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Remaining Useful Life Prediction for a Multi-stack
Solid Oxide Fuel Cell System with

Degradation Interactions
Xiaojuan Wu, Liangfei Xu, Yang Huang, Danan Yang, Junhao Wang, Houjun Wang, and Xi Li

Abstract—Due to the constraints of manufacturing and ma-
terials, high-power plants cannot rely on only one solid oxide
fuel cell stack. A multi-stack system is a solution for a high-
power system, which consists of multiple fuel cell stacks. A short
lifetime is one of the main challenges for the fuel cell before large-
scale commercial applications, and prognostic is an important
method to improve the reliability of fuel cells. Different from the
traditional prognostic approaches applied to single-stack fuel cell
systems, the key problem in multi-stack prediction is how to solve
the correlation of multi-stack degradation, which can directly
affect the accuracy of prediction. In response to this difficulty,
a standard Brownian motion is added to the traditional Wiener
process to model the degradation of each stack, and then the
probability density function of the remaining useful life (RUL)
of each stack is calculated. Furthermore, a Copula function is
adopted to reflect the dependence between life distributions, so
as to obtain the remaining useful life for the whole multi-stack
system. The simulation results show that compared with the
traditional prediction model, the proposed approach has a higher
prediction accuracy for multi-stack fuel cell systems.

Index Terms—Degradation interaction, multi-stack, remaining
useful life (RUL), solid oxide fuel cell (SOFC).

I. INTRODUCTION

DUE to the scarcity of fossil fuel resources and environ-
mental concerns, new energy sources are being sought. A

Solid Oxide Fuel Cell (SOFC) is a high-temperature fuel cell
that operates between 500◦C and 1000◦C, which can directly
convert chemical energy into electrical energy. Because of its
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high temperature, the SOFC can use diversity of fuel sources,
such as biogas and ethanol [1].

In recent years, a large number of industrial applications
require high-power supply stacks, such as space exploration
vehicles, transportation industry, etc. [2]. Due to the con-
straints of manufacturing and materials, high-power plants
cannot rely on only one SOFC stack, but multi-stack SOFC
systems are needed to support a high-power output, in which
multiple single stack units are connected in series or parallel
architectures. The modular design of the multi-stack system
makes it easier to implement in practical applications.

In actual operations, the SOFC performance may inevitably
degrade [3]. Previous studies have mentioned that proper prog-
nostic methods can help reduce SOFC failures and downtime,
thereby extending their lifetime and reducing costs [4]. A
large number of prognostic methods have been developed
for SOFCs. Based on the principle of performance degrada-
tion mechanisms, several physical degradation models were
established to describe the SOFC degradation process [5],
[6]. The data-driven SOFC degradation model is primarily
divided as follows: 1) The SOFC system degradation process is
expressed in a certain functional form, and then the parameters
in the models are identified by techniques, such as the Kalman
filter [7]–[9]; 2) Using the semi-Markov model [10], [11],
neural network [12] and other artificial intelligence algorithms,
the time evolution law from historical data to future data
is mined based on the historically measured voltage data of
the stack, and then the future voltage of the target stack is
predicted.

Despite the great progress in prognostic strategies, the
current research is primarily designed for the single-stack
SOFC system, while is not suitable for the multi-stack system.
For the multi-stack system, there exists correlations among
the degradation of the stack. Neglecting the interdependency
between stack degradation will result in an inefficient pre-
diction [13]. Therefore, a prognostic approach is proposed to
calculate the multi-stack system’s RUL in this study.

II. METHODOLOGY

The proposed prognostic approach for the multi-stack SOFC
system is given in Fig. 1. Considering the correlation between
multiple stack degradation, a nonlinear Wiener process with a
standard Brownian motion is taken to describe the degradation

2096-0042 © 2021 CSEE
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Fig. 1. The proposed prognostics strategy for the multi-stack SOFC system.

of the multi-stack SOFC system. Then using the first hitting
time (FHT) theory, the probability density function (PDF) of
RUL for each stack is calculated. Finally, a Copula function
is used to analyze the correlation among RUL distributions,
and the PDF of RUL for the whole multi-stack SOFC system
is obtained.

A. A Multi-stack Degradation Model

The multi-stack SOFC system is composed of several
stacks, and these stacks work in the same environment, there-
fore the

degradation of these stacks will be affected by common fac-
tors. The Wiener process is one type of special Markov process
that conforms to normal random characteristics. Therefore, a
traditional Wiener model combined with a standard Brownian
motion is built to describe the multi-stack degradation process:

∆V (i)(t) = V (i)(0)− V (i)(t) = α(i)tb
(i)

+ β(i)B(t) (1)

where ∆V (i)(t) and V (i)(t) are the voltage degradation value
and real value of the ith stack at time t respectively. In this
study, the multi-stack SOFC system consists of two stacks,
i.ei = 1, 2. V (i)(0) is the initial value of V (i)(t). α(i) is
a random parameter, which follows a normal distribution.
α(i)tb

(i)

is the corresponding drift coefficient of ∆V (i)(t). b(i)

is a fixed parameter. β(i) is the diffusion coefficient of the ith
stack. B(t) is the standard Brownian motion.

In practical applications, the measurement voltage signals
often have certain errors due to measurement tools and envi-
ronmental influences. Therefore, the measured voltage of the
ith stack Y (i)(t), is written as follows:

Y (i)(t) = V (i)(0)−∆V (i)(t) + χ(i)(t) (2)

where χ(i)(t) is identically normal distributed with mean zero
and variance (ε(i))2.

To identify the hidden parameters, convert. (1-2) into the
following discrete time equations [14]:

∆V (i)(tk) =∆V (i)(tk−1) + α(i)(tk−1)(t
b(i)

k − tb
(i)

k−1)

+ β(i)(B(tk)−B(tk−1)) (3)

α(i)(tk) =α(i)(tk−1) + λ(i) (4)

Y (i)(tk) =V (i)(0)−∆V (i)(tk) + χ(i)(tk) (5)

where tk is the discrete time point, k = 1, 2, · · · ,K, K is
sampling points. λ(i) is an additive Gaussian process noise
of the random parameter α(i), λ(i) ∼ N(0, (σ(i))2). Using

the Expectation Maximization (EM) algorithm, the parameters
b(i), β(i), σ(i) and ε(i) are estimated, and their estimated values
are expressed as b̂(i), β̂(i), σ̂(i) and ε̂(i). Furthermore, based
on the Kalman filter, the degradation of voltage ∆V (i)(tk) and
the random parameter α(i)(tk) are updated, and the updated
values are expressed as ∆V̂ (i)(tk) and α̂(i)(tk).

B. Remaining Useful Life of Each Stack

If the voltage value exceeds a certain threshold, it is
considered that the single stack has failed. Therefore, at time
tk, the remaining useful life of the ith stack, L(i)

k , is defined
as follows:

RUL(i)
k : L

(i)
k ={l(i)k : V (i)(tk + l

(i)
k ) ≤ V

(i)
threshold

|V (i)(tk) > V
(i)

threshold, tk > 0} (6)

where V
(i)

threshold is the corresponding failure threshold.
Applying the FHT theory [15], the PDF of the remaining

useful life for the ith stack is given by:

f
(i)
RUL(l

(i)
k |Y (i)

1:k ) =

√√√√√ (C
(i)
k )−2

2π
∣∣∣k(i)α,k(B

(i)
k )2 + C

(i)
k

∣∣∣
·

(
w

(i)
k (β̂(i))2 −

w
(i)
k E

(i)
k k

(i)
α,kB

(i)
k + C

(i)
k E

(i)
k α̂(i)(tk)

C
(i)
k + k

(i)
α,k(B

(i)
k )2

)

· exp

−

(V (i)(0)− V
(i)

threshold −∆V̂ (i)(tk)−
((lk + tk)

b̂(i) − tb̂
(i)

k )α̂(i)(tk))
2

2(C
(i)
k + k

(i)
α,k(B

(i)
k )2)

 (7)

where

C
(i)
k = k

(i)
v,k − (k

(i)
c,k)

2(k
(i)
α,k)

−1 + (β̂(i))2l
(i)
k

B
(i)
k = (lk + tk)

b̂(i) − tb̂
(i)

k + k
(i)
c,k(k

(i)
α,k)

−1

w
(i)
k = V (i)(0)− V

(i)
threshold −∆V̂ (i)(tk)

+ k
(i)
c,kα̂

(i)(tk)(k
(i)
α,k)

−1

E
(i)
k = ((lk + tk)

b̂(i) − tb̂
(i)

k )(β̂(i))2 + k
(i)
c,k(β̂

(i))2(k
(i)
α,k)

−1

− b̂(i)(l
(i)
k (β̂(i))2 + k

(i)
v,k

− (k
(i)
c,k)

2k
(i)
α,k)(l

(i)
k + tk)

b̂(i)−1 (8)

where Y
(i)
1:k represents the data set of the output voltage mea-

surement values from t1 to tk. k(i)α,k and k
(i)
v,k are the variances

of the posterior distribution of α(i)(tk) and ∆V (i)(tk), k
(i)
c,k is

the covariance between α(i)(tk) and ∆V (i)(tk).
At time tk, the mean RUL for the ith stack, L̄(i)

k is defined
as follows [16]:

L̄
(i)
k =

∫ ∞

0

t · f (i)
RUL(t|Y

(i)
1:k )dt (9)

C. Remaining Useful Life of the Whole Multi-stack SOFC
System

The multi-stack SOFC system is assumed to be failed
as long as any stack degradation hits the failure threshold.
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Therefore, the RUL of the whole multi-stack is defined as
follows:

RULk : Lk = min{L(1)
k , L

(2)
k } (10)

where L
(i)
k is the RUL of the ith stack at time tk, and Lk is

the RUL of the two-stack system at time tk.
According to the Sklar theorem [17], any multivariate joint

distribution can be written by univariate marginal distribution
functions with a Copula function. Therefore, the cumulative
distribution function (CDF) for the whole multi-stack system’s
RUL is calculated as follows:

FRUL(lk|Y (1)
1:k , Y

(2)
1:k ) = P{min(L

(1)
k , L

(2)
k ) ≤ lk}

=
2∑

i=1

F
(i)
RUL(l

(i)
k |Y (i)

1:k )−

C(F
(1)
RUL(l

(1)
k |Y (1)

1:k ), F
(2)
RUL(l

(2)
k |Y (2)

1:k ); θ) (11)

where

F
(i)
RUL(l

(i)
k |Y (i)

1:k ) =

∫ l
(i)
k

0

f
(i)
RUL(s|Y

(i)
1:k )ds (12)

where C(·) is a Copula function, which describes the depen-
dence between the stack’s RUL [18]. F

(i)
RUL(l

(i)
k |Y (i)

1:k ) is the
CDF of RUL of the ith stack. θ is a correlation coefficient,
which is identified by using the maximum likelihood estima-
tion (MLE) method [19].

By taking the derivative of FRUL, the PDF of RUL of the
multi-stack SOFC system is deduced as follows:

fRUL(lk|Y (1)
1:k , Y

(2)
1:k ) = f

(1)
RUL(l

(1)
k |Y (1)

1:k ) + f
(2)
RUL(l

(2)
k |Y (2)

1:k )

− f union
RUL (lk|Y (1)

1:k , Y
(2)
1:k , θ) (13)

where

f union
RUL (lk|Y (1)

1:k , Y
(2)
1:k , θ) =

c(F
(1)
RUL(l

(1)
k |Y (1)

1:k ), F
(2)
RUL(l

(2)
k |Y (2)

1:k ); θ)
2∏

i=1

f
(i)
RUL(l

(i)
k |Y (i)

1:k )

(14)

where f union
RUL is the joint distribution function of the multi-stack

SOFC system. c(·) is the PDF of Copula function C(·).
The mean RUL of the multi-stack SOFC system is calcu-

lated as follows:

L̄k =

∫ ∞

0

t · fRUL(t|Y (1)
1:k , Y

(2)
1:k )dt (15)

III. RESULTS

In the following sub-section, a multi-stack SOFC model is
built to obtain the degradation data, and then the proposed
approach is employed to predict the RUL for the multi-stack
system.

A. Data Collection
The schematic diagram for the multi-stack SOFC system

designed in this study is given in Fig. 2. Each stack is
composed of a number of cells connected parallelly, and the
structure of each fuel cell is similar. The exhaust of the first
stack is sent directly to the second stack.

According to mechanical, chemical and electrochemical
principles, the stack and the other components models can
be established, which have been introduced in a previously
published literature [20]. Furthermore, the multi-stack SOFC
system model is built in the Matlab / Simulink environment,
which is shown in Fig. 3. The input variables are the inlet
fuel flowrate, the inlet air flowrate, load current, the inlet
fuel and air mole fractions. As the voltage can reflect the
performance changes inside the SOFC, the voltage is used
as the degradation indicator.

Here, using nickel coarsening and oxidation as an example,
the detailed degradation mechanism and the degradation model
can be found in Parhizkar [21]. The normal model in Fig. 3
is combined with the degradation model to form the multi-
stack degradation model. The current variation is shown in
Fig. 4(a), and the inlet fuel and air flowrates are 0.093 mol/s
and 0.56 mol/s, respectively. The inlet hydrogen and oxygen
mole fractions are 0.8 and 0.21, respectively. The inlet gas
temperature is 298 K, the operating time is 3000 h, and the
number of cells in both stacks is 23. The collected voltage
degradation data of the two stacks are shown in Fig. 4(b).

In order to test the proposed prognostics approach, three
test samples are collected with the current time as the 1600th
hour, the 1900th hour and the 2200th hour respectively. In
the following sub-section, the proposed algorithm and the
traditional prognostic method which ignores the correlation of
multi-stack degradations are employed to execute prognostics
for the multi-stack SOFC system.
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Fig. 2. Structure diagram of a multi-stack SOFC system.
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B. RUL Distribution of Each Stack

After collecting the voltage data, the proposed prognostic
method presented in Section II is employed, and the prognostic
flowchart is given in Fig. 5. The degradation parameters are
estimated jointly using the EM, and the estimated results are
given in Fig. 6(a) and (b). Furthermore, using the Kalman
filter method, the voltage degradation trajectory is updated
and plotted in Fig. 6(c) and (d). The real voltage degradation
trajectory is described by the black lines in Fig. 6, which is
the same with Fig. 4. For clarity, the relative error (RE) of the
estimated voltage is calculated, which is given as follows:

RE =
abs

(
V (i)(tk)− V̂ (i)(tk)

)
V (i)(tk)

(16)

Using the nonlinear model, the maximum REs of the
estimated voltage are only 4.06% and 1.17% for the two
stacks, respectively, which means that the nonlinear multi-
degradation model with the standard Brownian motion can
effectively describe the voltage degradation for the two stacks.

In this paper, it is defined that the stack fails when the
voltage declines by 20%. Therefore, from Fig. 4, the voltage
thresholds for the two stacks are 0.5145 V and 0.5021 V at
2392 hours and 2500 hours, respectively. When the current
time is set as 1600 hours, 1900 hours and 2200 hours,
respectively, the real failure time is 792 hours, 492 hours and
192 hours for the first stack, while it is 900, 600 and 300 hours
for the second stack, which are plotted by the red dots in Fig. 7.

Based on (7), the probability density functions of the
remaining useful life for each stack are calculated, which are
plotted by the blue lines in Fig. 7. Furthermore, the mean
RULs for the two stacks are calculated using (9), which are
plotted by the blue Asterisks in Fig. 7. For the three test
samples, the estimated mean RULs for the first stack are
887 hours, 481 hours and 187 hours, respectively, and the
estimated RULs for the second stack are 996 hours, 622 hours
and 291 hours, respectively. The related errors of the remaining
useful life estimation are given in Table I. For the first stack,
the RE of the estimated remaining useful life does not exceed
11.99%, while the RE of the second stack’s RUL does not
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Dependence analysis using Copula theory
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where,

Fig. 5. Prognostics flowchart of the multi-stack SOFC system.
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Fig. 6. The predicted voltage degradation paths for two stacks.

exceed 10.67%.
From Fig. 7, at each monitoring moment, the actual remain-

ing life falls within the range of the remaining life probability
density curve, and the actual remaining life is located near the
remaining life corresponding to the mean value of the PDF.
Moreover, with the accumulation of the voltage performance
degradation data, the PDF of RUL becomes more and more

sharper, indicating that the model parameters are becoming
more and more accurate, and the uncertainty of the remaining
life prediction continues to decrease.

C. RUL Distribution of the Whole Multi-stack SOFC System

If the voltage of any stack reaches the threshold, it causes
the failure of the whole multi-stack system. Therefore, for the
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TABLE I
RUL PREDICTION ERRORS FOR THE TWO STACKS

Operating time RUL’s RE of stack 1 RUL’s RE of stack 2
1600 h 11.99% 10.67%
1900 h 2.24% 3.67%
2200 h 2.60% 3.00%
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Fig. 8. PDFs of the RUL for the multi-stack SOFC system.

three test samples, the real failure time for the multi-stack is
792 hours, 492 hours and 192 hours, respectively, which are
plotted by the red circles in Fig. 8.

Assuming that stack 1 and stack 2 are independent with
each other, the CDF of the multi-stack SOFC system’s RUL
in (11) is transformed into (17):

FRUL(lk|Y (1)
1:k , Y

(2)
1:k )

= P{min(L
(1)
k , L

(2)
k ) ≤ lk}

= 1− P{L(1)
k > lk} · P{L(2)

k > lk}
= 1− (1− F (1)(l

(1)
k |Y (1)

1:k )) · (1− F (2)(l
(2)
k |Y (2)

1:k ))

=
2∑

i=1

F (i)(l
(i)
k |Y (i)

1:k )− F (1)(l
(1)
k |Y (1)

1:k ) · F
(2)(l

(2)
k |Y (2)

1:k )

(17)

By taking the derivative of FRUL, the PDF of RUL for the
multi-stack SOFC system without dependence is calculated as
follows:

fRUL(lk|Y (1)
1:k , Y

(2)
1:k ) = f

(1)
RUL(l

(1)
k |Y (1)

1:k )(1− F (2)(l
(2)
k |Y (2)

1:k ))

+f
(2)
RUL(l

(2)
k |Y (2)

1:k )(1− F (1)(l
(1)
k |Y (1)

1:k ))
(18)

For the three test samples, using (18), the PDFs of RUL
for the multi-stack system are plotted by the red lines in
Fig. 8, while using (13), the PDFs of the RUL are marked
with blue lines. Using the independent model, the mean RULs
of the whole multi-stack SOFC system are calculated, which
are plotted by the red triangles. For the three test samples,
the mean RULs are 853 hours, 512 hours and 199 hours,
respectively. Using the dependent model, the mean RULs of
the whole multi-stack SOFC system are given by the blue
asterisks. For the three test samples, the mean RULs are
729 hours, 409 hours and 181 hours, respectively. Table II
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TABLE II
COMPARISON RESULTS OF RUL PREDICTION FOR THE MULTI-STACK

SOFC SYSTEM

Operating time RUL’s RE with
the dependent model

RUL’s RE with
the independent model

1600 h 7.70% 7.95%
1900 h 4.07% 16.87%
2200 h 3.65% 5.73%

shows that the relative errors of RUL predictions for the multi-
stack SOFC system. The relative error with the dependent
model is smaller than that with the independent one, which
means that the independent model ignores the correlation and
underestimates the reliability for the multi-stack SOFC system.

IV. CONCLUSION

With the current material and manufacturing limitations,
high-power plants cannot rely on only one SOFC stack. The
multi-stack SOFC system is a solution for the high-power
system. To improve the reliability of the multi-stack SOFC
system, a novel prognostic method has been developed to
predict the RULs for the multi-stack SOFC system. The main
conclusions are summarized as follows:

To solve the correlations between stack degradation, the
nonlinear multi-stack degradation model with the standard
Brownian motion has been formulated to describe the voltage
degradation for the two stacks, and then the RUL of each
stack can be derived. The results show that online prediction
for the remaining life of each stack has been perfectly realized.
Furthermore, the RUL of the whole multi-stack SOFC system
has been calculated. The maximum relative error of RUL
prediction for the whole multi-stack SOFC system is 7.7%,
which demonstrates that the proposed algorithm can perform
effectively for the multi-stack prediction. In the comparative
study, the simulation results indicate that the independent
model underestimates the reliability of the multi-stack SOFC
system, and the proposed prognostic method which considers
the correlations among stack degradation can achieve better
prognostic results.

The proposed prognostic strategy can help to test the fuel
cell performance before its mass implementation in industrial
applications and arrange the appropriate health management
actions to improve the safety and reliability of the multi-stack
system.
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