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Abstract—To provide flexibility for the operation of smart
electricity networks, a large number of scattered demand re-
sponse resources are managed by a demand response aggregator
(DRA). Increasing the economic viability of this new entity, i.e.,
DRA, has attracted a great deal of attention in recent years.
Following this direction, this paper proposes stochastic model of
multiple large-scale energy storage system (LESS) investments
from the perspective of a DRA. A LESS directly connects
to smart distribution networks and provides the possibility to
save energy costs and thereafter increase the energy efficiency
of the DRA. In this paper, a novel mixed-integer model is
proposed to determine the optimal capacity and operation of
a LESS in coordination with a DR scheme. The model, as
a main contribution to literature, comprises novel managerial
options, such as the number of allowed DR actions, the number
of allowed charging and discharging. Moreover, the model is
designed to be capable enough to exclude the hours in which the
demand side is not allowed to participate in DR. The proposed
model is tested through a numerical example with various case
studies. The simulation results show the substantial economic
impacts of considering the introduced managerial options in the
coordination of a LESS operation with DR.

Index Terms—Demand response, distribution network, energy,
energy storage.

NOMENCLATURE

A. Abbreviations

DRA Demand response aggregator.
LESS Large-scale energy storage systems.
DR Demand response.
SDN Smart distribution network.
ESS Energy storage systems.
PSB Polysulfide-bromine battery.
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VRB Vanadium Redox battery.
ZB Zinc-Bromine Batteries.
MILP Mixed integer linear programming.

B. Parameters

un,s,d The number of operational days of the nth type
of ESS in a year and scenario s.

un,s,m The number of operational months of the nth
type of ESS in a year and scenario s.

t The number of operation hours of ESS in a
day.

ir, dr The inflation rate, Discount rate.
ηn The nth ESS efficiency (%).
en, ēn Minimum/maximum of nth ESS state of en-

ergy.
bChar
n , bDis

n Minimum of charging/discharging of the nth
ESS.

b̄Char
n , b̄Dis

n Maximum of charging/discharging of the nth
ESS.

∆n The initial energy of the nth ESS.
Lt,s Total consumed power of SDN at hour t in

scenario s.
L̄s Maximum of SDN load in scenario s.
Γs Allowed shiftable load.
α Cut current peak load by energy storage sys-

tem in percent.
β Load demand increase each year in percent.
ΨChar

n ,ΨDis
n The number of allowed charging/discharging

of the nth ESS.
Ωl,Ωm,Ωh Purchasing the price of energy from the trans-

mission network, respectively.
ρt Price of energy at hour t.
Cn,inv Investment cost of upgrading facility.
Υ The number of deferring years.
BDE Revenue from deferring of facility.
CP

n , C
W
n Peak/energy specific cost of the nth ESS.

CMF
n , CMV

n Constant and variable operation and mainte-
nance cost of the nth ESS.

b̃Dis
n Average annual discharge of ith ESS..
θ The number of allowed DR hours.
η̆s Percentage of shiftable load in scenario s.
πs Probability of scenario s.
∆τ Dispatch interval (1-hour).
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C. Variables

BPR
n,t Energy price arbitrage benefit of nth ESS in

hour t.
BTR

n The benefit due to the transmission access cost
reduction.

bChar
n,t , b

Dis
n,t Charging/discharging of the nth ESS in hour t.

C Objective function.
et,n The existing amount of energy in the nth

LESS in tth hour.
L̃t The load at tth hour after implementing de-

mand response program.
CESS

n Investment cost of the nth ESS.
COM

n Operation and maintenance cost of the nth
ESS.

D. Binary Variables

zn,t Binary variable corresponding to the nth ESS
at hour t in scenario s.

λt Binary variable corresponding to the demand
response program in scenario s.

E. Sets

N The sets of LESSs.
T The set of hours in a day.
Tna The set of hours in a day in which demand

response is not allowed Tna ⊂ T .
S set of scenarios.

I. INTRODUCTION

A. Problem Statement

URBANIZATION creates several challenges for govern-
ments throughout the world. These challenges include

air pollution, congestion, crime, human health, and energy [1],
[2]. In recent years, through the enjoyment from the develop-
ment of ICT and other related technologies and sustainable
energy resources, the concept of a sustainable city in compar-
ison to a regular city, has emerged to effectively tackle the
aforementioned challenges to enhance the operational efficacy
of urban services, as well as the quality of life [3]. Thanks
to the development of ICT technologies in sustainable cities,
DR schemes can be effectively developed to increase energy
efficiency [4], [5]. The emergence of a new entity called
“demand response aggregator” (DRA) as a result of increasing
penetration of a large amount of scattered DR resources brings
new hope to accumulating the positive effects of DR in
a larger scale of energy services. The increasing economic
effectiveness of DRA is an important problem that needs to be
taken into consideration. This paper proposes the investment
of a Large-scale energy storage system (LESS) by the DRA
to increase its economic profit.

B. Literature Review

Despite the profit increasing from DRA using energy stor-
age systems (ESS) as discussed in recent literature, such as [6],
[7], there is a lack of enough attention to the investment of
ESS, specially LESS, from the perspective of DRA. In [6],
[7], it is assumed that a DRA owns a set of storage systems

and the profit of DRA is maximized by selling the stored
energy. In [6], a networked cournot competition graph has
been proposed for the sake of competition among DRAs.
In [7], an incomplete game-theoretical model for the compe-
tition between DRAs in selling energy previously stored in an
aggregation of storage devices, given sufficient demand from
other aggregators through an incomplete information game,
was proposed.

Generally, the proliferation of energy storage systems (ESS)
in sustainable cities is highly mobilized, as a result of a
few serious challenges, which are primarily related to eco-
nomic issues [8], security concerns [9], and environmental
problems [10], forced by several reasons, such as significant
growth in demand for electrical energy, resiliency challenges
as a result of global warming, risk of terrorist attacks to
the electricity network infrastructure, meeting the target of
CO2 emission reduction in the electricity sector, and thereafter
increasing the share of intermittent renewable resources. Ac-
cording to the International Energy Agency, globally installed
ESS capacity should be approximately 3.2 times higher in
2050 in comparison to that of 2014 to limit global warming
to below 2◦C [11]. To meet this environmental-driven re-
quirement, ESS should be optimally integrated into the power
systems. Optimal grid integration of ESS creates numerous
benefits, including power fluctuation smoothing [12], effective
operation of power systems with high penetration of renewable
resources [13], optimizing the energy transaction costs [14],
and peak load shaving [15]. The transmission of bulk quanti-
ties of electrical energy faces new challenges, as transmission
components are exposed to failure more than in the past, as
a consequence of global warming [16], and degradation of
transmission facilities. Moreover, the lack of enough capacity
in transmission lines results in congestion [17], [18]. As an
energy solution for sustainable cities, the integration of large-
scale ESS (LESS) to distribution substations can ensure smart
distribution network (SDN) operations against these problems.
As a result, the energy efficiency of the sustainable city can
be increased.

In simple words, the ESS is managed so that it stores
the excess of electrical energy, from tens to hundreds of
MWh, during a low-cost period of time, and then releases
it during a proper time when SDN operators economically
or physically face limitations for getting energy from the
transmission system. Though the grid integration of ESS
became feasible technologically [19], the investment cost of
these devices is still high [20]. To enhance the economic profit,
in this paper, a mixed integer model is developed to provide
the optimal capacity and operations of LESS coordinated
with demand response (DR) in a sustainable city. DR enables
the sustainable city’s residents to actively participate in the
operation of SDN [21]. An extensive amount of literature
has been dedicated to the applications of ESS in SDN [22]–
[37]. Some of the technical advantages for the installation of
ESS in SDN include differing distribution lines’ upgrading,
tackling load balancing problems due to increasing the share
of intermittent renewable resources, ensuring energy security,
improving stability and power quality, and increasing the pen-
etration of distributed generation [25]. To achieve maximum



1470 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 8, NO. 5, SEPTEMBER 2022

benefit exploitation from ESS integration, determining the
optimal capacity and operation of these flexible devices is nec-
essary. In [22], optimal capacity, location, and power rating of
batteries throughout the distribution network was obtained by
minimizing investment, operations, and reliability costs sub-
ject to technical constraints. Other approaches for reliability
enhancement by means of ESS planning are addressed in [27],
[28]. Beyond these scientific studies, the application of ESS
for reliability improvement of a real case study in a Chilean
power system was reported in [30]. In [23], improvement of
the load and distributed generation hosting ability of the utility
grid was considered as the objective for the battery location in
SDN. The positive impacts of proper charging and discharging
of battery ESS on transient stability, see [32], and voltage
deviation, see [33], was proved. The impact of various battery
technologies in the optimal planning of ESS was observed
in [24]. Further to the mentioned literature in which technical
and economic objectives have been considered in the planning
of ESS in SDN, some other research studies addressed the
interaction of ESS planning with other effective factors, such
as power demands of electrical vehicles [31]. Also, distribution
network expansion affects optimal ESS location and vice
versa [25], [26]. Due to the high investment costs of ESS,
in [28] some technical constraints, such as state of health
and the maximum number of charging and discharging to
preserve the ESS lifetime, are considered. These constraints
limit the maximum benefit extraction from the ESS integration.
Also, according to a recent review on the optimal planning
of ESS [30], justification of economic benefits of ESS is a
challenge that needs to be addressed.

To enhance the economic viability of DR programs, coordi-
nation of DR and ESS was proposed as a solution. Generally,
in DR schemes, customers are motivated to play a more
effective role through load shifting [38]. Implementation of a
DR program postpones network reinforcement costs of energy
systems [39]. Coordination of DR and ESS operations was
addressed in a few previous studies, such as [34]. However, the
advantages of this coordination should be further investigated.
To the best of our knowledge, the advantages brought from the
coordination of LESS planning and DR aggregation were not
explored in literature in spite of the real application of LESS
in different countries [40]. Furthermore, there are just a few
studies in literature dedicated to the optimal capacity and op-
eration of LESS connected to the distribution substation [19],
[41]. In [19], an economic analysis model was developed for
LESS. The proposed model is non-linear and it was solved
by a genetic algorithm. The investment cost of the LESS is
high. However, the proposed model is not flexible enough to
consider the number of allowed charging/discharging for the
LESS to guarantee the health of LESS. In [41], by deploying
an evolutionary multi-objective approach, potential benefits
of installation of Polysulfide-bromine (PSB) and Vanadium
Redox (VRB) battery technologies in distribution substations
were investigated. The presented method is not convex. There-
fore, achieving the optimal solution cannot be guaranteed.
Also, capability of demand response was not considered in the
proposed approach. In [42], was proposed an energy manage-
ment and operational control methods for grid battery energy

storage systems. In [43], an efficient decomposition method
for bilevel energy storage arbitrage problem was proposed.

Table I compares the features of this paper in comparison to
other papers that focused on DRA. The other lines of papers,
such as [12]–[14], [19], and [22], consider LESS, but DR is
not included in the optimization model.

TABLE I
TAXONOMY TABLE

Reference LESS Stochastic
model DRA

The number
of allowed
DR actions

The number of
allowed charging and
discharging of LESS

[7] – – ✓ – –
[12] ✓ ✓ – – –
[13] ✓ ✓ – – –
[14] ✓ ✓ – – –
[19] ✓ – – – –
[22] ✓ ✓ – – –
[44] ✓ – ✓ ✓ –
[45] ✓ ✓ ✓ – –
[46] ✓ – ✓ ✓ –
[47] ✓ – ✓ – –
This study ✓ ✓ ✓ ✓ ✓

C. Contributions and Organization
To the best of our knowledge, for the first time, this paper

proposes stochastice MILP economic profit enhancement of
DRA by integration of a LESS into the distribution substation.
Moreover, the proposed MILP framework provides a more pre-
cise model which benefits from two additional novelties: First,
the number of allowed DR actions, excluding emergency hours
without the cooperation of DR, is included in the proposed
stochastice model. Second, the number of allowed charging
and discharging of LESS is considered. The effectiveness of
the modeling considerations is evaluated in a case study. To
provide a more realistic model, we replicate load uncertainties
by producing a set of proper scenarios.

The organization of this paper is as follows: After provision-
ing of the introduction in Section I, the proposed mathematical
model is provided in Section II. Section III is devoted to the
numerical case study. Finally, Section IV concludes the paper.

II. MATHEMATICAL MODEL

The objective function is presented as:

max
∑
s∈S

πs(τ + υ +Bn
DE − ω − ξ)

∀n ∈ N, t ∈ T (1a)

τ =
∑
n∈N

∑
t∈T

∑
s∈S

BPR
n,tun,d,s

(
1 + ir

1 + dr

)t

∀n ∈ N, t ∈ T, s ∈ S (1b)

υ =
∑
n∈N

∑
t∈T

∑
s∈S

BTR
n un,s,m

(
1 + ir

1 + dr

)t

∀n ∈ N, t ∈ T, s ∈ S (1c)

ω =
∑
n∈N

CESS
n ∀n ∈ Nξ

=
∑
n∈N

∑
t∈T

∑
s∈S

COM
n, un,m

(
1 + ir

1 + dr

)t

(1d)
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∀n ∈ N, t ∈ T, s ∈ S (1e)

Equation (1) consists of five terms including three benefit
oriented terms, and two cost oriented terms [19]. In (1a), τ
is the profit of energy trading of DRA, υ is the profit from
transmission access cost reduction, and BDE is the profit from
deferring facility investment through LESS. These mentioned
terms are benefit-oriented. Also, the cost-oriented terms are as
follows: ω is the LESS investment cost, and ξ is the operation
and maintenance cost of the LESS. The aim of the proposed
problem is to maximize the monetary objective function (1)
subject to a set of technical and economic constraints (2)–(14).

Equation (2) shows the balancing between charging and
discharging of each battery for all operating hours in a day
by considering the respective LESS efficiency:∑

t∈T

bDIS
n,t −

∑
t∈T

bCHAR
n,t ηn = 0 ∀n ∈ N, t ∈ T (2)

where bDIS
n,t,s and bCHAR

n,t,s are discharging/charging of the nth
ESS in hour t in scenario s. Eq. (3) guarantees the limitation
for discharge power for each LESS by considering the amount
of energy in each LESS.∑

t∈T

bDis
n,t ≤

∑
t∈T

en,t ∀n ∈ N, t ∈ T (3)

Equations (4) and (5) guarantee the discharging/charging
power to be less than or equal to the discharge/charging rate,
respectively.

b̄Dis
n (1− zn,t) ≥ bDis

n,t ≥ bDis
n ∀n ∈ N, t ∈ T, zn,t ∈ {0, 1}

(4)

b̄Char
n zn,t ≥ bChar

n,t ≥ bChar
n ∀n ∈ N, t ∈ T, zn,t ∈ {0, 1} (5)

Each LESS’s state of energy in t + 1 is shown through a
difference equation in (6):

et+1,n = et,n + (bChar
t+1,n − bDis

t+1,n)∆τ ∀n ∈ N, t ∈ T (6)

where et,n,s is the amount of energy in the nth LESS in the tth
hour in scenario s. The initial state for the expressed difference
equation (6) is shown in (7).

et,n = ∆n + bChar
t,n − bDis

t,n ∀n ∈ N, t = 1 (7)

The limitation of energy for each of the LESS energy in
hour t is shown in (8).

en ≤ en,t ≤ ēn ∀n ∈ N, t ∈ T (8)

Equation (9) limits the load at the tth hour based on allowed
shiftable consumed load (Γ):

L̃t,s ≤ Lt,s + Γsλt,s, L̃t,s ≥ Lt,s − Γsλt,s

∀t ∈ T, s ∈ S, λt,s ∈ {0, 1} (9)

Based on (9), if demand response is not performed at the
tth hour, then L̃t = Lt. If demand response is not performed
at the tth hour, then L̃t obtains a value in the interval of
[Lt − Γ Lt + Γ]. The parameter Γ, i.e., the amount of
allowed shiftable load, is determined by the DRA based on the
type of available loads. For example, if the loads are heating,
ventilation, and air conditioning (HVAC) loads, Γ depends on

the comfort and convenience of the consumers and it will be
different case by case.

By applying (10), the DRA is able to limit the number of
allowed DR hours. In this equation, the parameter θ is the
number of allowed DR hours. If the DRA set does not allow
DR action, θ is set as zero. Otherwise, since in the load shifting
procedure, load is shifted from one hour to another hour in
the 24-hour operating period, θ is not allowed to be 1.∑

t∈T

λt − θs ≤ 0, ∀λt ∈ {0, 1} (10)

Equation (11) shows that the amount of total demand in
24-hours which remains equal before and after implementing
the DR scheme.∑

t∈T

L̃t,s −
∑
t∈T

Lt,s = 0 ∀s ∈ S (11)

Equation (12) imposes another constraint for cutting of
the peak load, see [19]. This constraint would be realized
by choosing the appropriate amount of α. For example, if
parameter αs is set to 0.1, the DR scheme is allowed to shave
10% of the load peak.

L̃t − bDis
n,t + bChar

n,t − (1− α)L̄s ≤ 0 ∀n ∈ N, s ∈ S, t ∈ T
(12)

Equation (13) retains the allowed charging and discharging
actions within their limits (ΨChar

n,s ,Ψ
Dis
n,s). Such imposed limita-

tions usually are determined based on the specification of the
LESS type. It is noted that in a specific hour a LESS could
only charges or discharge which has been imposed in (4) and
(5). ∑

t∈T

1− zn,t ≤ ΨDis
n ,
∑
t∈T

zn,t ≤ ΨChar
n ∀n ∈ N (13)

where ΨDis
n,s and ΨChar

n,s are the number of allowed discharging
and charging of the nth ESS in scenario s. Eq. (14) guarantees
that in each hour charging power is less than or equal to
the existing amount of energy in each LESS. This proposed
mathematical model is capable enough to provide consumers
this possibility to exclude any hours in the day from the set
of allowed DR periods.

bDis
n,t ≤ en,t ∀n ∈ N, t ∈ T (14)

For this purpose, (15) is considered as a constraint. In this
constraint, Tna is the set of hours in a day in which DR is not
allowed.

λt = 0 ∀t ∈ Tna ⊂ T (15)

Equations (16)–(20) are expressed to show the used terms
in (1) including the profit of energy trading, the profit from
transmission access cost reduction, the benefit from deferring
facility investment, the LESS investment cost, and the opera-
tion and maintenance costs of the LESS.

BPR
n = bDis

n,t − bChar
n,t ρt∀n ∈ N, t ∈ T (16)

BTR
n =

(
bDis
n,tlow

− bChar
n,tlow

)
Ωlow +

(
bDis
n,thigh

− bChar
n,thigh

)
Ωhigh

+
(
bDis
n,tmed

− bChar
n,tmed

)
Ωmed
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∀n ∈ N, tlow, thigh, tmed ∈ T (17)

Bn
DE = Cn,inv

(
1−

(
1 + ir

1 + dr

)Υ
)
∀n ∈ N (18)

CESS
n = CP

n max(bChar
n + bDis

n ) + CW
n max(en)

∀n ∈ N (19)

COM
n = CMF

n max(bChar
n + bDis

n ) + CMC
n b̃Dis

n

∀n ∈ N (20)

The deferring year and total shiftable consumed power are
shown in (21) and (22), respectively.

Υ =
log(1 + α)

log(1 + β)
(21)

Γt,s = η̆Lt,s ∀t ∈ T, s ∈ S (22)

It is noted that in this optimization model, the decision
variables are bChar

n,t,s, b
Dis
n,t,s, en,t,s, L̃t,s, zn,t,s, λt,s.

III. NUMERICAL EXAMPLE

In this section, a case study is presented and the proposed
mathematical model is solved and the results are analyzed.
The price and load data have been obtained from [19] which
corresponds to the modified values from the New York In-
dependent System Operator (ISO). The applied LESS types
include the Vanadium Redox Battery (VRB), Polysulfide-
Bromine Batteries (PSB), and Zinc-Bromine Batteries (ZB).
The storage data is given in [41]. The DRA may have this
possibility to employ one or more than one LESS technologies.
Without loss of generality, in subsection A, we apply the
proposed model for VRB technology as the first investment
scenario. In subsection B, a more complex investment scenario
is introduced by employing three types of LESS technologies
(VRB, PSB, and ZB). Fig. 1 shows a simplified decision-
making procedure by the DRA. The maximum peak value
for the load is 22 MW and 65 MW for the two investment

scenarios, respectively. The average of the seasonal load profile
is shown in Fig. 2.
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Fig. 2. Twenty scenarios for hourly seasonal load profiles.

In both investment scenarios, the Normal distribution is
considered to generate a set of load scenarios for modeling
stochasticity. All simulations are performed using MATLAB
2018b and Gurobi 9 commercial solver on a 1.8 GHz computer
with 6 GB of RAM.

A. A Single-type LESS

To show the results for the single-type LESS, it is assumed
that a VRB LESS with 75% efficiency is connected to the dis-
tribution substation. The results are analyzed for the following
four cases:

Case 1) The number of allowed DR actions and charging
and discharging of LESS are not considered.

Case 2) The number of allowed charging/discharging of
LESS is considered (ΨDis

n,s = 5).
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Fig. 1. The decision-making procedure of DRA.
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Case 3) The number of allowed DR actions is considered
(θs = 10). Also, load shifting is not allowed in hours 18 and
19 (λ18,s = λ19,s = 0).

Case 4) The assumptions of cases 2 and 3 are considered
altogether.

It should be noted that the load profile is the same for all
cases. As shown in Fig. 2, for each hourly seasonal load,
20 scenarios are considered, i.e., the cardinality of S is 20.
Also, the percentage of shiftable load (η̆s) is 10%. Table II
shows the results of solving the proposed optimization model
(Eqs. (1)–(22)) for all the above cases. It is observed that
in all the cases 1–4, in which LESS is installed, the profit of
DRA from the demand response program increased 20.7, 17.1,
18.44, and 13.8 times compared to the case without LESS
respectively. This shows the economical effectiveness of the
proposed approach to increase the revenue of the DRA from
the demand response program. Also, it is shown in Table II,
by considering the number of allowed charging/discharging of
LESS and the number of allowed DR actions (case 4), the in-
vestment cost has been reduced. However, due to the additional
limitations imposed on the model, the total objective function
is reduced. As noted, we have about 1.97 M$/year decrease in
the objective function value through the comparison of cases
1 and 4. This point shows that the technical limitations of
LESS and the demand response program can greatly affect
the profits obtained by the DRA. Also, comparisons of Case 1
and Cases 2–4 show that considering the limitations pertaining
to LESS and demand response further decreases the capacity
of LESS. These results highlight the importance of additional
consideration pertaining to the number of allowed DR actions,
and the number of allowed charging and discharging of LESS
that have to be precisely modeled in the proposed optimization
framework.

TABLE II
THE INVESTMENT RESULTS OF SINGLE-TYPE LESS

INVESTMENT SCENARIO

Description Without
LESS Case 1 Case 2 Case 3 Case 4

LESS investment cost
(M$)

0 8.85 8.17 7.66 6.58

LESS operation cost
(M$/year)

0 0.75 0.84 0.65 0.66

LESS energy trading
profit (M$/year)

0 8.21 7.32 7.27 5.73

Demand response profit
(M$/year)

0.27 5.59 4.62 4.98 3.73

The Objective Function
(M$/year)

0.27 3.92 2.67 3.69 1.95

LESS Capacity (MW) 0 57 46 49 38
Discharge peak (MW·h) 0 8 9 7 7
Charge peak (MW·h) 0 8 8 7 7

In case 1, the investment cost is 8.85 M$ and the annual
profit would be 8.21+5.59−0.75 = 13.05 M$/year. Therefore,
by considering most of the usual interest rates, for example
from 0.25% to 30%, the payback period would be less than
1 year. Also, in case 4, the investment cost is 6.58 M$ and
the annual profit would be 5.73+ 3.73− 0.66 = 8.8 M$/year.
In this case, the payback period would be less than 1 year for
most of the usual interest rates as well. If there is an investment

budget limitation by DRA, an option for LESS investment is
a joint venture which is out of the scope of this paper and
can be addressed in future studies. Fig. 3 shows a comparison
between the daily average of the load profile in the initial
state (red line) and after implementing cases 1–4 (blue line)
by allowing 10% of the load shifting. In case 1, the results
depicted in Fig. 3 show that the demand response program
adopted by the DRA reduces the peak. Cases 3 and 4 show
that the load at hours 18 and 19 have not changed. This verifies
the results because load shifting is not allowed in these hours
(λ18,s = λ19,s = 0).
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Fig. 3. The daily average of the load profile in the initial state (red line) and
after implementing the case studies (blue line) for the single-type investment
scenario.

Also, more results on the state of energy and charge of the
LESS in cases 1–4 are shown in Figs. 4 and 5, respectively.
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Fig. 4. The state of energy for cases 1–4 for the single-type investment
scenario.

B. A Multi-type LESS

In this subsection, a more complex investment scenario is
introduced by employing three types of LESS technologies
(VRB, PSB, and ZB). The storage technologies are referred
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Fig. 5. The state of charge for cases 1–4 for the single-type investment
scenario.

to in [41]. The storage efficiency of all technologies is 75%
and the peak maximum is 65 MW.

The comparison of Tables II and III shows that the objective
functions of the cases in Table III are higher than that of
Table II. This shows that if DRA has multiple options to
select the technology, it ensures that the revenue increases. It
is noted that the CPU time for solving the single-type LESS is
0.8 s for all cases. However, the CPU time for the multi-type
LESS significantly increases. By considering case 4 in both
investment scenarios (single and multi-type LESS), the CPU
time increase from 0.8 s to 8,520 s.

For the multi-type investment scenario, the average of the
load profile is depicted in Fig. 6. Also, Figs. 7–8 show the state
of energy and charge for cases 1–4, respectively. Tables IV
and V show the number of variables and constraints for both

TABLE III
THE INVESTMENT RESULTS OF MULTI-TYPE LESS

INVESTMENT SCENARIO

Description Case 1 Case 2 Case 3 Case 4
LESS investment cost

(M$)
25 24.24 22.74 21.97

LESS operation cost
(M$/year)

2.3 2.47 1.94 2.58

LESS energy trading profit
(M$/year)

24.56 21.78 21.78 21.75

Demand response profit
(M$/year)

15.48 13.73 14.79 10.76

The Objective Function
(M$/year)

12.47 8.53 11.62 7.7

LESS Capacity (MW) 150, 5, 17 136 144, 3 106, 13, 20
Discharge peak (MW·h) 20, 2, 3.1 25 20, 0.5 20, 26, 4
Charge peak (MW·h) 19.1, 1.2, 3.1 24 20, 0.5 19, 3, 4
CPU time (sec) 4 430 5 8520

TABLE IV
THE NUMBER OF VARIABLES AND CONSTRAINTS FOR

SINGLE-TYPE LESS

Number of load scenario Variables Constraint
case 1 case 4 case 1 case 4

5 868 1139 558 837
20 2668 3674 1653 2667
50 6268 8744 3843 6327
100 12268 17194 7493 12427
200 24268 34094 14793 24627

TABLE V
THE NUMBER OF VARIABLES AND CONSTRAINTS FOR MULTI-TYPE LESS

Number of load scenario Variables Constraint
case 1 case 4 case 1 case 4

5 1404 1679 944 1227
20 3204 4214 2039 3057
50 6804 9284 4229 6717
100 12804 17734 7879 12817
200 24808 34636 15179 25017
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Fig. 6. The daily average of the load profile in the initial state (red line) and
after implementing the case studies (blue line) for the multi-type investment
scenario.
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Fig. 7. The state of energy for cases 1–4 for the multi-type. investment
scenario.

investment scenarios of single-type and multi-type LESS.
The results show that the number of constraints and vari-

ables increases when more scenarios are considered for the
load profile. Also, the number of constraints and variables in
the scenario of multi-type LESS is higher than that of single-
type LESS.

IV. CONCLUSION

In this paper, as a stochastic cost-effective approach for
energy management of sustainable cities, a novel coordina-
tion of LESS optimal operations and DRA is addressed by
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Fig. 8. The state of charge for cases 1–4 for the multi-type investment
scenario.

considering managerial options for LESS and DRA. For this
purpose, a mixed-integer mathematical model is proposed
which is able to obtain the optimal capacity of LESS and
demand modifications. The proposed model enjoys several
advantages, such as being shiftable enough to include the
number of allowed DRA actions, and the number of allowed
charges and discharges, further excluding emergency hours
without the cooperation of DRA. Moreover, the model is
mixed-integer linear which yields the exact optimal solution
though solving by well-developed optimization packages. To
verify the effectiveness of the proposed method, a numerical
study with 5 different case studies was examined. The results
show that coordination of LESS operations with DRA results
in greater total benefits for the smart distribution network
operator in comparison with the scenario in which just LESS
operations are considered.

The analysis of the results shows that this economic ef-
fectiveness is affected by the considered DRA and LESS
operational limitations, such as off-hours, the number of
allowed DRA hours, the percentage of load shaving, and the
number of allowed discharging. It was observed that LESS
operational limitations decrease the economic benefits of the
proposed coordination scheme. However, such limitations pro-
vides increased safety and a longer LESS lifetime. Moreover,
simulation results show that the number of allowed discharges
would highly affect the number of operated LESSs. In future
stusies, a trade-off between LESS lifetime and economic
benefits should be performed in a more quantitative form.
In this paper, we consider LESS connected to a distribution
substation. In a future study, the proposed model is developed
for a number of distribution substations connected to various
sustainable cities with different desired flexibilities of DR.
Also, in addition to LESS, the DRA may involve a wind farm.
The relevant techno-economic analysis can be made in future
research.
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