and SNS was recorded after the administration of saline (NaCl, 0.9%) in the same volume than the used for glucose administration.

Femoral artery was catheterized to measure blood pressure and heart rate. The catheter was and connected to a pressure transducer (-50, +300 mmHg) and amplified (EMKA technologies, Paris, France).

F. Analysis of CN and SNS neural activity

Spectral analysis of pre-processed electrophysiological data (see above) was performed as follows. Power supply noise at 50 Hz and its harmonics (from 50 to 2000 Hz) were removed with digital notch filters. Low-frequency artefacts and high-frequency noise were removed via a band-pass Butterworth filter of the 4-th order with 50 Hz lower and 2 kHz upper cutoff frequencies.

The Power Spectrum (PS) was then computed with pwelch MATLAB function using 1-second windows and normalized to the overall power to obtain Power Spectrum Density (PSD). Herein, we used the PSD in all displayed analyses. Analysis of PS led to similar results but inter-session comparisons were slightly distorted due to the different amplitude of the recorded signals (data not shown).

To evaluate bursting activity in raw neural data, we first computed the spectrogram of the neural signal (spectrogram function in MATLAB, frequency range was [0 to 1000] Hz with a frequency step of 10 Hz) as shown in Figure 1e. Then, for each time value, we summed the magnitude of frequencies greater than 300 Hz, which is known to reflect the multiple-unit spiking activity [27] and we obtained a signal as in Fig.1f. Bursting activity was now clearly isolated from background activity and the temporal distances between two following bursts were measured (in seconds) (Fig.1g). Such signal, called Inter-Burst-Interval (IBI) (Fig. 1h), was then smoothed by means of a Hampel filter [28].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
G. Statistical analysis

Metabolic data were compared using GraphPad Prism Software, version 6 (GraphPad Software, La Jolla, CA, USA) and presented as mean values ± SEM. The statistical significance of the differences between the mean values was calculated by one- and two-way ANOVA with Bonferroni multiple comparison tests. Differences were considered significant at p < 0.05. Distributions of PSD values across diet groups are expressed as medians ± median confidence, where the latter is computed for the dataset X as in [29]:

$$\text{median confidence} (X) = 1.57 \times \frac{PR_{25}(X) - PR_{75}(X)}{\sqrt{R}} \quad (1)$$

Frequency intervals in which the PSD curves differ significantly across groups were found as follows: the power density associated to 50Hz-wide bins ranging from 75 Hz to 1975 Hz were considered for each curve. Then, significance of bin-wise differences was computed using a non-parametric Kruskal-Wallis test (KWT). In order to account for multiple comparisons, we performed a cluster-based permutation test (200 permutations generated) across different groups [30]. PSD peak values were compared across diet group and metabolic condition by means of a two-way ANOVA test [31].

In time domain, Pearson’s coefficient, R, was used to seek for linear correlation between glycaemia and binned IBI (1-minute bin width). The linear relationship between these two variables was further investigated by a linear regression analysis. The reduced-CHI-squared, χ^2, was used to assess the goodness of fit. Differences were considered statistically significant for values $p < 0.05$. All the analyses on neural recordings were performed using MATLAB software (MathWorks, Natick, MA, USA).

III. RESULTS

First, we assessed the effect of the hypercaloric diet and we characterized the effect the bilateral resection of the carotid sinus nerve. Then, the activity from the CSN and SNS nerves in type 2 diabetes and control rats was recorded to find neural markers of metabolic conditions (see Methods for details). Recordings were performed at baseline (fasted state) and following a successive delivery of a glucose bolus. As glucose levels returned to normoglycaemic values, approximately 90 minutes after the injection, insulin was administrated and the neural activity recorded for 20 minutes. The neural activity in the two groups was characterized by calculating the power spectrum density (PSD) and in the time-frequency domain (see Methods for details).

A. Effect of diet and bilateral CSN resection on insulin sensitivity, glucose tolerance

Fig. 2 shows the effect of HFHSu diet and the effect of CSN bilateral resection on fasting glycaemia, insulin sensitivity and glucose tolerance. HFHSu diet during 14 weeks increased plasma fasting glycaemia to $100.33 \pm 1.91 \text{mg/dl}$ from a control value of $87.83 \pm 2.35 \text{mg/dl}$. Eleven weeks after CSN resection, after 25 weeks of diet, fasting glycaemia was restored in HFHSu animals ($87.83 \pm 2.14 \text{mg/dl}$) (Fig. 2a). Compared to controls, 14 weeks of HFHSu diet decreased insulin sensitivity by 42.12%, an effect that was completely restored 11 weeks after CSN resection (HFHSu CSN resection 25 weeks of diet $KITT = 4.66 \pm 0.37 \% \text{glucose/min}$) (Fig. 2b). CSN resection did not modify fasting glycaemia (Fig. 2a) or insulin sensitivity (Fig. 2b) in control animals. Additionally, HFHSu diet decreased glucose tolerance after 14 weeks of diet (Fig. 2c), as showed by the significant increase in the area.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2019.2942398, IEEE Transactions on Neural Systems and Rehabilitation Engineering

Table 1 Effect of carotid sinus nerve resection on the area under the curve (AUC) obtained from the glucose excursion curves of oral glucose tolerance test. Two-Way ANOVA with Bonferroni multicomparison test; *p < 0.01 comparing AUC values (min*mg/dL) before diet vs 14 and 25 weeks of diet; **p < 0.01 comparing values between 14 and 25 weeks of diet.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control-denervation</th>
<th>HFHSu-denervation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before diet</td>
<td>21848 21728</td>
<td>21625 21625</td>
</tr>
<tr>
<td>14 weeks diet</td>
<td>22169 22285</td>
<td>25389** 24949**</td>
</tr>
<tr>
<td>25 weeks diet</td>
<td>21953 21806</td>
<td>25151** 22529**</td>
</tr>
</tbody>
</table>

B. Baseline changes of neural activity in type 2 diabetes

First, we analyzed the baseline activity, i.e. the neural activity before administration of metabolic challenges, to assess diet-induced differences of spontaneous neural activity. Spectral analysis did not highlight a significant high frequency shift in PSD (KWT, p > 0.05; Fig. 3a) of CSN recordings from HFHSu animals compared to CTL, while there was a significant shift toward high frequencies in HFHSu animals in the spectra of signals recorded from SNS (KWT, p < 0.05 in the range [600 to 950] Hz; Fig. 3b).

This result indicates that a high frequency shift in the PSD of sympathetic nerves is a signature of SNS overactivation associated with type 2 diabetes. This signature, however, is not directly detectable from the activity of CSN in baseline conditions.

C. Type 2 diabetes-induced changes of neural activity after glucose and insulin administration

We compared neural in vivo recordings from the CSN (Fig. 3, left column) in HFHSu vs. CTL animals to find whether hypercaloric diets/disease state produce detectable changes in CSN neural activity. Moreover, as several studies found evidences that SNS overactivity is involved in glucose metabolism deregulation, we wondered if we could directly measure such overactivity by recording and comparing SNS neural activity in both groups of animals (Fig. 3, middle column; see Methods for details).

We performed a two-way ANOVA on PSD peak positions of neural signals acquired in different conditions, depending on two factors: diet (HFHSu, CTL) and challenge (glucose injection, insulin injection and baseline). From the analysis of both CSN and SNS recordings, we found a significant role for the "diet" factor but no significant modulation due to factor "challenge" or "diet × challenge" interaction (CSN: challenge: p = 0.58; diet: p < 0.01; challenge × diet: p = 0.57; SNS: challenge: p = 0.22; diet: p > 0.01; challenge × diet: p = 0.52; CSN-denervated SNS: challenge: p = 0.15; diet: p < 0.05; challenge × diet: p = 0.57).

We then looked at significant differences induced by "diet" for each challenge individually, looking not only at peak frequency, but also at differences in specific frequency bands.

Fig. 3. Power Spectral Density in control rats, HFHSu rats and HFHSu rats with CSN-resection. Activity is recorded from the Carotid sinus nerve (CSN, left) or the sympathetic nervous system (SNS, center and right) during baseline, glucose challenge and insulin challenge. (a, d, g) Comparison between PSD of the CSN activity in control and HFHSu animals at baseline (a, N = 10 vs N = 10), after glucose injection (d, N = 8 vs N = 6) and after insulin injection (g, N = 5 vs N = 4). Here and in the following panels, tick lines indicate median and shaded areas indicate median confidence, and markers indicate significance difference between the two conditions (*** p < 0.01; ** p<0.01 – KW test with Maris-Oostenveld correction). (b, e, h) same as the first column for SNS in control and HFHSu animals (b, N = 5 vs N = 8; e, N = 9 vs N = 7; h, N = 5 vs N = 8). (c, f, i) same as the first column for SNS in control intact rats and HFHSu animals without CSN (c, N = 5 vs N = 4; f, N = 9 vs N = 6; i, N = 5 vs N = 4).

After glucose bolus, PSD of both CSN and SNS did show significant differences in the range [950 to 2000] Hz (KWT, p < 0.05 for this band, see Methods; Fig. 3d) and [200 to 400] Hz (KWT, p < 0.05 for this band, Fig. 3e), respectively. Also in the case of insulin injection, HFHSu animals displayed a neural activity with a stronger power than CTL in the range [550 to 1100] Hz for CSN (KWT p <0.01 for this band; Fig. 3g) and [500 to 1950] Hz for SNS (KWT p <0.01 for this band; Fig. 3h).

Taken together, all these results indicate that it is possible to discriminate between type 2 diabetes and control conditions thanks to an abnormal high frequency shift which can be found in the spectra of both SNS and CSN neural activities during metabolic challenges.

D. Effect of bilateral CSN resection on the sympathetic activity

Previous works [9], [11] studied metabolic consequences of CSN resection in type 2 diabetic rats but a comparative analysis of SNS neural activity after resection had never been performed. We investigated the effects of CSN resection on neural SNS activity of HFHSu and compared with CTL rats during baseline, glucose and insulin challenges. For glucose challenges, the SNS Denervated and CTL spectra were not significantly different (KWT p > 0.15 over the whole spectrum, Fig. 3f). In particular, the high-frequency activity shift induced in SNS by the diabetic state disappeared (compare with Fig. 3e).
As for glucose challenge, CSN denervation led to similar spectra for CTL and HFHSu SNS neural activity (KWT p > 0.15 over the whole spectrum; Fig. 3i) after insulin injection.

Overall these results, based on direct analysis of CSN and SNS neural activities, provides direct neural confirmation to conclusions drawn in previous works from biochemical markers, i.e.: i) type 2 diabetes is associated to SNS and CSN overactivity; ii) CSN resection leads to a SNS activity in HFHSu rats not different from CTL animals.

E. Neural markers in CSN correlate with glycaemia evolution

We then investigated the possibility to find a neural marker able to track, with a sufficiently high temporal precision, changes in the metabolic state of the subjects. In particular, we focused on the level of glycaemia, critical for people with type 2 diabetes. As CSN neural activity is characterized by large regular bursts (Fig. 1c), we looked for a possible relationship between bursting activity and glycaemia, focused on the interburst interval (or IBI; see Methods and Fig. 1).

In each experiment performed in control animals (N = 8), glucose i.v. administration was followed by a strong increase in glycaemia, as expected, but we also observed an increase in IBI.

To rule out the possibility that this increase was due to the injection per se or to changes in non-chemical physiological parameters, we performed a series of tests with saline injection (N = 6) in the same condition (fasted state, same volume). The example in Fig. 4a shows the effect of glucose and saline injection, respectively, in the same control animal. Saline did not cause any relevant excursion in the IBI (Δ mean value 8.3%) while the mean variation related to glucose bolus was 32.5% (Fig. 4b). As expected, saline injections did not lead to changes in glycaemia (Fig. 4c). This shows that IBI variation is due to the action of glucose/insulin.

We checked then if the correlation between glycaemia levels and IBI was strong enough to allow the reconstruction of glycemic temporal evolution starting from IBI (Fig. 5a). We first evaluated the cross correlation between IBI and glycaemia interpolated at IBI resolution (1 minute) for each single subject. A significant linear correlation between IBI and glycaemia was present in 7/8 control animals, with a fraction of explained variance as high as 98% (Fig. 5b and d). For each animal, the temporal lag related to the maximum value of the cross correlation is reported in Fig. 5c. If considering all animals together (after z-score normalization) linear correlation was still strong and highly significant (R = 0.82, p << 0.001; Fig. 5f). We then performed a linear regression analysis and found that reduced-CHI-squared, χ²red, computed on predicted values of glycaemia was shown to be consistently lower than 1 (Fig. 5e and f) indicating a very good quality of the fit.

Finally, we tested whether IBI was able to track changes in the metabolic state of diabetic animals as well, so we repeated the same analysis in HFHSu animals. We collected synchronous IBI values and interpolated glycaemia values after glucose injection (Fig. 6a and b). The Pearson correlation coefficient resulted significant for 6/6 experiments; the temporal lag related to the maximum value of the cross correlation is reported in Fig. 6c and d. As in the control group, the reduced-CHI-squared resulted lower than 1, assessing the goodness of the linear model (Fig. 6e). The overall correlation between normalized glycaemia and normalized IBI was significant (Fig. 6f) with R = 0.81 and χ²red = 0.35. Taken together, these results on CTL and HFHSu rats provide direct evidence that IBI extracted from the CSN neural activity is linearly correlated with glycaemia and could be used as a marker for the identification of changes in blood glucose levels, not only in healthy subjects, but also in diabetic ones.

IV. DISCUSSION

Our results show that CSN neural activity carries information both to discriminate type 2 diabetic animals and to reconstruct on short timescale blood glucose level in both control and diabetic animals. This sheds new light on the neural modifications induced in the sympathetic nervous system by type 2 diabetes.

We observed for the first time the neural signature of CSN and SNS overactivation in type 2 diabetes, i.e. that the spectral
content of CSN and SNS neural activities is shifted toward high frequencies. This provides new support to the hypothesis that both CSN and SNS recordings carry information about the metabolic status and strongly hints toward the possibility to discriminate the pathological condition. Additionally, we found that the SNS high frequency shift was abolished in CSN-denervated HFHSu animals and this highlights the role of CB in the overactivation of the SNS previously suggested by [8] [9]. Finally, this work demonstrated a correlation between blood glucose levels and the interburst interval extracted from the CSN neural activity, suggesting that CSN recordings can function to monitor glycaemia evolution, not only in healthy subject but also in the case of the type 2 diabetes.

In these years, several studies looked for neural markers related to physiological and pathological states. In particular, the vagus nerve has been investigated and some neural features related to physiological activities as blood pressure, ventilation and inflammation have been found [21], [22], [24].

Here, instead, we focused on the CSN because it is directly involved in metabolism due to its innervation of the CB, which activates the SNS to regulate peripheral insulin sensitivity [9], [11]. We showed that both the healthy and the HFHSu groups revealed a high and reproducible correlation between CSN neural activity and glycaemia after glucose injection, while saline injection did not affect IBI, demonstrating that the effect on the in vivo CSN activity was produced by alterations in blood glucose concentrations and not by the injection per se.

In this work, we introduced new electrophysiological markers able to find significant differences between the neural activity of type 2 diabetic and healthy animals; these findings contribute to investigate the link between CB and SNS in glucose metabolism. Indeed, while the overactivation of the SNS is accepted as related to metabolic dysfunction, the involvement of the carotid body in glucose homeostasis was largely investigated in recent years [32] but only with biochemical and physiological data [9], [11], [33].

A. The excitatory role of the carotid body related to metabolism

It is known that CB chemoreceptor activity has an overall excitatory effect on SNS [8], [34], while baroreceptor activity has an overall inhibitory activity [12], [17], [35]. The net effect of the CSN inputs on SNS depends on the balance of CB chemoreceptors and carotid sinus activity. Our results support the hypothesis that the effect of CSN activity on SNS is mainly excitatory in the case of CB dysfunction when type 2 diabetes occurs [8]. We observed a significant frequency shift in both the CSN activity and the sympathetic tone, specific of the HFHSu condition (Figure 3, first and second columns). The excitatory relationship between CSN and SNS was also confirmed by the effect of CSN resection in HFHSu animals (Figure 3, third column), which leads to a decrease in SNS activity. This is coherent with the presence of a positive feedback loop involving CB insulin receptors, the sympathetic tone and insulin resistance [8]. Note that CSN spectrum overactivity would occur only when chemoreceptors are dominating, as in the condition of insulin resistance. This is expected in diabetic subjects, but might not happen in healthy subjects due to the correct balance between baro- and chemoreceptors activity [36], which inhibit each other in the nucleus of the solitary tract [6]. In the last decades, several studies have been performed to elucidate the role of the CB as a glucose sensor. However, this is still on debate as there is a lot of controversy in the results obtained by different research groups (for review see [8], [37]). In contrast, evidence has been provided showing that insulin activates the CB both in animals [38] and in humans [39]. Insulin receptors are present in the CB and phosphorylate in response to insulin promoting a neurosecretory response [9] that culminates in an increase in ventilation independently of hypoglycaemia [9], [40]. This increase in ventilation produced by insulin during euglycemia was also observed in humans [39]. Our results consolidated the role of the CB as a metabolic sensor if considered together with the findings that the CB is involved in the counterregulatory responses to hypoglycaemia [33] and in the genesis of metabolic diseases [9], [11]. However, to the best of
Given the presence of different types of fibers in the CSN, we cannot rule out the possibility that part of the activity modulation observed in Figures 5 and 6 could be also due to the response of CSN baroreceptors. Recording only from the chemoreceptor fibers would be interesting but it is quite difficult due to the mixed (chemo/baro) nature of the nerves. Separating the chemo and baroreceptor fibers could be possible with mathematical tools as offline signal decomposition techniques [41]–[43]. However, for the purpose of biomedical application, what matters is that we were able to define metabolic neural markers in the whole CSN nerve without distinguishing between afferent and efferent fibers, especially because this characterization aims to future therapeutic applications asking for real-time processing approaches. In addition, we collected preliminary data to deal with possible confounds variables such as blood pressure and heart rate. This data suggested that IBI did not follow the same evolution of blood pressure or heart rate challenge. a) Mean Arterial Pressure (MAP) after glucose injection (red line) and saline injection (green line) in a control rat. b) Heart rate (HR) after glucose injection (red line) and saline injection (green line) in a control rat.

As expected from panel a. The grey line represents the line of best fit. The value of R, i.e. the linear coefficient correlation, supported by the p value, and the reduced-CHI-squared is reported. c-d) Temporal lag related to the maximum value of the cross correlation (c) and relative R supported by p values (d) for single experiments resulted from the correlation between IBI and glycaemia (* p < 0.05, ** p < 0.01). e) Reduced-CHI-squared for single experiments for goodness of linear fit. f) Scatterplot related to IBI against glycaemia values for all the data from each experiment (N = 6) after zscore normalization, temporal shift and glycaemia interpolation. The grey line represents the line of best fit. R, supported by the p value, and reduced-CHI-squared are reported.

Our results lay the ground for the development of an implantable medical device for the CSN to monitor and treat metabolic disorders. The implanted system should acquire the CSN activity and decode in real time the metabolic state by extracting IBI in type 2 diabetic subjects. Therefore, the device will be able to inform promptly type 2 diabetic subjects and caregivers of their metabolic condition and hence timely start suited actions if needed. This will be useful particularly for subjects that are unable to perform blood test due to age or concurring pathologies. Furthermore, we also anticipated that
this metabolic monitoring unit could be a key part of a closed-loop mechanism of an implanted device aiming at selectively modulating whole-body metabolism through electrical activation/inhibition of the CSN or the autonomic nervous system. As mentioned above, Sacramento et al. described that continuous kilohertz frequency alternating current modulation of the CSN restored insulin sensitivity and glucose tolerance in type 2 diabetic rats [18]. However, the CSN is known to convey information related to the metabolic status but also with other functions as the regulation of blood pressure and the response to hypoxia [47]. For these reasons, a closed-loop approach working only when needed could bring significant improvement in the standard of care for type 2 diabetes.

V. CONCLUSION

Our motivation herein was to perform an in-depth analysis of CSN neural activity, both in control and pathological type 2 diabetic conditions, to evaluate its response to metabolic challenges. Spectral analysis provided important evidences about the overactivity of the CSN and SNS in type 2 diabetes and discriminated the pathological condition from the healthy one based on the neural activity. Moreover, our results lead us to propose IBI as a neural marker for whole-body glycaemia, demonstrating the possibility to design closed-loop neuroprosthetic devices oriented to monitor glucose level in subjects with type 2 diabetes starting from neural markers, which could be combined with the electrical stimulation to modulate CSN activity [18].

ACKNOWLEDGMENT

We want to acknowledge to Ms Bernardete Melo from Silvia Conde’s Group at CEDOC, NOVA Medical School for the help in the metabolic evaluation of the animals. We thank Khattia Gabisonia for her helpful comments. Prof. Silvestro Micera and Prof. Silvia Conde are the guarantors of the study.

REFERENCES

