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Abstract—Substantial usage of electronic-based renewable en-
ergy resources has completely changed the dynamic behaviours
and response time of power networks, which are now funda-
mentally different from traditional power networks dominated
by Synchronous Generators (SGs). This paper evaluates the
dynamic response of small-scale Photovoltaic (PV) inverters,
which dominate the distribution networks and influence the
dynamics of the entire power grid. Recently, some critical events
which occurred in Australia have shown that the dynamic re-
sponses of small-scale inverters do not always follow the inverter
standards. Subsequently, these uncertainties make PV inverters’
response unpredictable and have the potential to threaten the
security of power networks. The detailed investigation of the
dynamic response characteristics of small-scale PV inverters
to grid disturbances is lacking in the current literature. This
paper presents new findings from experimental testing under
extensive network disturbance scenarios. Furthermore, a data-
driven method is proposed to accurately describe the dynamics of
solar PV subjected to various frequency disturbances. The results
provide beneficial insight to the network operators in predicting
power system response to extreme disturbances and avoiding
potential grid instability issues, which will assist in achieving
100% penetration of power electronics-based renewable energy
resources in the future.

Index Terms—Deep learning, distribution networks, dynamic
response, distributed PV, load modelling, PV inverter.

I. INTRODUCTION

OVER the last decade, the increase of electronic-based
devices (e.g., wind and solar PV) has significantly

changed the dynamic responses of traditional power systems
dominated by SGs [1], [2]. Such a transition to a more power-
electronized network has raised a concern to achieve safe
operations of the system, including unanticipated cascading
failures, low system inertia and unexpected need for real
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power reserves [3]. For example, right before the 2016 South
Australia (SA) Blackout, PV and wind provided half of the
total power generation of SA, while conventional SGs only
accounted for 17.6% while other sources were provided by
interconnections. The SA blackout occurred under the exact
conditions of high renewable penetration with low inertia,
which has brought new risks to grid control. To better man-
age the high renewable energy penetrated power grid, the
key issue is to understand the dynamic response behaviors
of the electronic-based devices. In particular, the dynamic
response of PV inverters under frequency events has the most
interest due to the reported catastrophic electricity outages
as mentioned in the following section. Therefore, this paper
will focus on realizing the dynamic frequency response of
PV inverters and extracting associated characteristics through
extensive laboratory experiments.

A. Solar PV Integration Background of Australia

Over the last ten years, Australia has witnessed an unprece-
dented increase in PV installation from about 163 MW in
January 2010 to around 23.5 GW by September 2021 [4].
There are over 2.96 million PV installations in Australia
and over 2 million residential PV installations expected until
September 2021. As shown in Fig. 1, the total capacity of
the residential solar PV is playing a dominant role in each
state. Therefore, research about the dynamic response of small-
scale inverters is crucial for the secure operations of the whole
Australian power grid. However, given the large volume of
small-scale PV inverters in the solar market, there is a lack of
understanding of the dynamic behaviors of these PV inverters
responding to the network frequency disturbances [5].

B. Australian Power Grid Events Relevant to Distributed
Solar PV

Some recent events which occurred in Australia have shown
that small-scale inverters do not always follow the Australian
inverter standard AS 4777, which makes their dynamic be-
haviors difficult to predict. For example, during the 2018
Queensland and South Australia separation event (QLD-SA
separation), an unexpected 450 MW reduction was observed
in the distributed PV power generation [6]. Another recorded
event shows that a 150 MW generation trip from a rooftop
PV generation occurred in the 2017 Torrens Island Switchyard
Fault [7]. The following analysis of the QLD-SA separation
event provides more details of the unexpected response behav-
iors of distributed solar PV systems.

2096-0042 © 2021 CSEE
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Fig. 1. Installed PV generation capacity of each state in Australia [4].

The Australian Energy Market Operator (AEMO) has re-
ported that the QLD-SA separation incident [6] happened
on August 25, 2018, where QLD was islanded and SA was
separated from the National Energy Market (NEM). Such a
separation further introduced 997.3 MW under-frequency load
shedding of New South Wales (NSW), Victoria (VIC), and
Tasmania (TAS). The recorded frequency response of each
state is shown in Fig. 2.
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Fig. 2. Dynamic frequency response during the QLD-SA separation [6].

During this incident, there was a significant solar power
generation drop induced by distributed PVs in QLD, SA,
VIC and NSW. The reason for such tripping is still un-
clear and AEMO suspected that there was a high possibility
that the response of distributed PV inverters to frequency
events may not be compliant with the relevant Australian
standard. Specifically, the PV systems installed before Oct
2015 should follow the AS4777.3-2005 (old standard) [8],
and the PV systems commissioned after Oct 2016 should
follow the AS/NZS 4777.2-2015 (new standard) [9], while
the PV systems installed in between can choose either one.
The frequency requirement in both standards is shown in
Fig. 3. The PV inverters following the old standard should not
disconnect under frequency disturbances between 45 Hz and
55 Hz. For the PV inverters following the new standard, they
should not disconnect or change power output under frequency
disturbances between 49.75 Hz and 50.25 Hz. For disturbances
from 50.25 Hz to 52 Hz, the PV power output should be
linearly reduced to provide necessary frequency support to the
network.

However, further investigations from AEMO (shown in
Table I) revealed that not all the PV inverters complied with
these two standards during the QLD-SA Separation [6]. Taking
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Fig. 3. Response of PV inverters to frequency variations required by (a) AS
4777.3-2005 (old standard) and (b) AS/NZS 4777.2-2015 (new standard).

TABLE I
DISTRIBUTED PV INVERTER RESPONSE TO FREQUENCY CHANGE [6]

Compliance of
PV systems

Region Percentage of the PV inverter response to
the frequency change

AS
4777.3-2005

QLD ∼15% of the PV inverters’ frequency
response does not follow the standard and
should not be disconnected

SA ∼13% of the PV inverters’ frequency
response does not follow the standard and
should not be disconnected

AS/NZS
4777.2-2015

QLD At least 15% of inverters did not exhibit
the over-frequency reduction

SA At least 30% of inverters did not exhibit
the over-frequency response

VIC ∼8% of the PV inverters’ frequency
response does not follow the standard and
should not be disconnected

NSW ACT ∼10% of the PV inverters’ frequency
response does not follow the standard and
should not be disconnected

the PV inverters of QLD as an example, 15% of the PV
inverters regulated by the old standard should have remained
connected. What was even more unexpected is that at least
15% of the PV inverters following the new standard did not
exhibit the required frequency response. These unexpected
behaviors of PV inverters have significantly influenced the
system frequency dynamics and they may further lead to
grid instability issues (e.g., cascading frequency drop) when
substantial PV inverters are disconnected.

The distributed PV inverter response in this event is a typical
example of worldwide high solar PV integrated networks. The
unpredictable solar PV system connections and the unknown
solar PV inverter responses make the power reserve estimation
more difficult and the dynamics of the whole power grid be-
come invisible under disturbances. Therefore, power networks
are becoming more vulnerable to disturbances, which may
cause more unacceptable and widespread impacts.

C. Research Gaps and Contributions

The largely unknown behaviors of PV inverters have raised
an urgent need for the accurate estimation of the dynamic
response of distributed PV inverters. The existing distributed
generator model [10] used by power industries is a piece-wise
linear function of bus voltage and the frequency impact is not
considered in this model. This model is over-simplified and
no longer suitable to represent the actual dynamics of the PV
inverter. Therefore, the network operators have the desire to
understand the dynamic response behaviors of the small-scale
inverters and develop new models of the dynamic behavior of
electronic-based load.
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1) Dynamic frequency response behavior testing of distributed
PV inverters

The existing experimental testing of PV inverter dynamic
response is primarily focusing on the utility-scale PV invert-
ers [11], [12]. The dynamic response of small-scale PVs (e.g.,
5 kW) integrated at the rooftop is often overlooked as these
PV systems are often thought to be too small to impact the
bulk power grid compared with the large-scale PV systems.
This assumption is true for a single PV inverter. However,
the combined impact of all the small-scale PV systems will
become significant to the entire power system. The active
power responses of residential PV inverters are usually tested
by the manufacturers through a series of step disturbances of
bus voltage and frequency. But the step disturbances cannot
fully reflect the network disturbances. For example, the QLD-
SA separation event also evidenced that not all the inverters
were compliant with the inverter standard. Moreover, the
frequency support provided by the small-scale PV inverters has
been neglected as most testings focus on the voltage sags and
swells [13], [14]. In addition, the unknown response behaviors
of small-scale inverters also create significant challenges to the
feeder-level load modeling since the PV inverters are complex
power electronic-based devices and their detailed model in-
formation is not publicly available due to the confidentiality
of commercial Intellectual Property (IP) of PV manufacturers.
Therefore, this paper focuses on the testing of the frequency
response characteristics of residential PV inverters from two
manufacturers who hold the dominant share in the Australian
solar market.

2) Bottom-up estimation of individual small-scale PV dynamic
response behaviors

Transmission-level and distribution feeder-level response
estimation of aggregated PV systems have been investigated in
numerous literature [15]–[17]. Most of the current residential
load dynamic response estimation focuses on characterizing
the total power consumption profiles of residential load and
PVs under steady-state conditions [18], [19]. It is lacking
the estimation of the dynamic response behaviors of indi-
vidual residential PV inverters subjected to different network
disturbances. However, the feeder-level PV inverter dynamic
response estimation can be inaccurate if it is unaware of the
individual dynamic response behaviors of the PV inverters.
Therefore, this paper conducts the bottom-up modeling of the
dynamic response from different individual PV inverters based
on the extracted dynamic response characteristics through
experiments.

The dynamic response estimation methods can be divided
into two categories: component-based [21], [22] and data-
driven approaches [24]–[26]. The component-based approach
requires prior knowledge of the physical characteristics and
mathematical relationships that describe the functionality of
the PV inverters. For instance, the distributed PV system
model (PVD1) [23] developed by the WECC working group
includes detailed mathematical inner control loops of PV
inverters. The PVD1 model can represent the voltage and
frequency response of PV inverters with reasonable accuracy
if the parameters can be appropriately identified. However, this

model is very difficult to be implemented to estimate the actual
PV inverter response. On the one hand, it is very hard to deter-
mine the proper model parameters of PVD1 due to too many
control logics and parameters in this model [13], [28]. On the
other hand, the lack of details and the emerged new technolo-
gies of PV inverters can further hinder the component-based
approaches. With data acquisition technology development,
data-driven approaches become popular. Since the PV inverter
dynamic response refers to the mathematical relationship rep-
resentation of the inputs (network frequency and voltage) and
outputs (active power and reactive power) of the PV system,
the equivalent response of PV inverters can be simplified
with the input-output relationships. Based on the response
of PV systems to disturbances (e.g., voltage disturbances
and frequency disturbances), the PV dynamic model can
be formed with voltage/frequency-dependent and independent
components. For example, the US Electric Power Research
Institute (EPRI) developed the EPRI LOADSYN model [29]
and this mathematical model with physical meaning has been
widely used for estimating the dynamic behaviors of both
individual load (a specific device) and aggregated load (whole
feeder), which combines ZIP, exponential, and frequency-
dependent models. However, the responses of inverters may
not be able to be modeled by equations with physical meanings
due to the complexity of electronic components. Artificial
intelligent technologies are often utilized to model complex
response behaviors by mapping the input data set to the output
dataset through the training and testing process [30], [31]. The
advantage of this type of data-driven approach is that there
is no need for prior knowledge of the inner control loops of
inverters and it can be adapted to different operating conditions
with online model updating. In this paper, the data-driven
approach is used to estimate the dynamic response behaviors
of individual small-scale PV inverters.

This paper intends to extract the dynamic frequency re-
sponse characteristics of different residential inverters and
build models to estimate their dynamic responses. The main
contributions of this paper are:

• An innovative controllable hardware testbed is established
based on the Real-time Digital Simulator (RTDS) for the
small-scale solar PV inverter testing.

• New frequency response characteristics are revealed and
extracted from different inverters through extensive lab-
oratory experiments.

• A data-driven frequency response estimation approach
is proposed to estimate the active power output of PV
inverters under various frequency disturbances. The effec-
tiveness of the proposed approach has been demonstrated
through a comparative study with the existing approach.

The experimental results and the proposed approach have
the potential to assist the network operators in determining the
root causes of unexpected PV inverter responses to network
events. Moreover, the extracted behaviors and the developed
inverter frequency response estimation approach can benefit
the top-down estimation of dynamic response from the aggre-
gated PV systems at both the feeder level and transmission
level.
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II. DYNAMIC CHARACTERISTICS EXTRACTION FROM
FREQUENCY RESPONSE

A. Established Testbed

An experimental testbed is built to test the dynamic response
of PV inverters as illustrated in Fig. 4. The reporting rate of
RTDS is within the range of 5–10 µs, which is high enough to
capture the dynamics during the imposed disturbances. First, a
wide range of frequency events are simulated in RTDS. Then
the simulated events are transferred through an analog output
card (GTAO) with small magnitude to power amplifiers, by
which the signals are boosted from 2.3 V to 230 V to form a
controllable grid. In this way, the original frequency signals are
able to replicate the events that occurred in a real-life network.
After the amplified events are applied to the PV inverters,
the corresponding responses are measured and sent back to
RTDS through an analog input card (GTAI). All measured
signals are automatically synchronized within RTDS. At the
same time, the power, frequency and voltage are recorded by
a Phasor Measurement Unit (PMU) with a sampling rate of
100 Hz. Overall, the experimental setup in Fig. 4 can provide a
controllable, complete and repeatable platform for testing the
dynamic responses of various small-scale PV inverters under
different frequency events.

RTDS

GTAO
V

VT

V,I

PV Emulator

CT

PMU

V I

Amplifier Resistive Load

Form a virtual
controllable
power grid

Inverters

GTAI

Fig. 4. Developed inverter testing platform.

B. Experiment Scenarios

In order to show the major dynamic responses of small-scale
PV inverters, four widely used PV inverters manufactured by
the two most popular manufacturers (denoted as Inv-A and
Inv-B in Table II) in the Australian solar market are selected.
Two inverters complying with AS4777.3-2005 (old standard)
and AS/NZS 4777.2-2015 (new standard) (denoted as new
and old in the bracket in Table II) are selected from each
manufacturer. This will help to achieve a direct comparison of
the dynamic response of each type of PV inverter. The detailed
testing scenarios for each inverter are shown in Table II. A

TABLE II
EXPERIMENT SCENARIOS FOR INVERTERS

Cases Frequency disturbance Inverters

Under
frequency

events
(25 cases)

50Hz
49.6Hz

Nadir

drop 
time recovery 

time

Inv-A (old), Inv-A(new),
Inv-B (old), Inv-B (new):

Single-phase Voltage:
230 V Power: 5 kW

total of 25 under-frequency disturbances are generated when
the frequency nadir changes from 47 Hz to 49.4 Hz with a step
of 0.1 Hz. The schematic shape of the frequency disturbance
curves is shown in Table II. It should be noted that the
over-frequency scenarios are not considered since the over-
frequency events are relatively easier to manage as excessive
power can be cut to maintain the grid frequency.

C. Dynamic Response Characteristics During Disturbances

The summary of the dynamic responses of each inverter
after 25 frequency disturbances are presented in Table III. It
can be found that only Inv-A(old) and Inv-B (new) can suc-
cessfully ride through the frequency disturbances as required
by the standard. Inv-A(old) can ride through the frequency
events when the frequency nadir is higher than 47.4 Hz. But
the Inv-B (old) is very sensitive to the frequency variations as
it finally returns to its normal state after several temporary
disconnections. The typical frequency response details of
each inverter corresponding to three frequency disturbance
scenarios (47.2 Hz, 48.5 Hz, and 48.9 Hz) are shown in Fig. 5.

TABLE III
EXPERIMENT RESULTS

Inverters Inverter responses under frequency events

Inv-A(old)
• No disconnection in 25 cases (47 Hz ≤ fnadir ≤

49.4 Hz)
• Provide frequency support

Inv-A(new) • Disconnected when fnadir ≤ 47.4 Hz
• Provide frequency support

Inv-B(old)
• Disconnected when fnadir ≤ 47.2 Hz
• Reboot when 47.3 Hz ≤ f ≤ 48.5 Hz
• No frequency support

Inv-B(new)
• No disconnection in 25 cases (47 Hz ≤ fnadir ≤

49.4 Hz)
• No frequency support

As shown in Fig. 5(b), the Inv-A (new) and Inv-B (old)
are disconnected before the frequency dropped to the lowest
connection frequency 47 Hz. Inv-A (old) and Inv-B (new) to
maintain the connection during the frequency event but they
have different response behaviors. The power output of the
Inv-A (old) will increase and decrease with frequency drop
and recovery, respectively. In comparison, the power output
of the Inv-B (new) is almost constant with very slight power
variations.

From Fig. 5(c) it is clear that all the inverters can suc-
cessfully ride through the frequency disturbances except Inv-
B (old). The Inv-B (old) disconnects twice from the grid
and reboots the connection within one second. In terms of
Fig. 5(d), all the inverters are keeping the connection with
the power grid during the under-frequency events but have
different dynamic response behaviors. The power output of
the Inv-B (new) is close to constant. By contrast, the dynamic
response of Inv-A (old) and Inv-A (new) can support the
network frequency with power increases during the under-
frequency event while the Inv-B (old) will aggravate the
under-frequency problems with power decreasing under the
frequency drop events.

In summary, Inv-A (old) can provide frequency support dur-
ing under-frequency events while Inv-B (old) is very sensitive
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Fig. 5. PV inverter dynamic responses under different frequency events.

to frequency variations and against frequency recovery. Inv-A
(new) also can provide frequency support when the frequency
nadir is above 47.4 Hz. Inv-B (new) is compliant with the
new Standard during under-frequency events. In addition, Inv-
A (new) and Inv-B (old) can be disconnected from the grid
before the frequency drops to the lowest connection frequency
of 47 Hz.

D. Inverter Response Characteristics

In order to explore the frequency response features of
different inverters, the characteristics of PV power output
changes of Inv-A and Inv-B are extracted as shown in Fig. 6
and Fig. 7, respectively. The different colors of curves in
these two figures represent different power output under 25
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Fig. 6. Characteristics of frequency variations and the active power of Inv-A.
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Fig. 7. Characteristics of frequency variations and the active power of Inv-B.

disturbance scenarios. For Inv-A, the power output shows a
high dependency on the frequency. It increases when the fre-
quency drops. In other words, the inverters from manufacture
A have frequency support during the frequency disturbances.
However, the variation trends of the power output from Inv-A
(old) and Inv-A (new) are different. An approximately linear
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relationship is presented between the power output of Inv-A
(old) and the network frequency while for Inv-A (new), such
a relationship is more complex.

Figure 7 shows the power output of Inv-B during different
frequency disturbances. Significant differences are observed
from the measured frequency response of two types of invert-
ers. Compared with Inv-B (old), the power output of Inv-B
(new) has a minimal change which demonstrates that Inv-B
(new) is less dependent on the frequency. For Inv-B (old),
there is no clear pattern between the frequency variations and
the active power output. Moreover, Inv-B (old) can be either
disconnected or connected to the power network with the
same frequency. Therefore, it is difficult to model the dynamic
frequency response of Inv-B (old) through the simplified
WECC DG models [10] and the EPRI LOADSYN.

The previous analysis demonstrates that each type of invert-
ers has a unique dynamic response to frequency disturbances
and it is hard to utilize a universal model with a physical
meaning to fully describe the dynamic responses of different
types of inverters. Therefore, a machine learning-based model
is proposed in Section IV to provide a reasonable estimation
of the active power change of the inverter when it is subjected
to different frequency disturbances.

III. DATA-DRIVEN DYNAMIC FREQUENCY RESPONSE
ESTIMATION

A. Framework of Data-driven Frequency Response Estimation

The proposed data-driven response estimation framework
is shown in Fig. 8, which primarily contains four steps: (1)
collect the training and testing input data for feature extraction;
(2) extract features for training and testing; (3) train the Mul-
tivariate Random Forest Regression (MRFR) algorithm [32]
to build a mathematical model, which is representative of the
extracted signatures and active power change; (4) implement
the obtained MRFR model to estimate the active power change
of the inverter by using the frequency measurements of the
new disturbances. The output of the estimation is the active
power of the PV inverters. It should be noted that some

other machine learning algorithms can be used for frequency
response estimation. However, MRFR is selected in this paper
for good reasons. For example, it is easily implemented since it
has fewer parameters that need to be tuned during the training
process. In addition, it has high robustness to the input features
which has the potential to avoid the over-fitting problem.

B. Feature Extraction for Frequency Response Estimation

The frequency response of PV inverters is primarily de-
termined by the control strategies and associated parameters
which are designed by the manufacturer. However, such de-
tailed information is always inaccessible which cannot be
used as the input features for frequency response estimation.
Therefore, this paper uses two types of measurements, i.e.,
frequency data and active power of the inverter before the
disturbance to extract the informative features for frequency
response estimation.
1) Feature extraction from frequency measurement

To estimate the active power change of the inverter, data
pre-processing, including data continuity check, outlier detec-
tion, and deletion, are performed on the original time series
frequency data measured during the disturbance. Then the
measured frequency data at each time instance during the
disturbance as well as the Rate of Change of Frequency
(ROCOF) in (1) are used as the informative signatures for
active power change estimation.

ROCOF(ti) =
df

dt
=

f(ti+1)− f(ti)

ti+1 − ti
(1)

where f(ti) denotes frequency at i-th time instance ti.
2) Feature extraction from the active power measurement

Besides frequency data, the steady-state active power of the
inverter is also measured and it is used as input features for
MRFR to estimate the subsequent active power change.

As can be seen from Fig. 9, the active power change
of the inverter can be divided into two stages, i.e., Stage
1-response during frequency disturbance and Stage 2-post-
disturbance response. The first stage of the active power
change is dependent on the imposed frequency disturbance

Input for training:

Frequency and active power

dataset from the experiment

Input for testing:

Frequency dataset from the

experiment

§ ROCOF

§ Instant frequency during disturbance

§ Active power before the disturbance

MRFR algorithm Frequency response estimation

Output of the training:

Estimation model

§ ROCOF

§ Instant frequency during disturbance

§ Elapsed time after the disturbance

Output of the testing:

Active power of the PV inverter

(1) Data Collection

(2) Feature Extraction

(3) Model training (4) Estimation test

Fig. 8. Framework of the proposed data-driven frequency response estimation.
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while the second stage of the active power change is primarily
determined by the internal control strategy of the inverter
since the imposed frequency is kept constant during this stage.
Therefore, these two stages of the active power change are
modeled sequentially using two MRFR models (i.e., MRFR1
and MRFR2). The major difference in estimating the response
during frequency disturbance and post-disturbance lies in the
input features of the MRFR which are shown in Table IV.
The response during the disturbance primarily relies on the
measured frequency while the post-disturbance response is
primarily dependent on estimated active power at the end of
Stage 1 and the elapsed time after the disturbance.

TABLE IV
FEATURE DECOMPOSITION OF RESPONSE ESTIMATION

Response during disturbance
(modelled by MRFR1)

Post-disturbance response
(modelled by MRFR2)

Frequency measurement f(ti) at
each time instance ti during the
disturbance

Active power P (t1) measured at
the steady-state t1

ROCOF(ti) calculated at each
time instance ti during the
disturbance

Active power P ′(tn) estimated by
MRFR1 at the end of Stage 1 tn

Active power P (t1) measured at
steady-state t1

Elapsed time after the disturbance
ti − tn, (n < i ≤ m)

For each frequency disturbance, a 10-second dynamic re-
sponse (1,000 samples) of the inverter with a sampling period
of 10 ms is collected. The collected frequency response is then
formulated into two feature matrices for estimating the two
parts (i.e., during disturbance and post-disturbance) of active
power change as (2) and (3).

I1 =


f(t1) ROCOF(t1) P (t1)
f(t2) ROCOF(t2) P (t1)

...
...

...
f(tn) ROCOF(tn) P (t1)

 , U1 =


P (t1)
P (t2)

...
P (tn)

 (2)

I2 =


P (t1) P ′(tn) tn+1 − tn
P (t1) P ′(tn) tn+2 − tn

...
...

...
P (t1) P ′(tn) tm − tn

 , U2 =


P (tn+1)
P (tn+2)

...
P (tm)

 (3)

where I1 and I2 denote the feature matrices of active power
change during and after the frequency disturbance, U1 and
U2 are the corresponding estimation target, tn is the last time
instance of the response during the disturbance, tm = 10 s
is the total time of each collected response, P and P ′ are
measured and estimated active power.

C. Multivariate Random Forest Regression

The feature matrix extracted from frequency responses
under multiple disturbances is collected to establish a data pool
for training the MRFR so that the algorithm can establish a
mathematical relationship between the extracted features and
the estimation target. As shown in Fig. 10, for MRFR, it first
uses bootstrap to select S samples in the training data pool.
Then, a subset of the features (i.e., D-dimension) of each
selected sample is picked up. Afterwards, the parent node of a
decision tree ∅ is divided into two children nodes based on the
impurity function of the subset features [32]. Each terminal
node of the decision tree went through the same process
until the minimum node size reaches the predefined value.
The well-trained decision tree is further utilized to provide
an estimation of the frequency response by using the feature
matrix of frequency response under the new disturbance. The
above procedure is iterated for k times and the estimation
results during each iteration are averaged out to provide the
final frequency response estimation of the new disturbance.

Tree-Φ1 Tree-Φ2 Tree-Φk

Estimation 1 Estimation 2 Estimation k

P'1

P'2

P'k

Final estimation

D-dimension random
feature selection

D-dimension random
feature selection

Terminal node (parent)

Terminal node (children)

Feature matrix

I=[f,ROCOF,P]n×3

P' = Average (P'1,P'2, ,P'k)

Fig. 10. Schematic diagram of frequency response estimation using MRFR.

IV. CASE STUDY AND METHODOLOGY VERIFICATION

A. Testing Setup and Evaluation Metrics

The proposed data-driven dynamic frequency response esti-
mation framework is implemented to estimate the active power
change of four types of inverters with each being subjected to
25 frequency disturbances. It primarily contains three steps:
(1) Informative features relevant to PV inverter’s frequency
response are extracted from the frequency data and active
power measurements in the training dataset; (2) The extracted
features are used to train the MRFR to model the potential
relationship between the extracted features and the active
power of PV inverters; (3) The above trained MRFR model
is further implemented to estimate the active power of PV
inverters by using the features extracted from the frequency
data and active power measurements in the testing dataset.
For each type of inverter, active power change under one
frequency disturbance is selected as the estimation target while
the active power during the rest of the disturbances is used
for training the MRFR. During the training process, multifold
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cross-validation is performed to determine the optimal values
of the parameters of the MRFR, including the total tree number
of the forest (i.e., 500), minimal leaves of each regression tree
(i.e., 50) and number of features that are randomly selected by
each tree (i.e., 3). Some software routines in [32] are tailored
for the algorithmic implementation in this study. Coefficient
of determination (R2) between the measured and estimated
active power change is selected as a performance evaluation
metric, which is shown in (4). The normal range of R2 is
between [0, 1] where R2 = 1 means the estimation model has
full capability to describe the active power change.

R2 = 1−
∑N

i=1 (P
′
i − Pi)

2∑N
i=1(Pi − P )2

(4)

where N denotes the sample size of the measured active power
change for each frequency disturbance, P ′

i and Pi denote the
i-th sample of the estimated and measured active power, P
denotes the mean value of the measured active power.

All experiments are performed using a general desktop with
an Intel Core i7-10700 CPU and 32 GB RAM. For each
type of PV inverter, it takes about 10 seconds for the MRFR
training. After training, the active power of the PV inverter at a
single time instance can be estimated using the trained model
within 5 ms. Given the reporting rate of the PMU used in
the experiment is 10 ms per sample, the proposed method can
provide online frequency response estimations of PV inverters
using high reporting rate PMU measurements.

B. Estimation Results Analysis

Based on the frequency response behaviors extracted in
Section II-D, some inverters have frequency-dependency char-
acteristics and some inverters have constant power during
frequency disturbances. To demonstrate the superiority of
the proposed method, the EPRI LOADSYN model [29] was
selected in the comparative study due to its wide usage for
estimating the dynamic behaviors of both individual load and
aggregated load. The EPRI LOADSYN model combines ZIP,
exponential, and frequency-dependent models as shown in
(5). It should be noted that the output voltage of the power
amplifiers is kept as a constant at 1pu during the frequency
disturbance. Therefore, the active power of the EPRI model is
primarily dominated by the frequency-dependent component.

P =

P0

[
Pa

(
V

V0

)Kv1
(
1 +Kf · f − f0

f0

)
+ (1− Pa)

(
V

V0

)Kv2
]

(5)

where P0 is the active power of the inverter at the rated
voltage V0 and nominal frequency f0, Pa is the fraction of
the active power which is dependent on the frequency, Kf is
the sensitivity coefficient of active power, Kv1 and Kv2 are
voltage exponents for frequency-dependent and independent
active power. The values of parameters Pa, Kf , Kv1 and
Kv2 are determined through the least square method for each
frequency disturbance.

The frequency response estimation results of four inverters
under disturbances with the nadirs of 48 Hz and 48.5 Hz are

shown in Fig. 11. Table V compares the R2 of the active
power response estimated by the proposed method and EPRI
model under two frequency disturbances (48 Hz and 48.5 Hz
nadir) as well as the overall R2 of frequency response over
25 disturbances. The R2 values are calculated over the whole
frequency disturbance period, which is 10 seconds in Fig. 11.

As presented in Fig. 11 and Table V, for Inv-A (old), Inv-
A (new) and Inv-B(new), the proposed method can provide
an accurate estimation of the dynamic frequency responses
with an overall R2 greater than 0.9. The response estimation
accuracy of Inv-B (old) is a little bit lower (overall R2 of
0.85) than that of other inverters. However, the developed
estimation model can still capture the major variation trend
of the Inv-B power output while the EPRI model is unable
to provide a reliable estimation. The response estimation error
of the Inv-B (old) is due to the complexity of its frequency
response characteristics as shown in Fig. 7. Compared with
the estimation results of the EPRI model, the proposed method
shows significantly higher accuracy in the estimated dynamic
frequency responses of Inv-A (old), Inv-A (new) and Inv-
B(old). For Inv-B (new), the proposed method and the EPRI
model produce comparable results with a R2 of 0.8 since the
active power response of Inv-B (new) is less dependent on the
frequency disturbance.

TABLE V
COEFFICIENT OF DETERMINATION (R2) OF ACTIVE POWER RESPONSE

ESTIMATED BY THE PROPOSED METHOD AND EPRI MODEL

Inverters Proposed method EPRI model
48 Hz 48.5 Hz Overall 48 Hz 48.5 Hz Overall

Inv-A(old) 0.99 0.98 0.92 0.44 0.33 0.46
Inv-A(new) 0.99 0.96 0.96 0.42 0.32 0.38
Inv-B(old) 0.97 0.78 0.85 0 0 0.04
Inv-B(new) 0.7 0.7 0.8 0.7 0.7 0.8

To demonstrate the advantages of the MRFR algorithm in
estimating the frequency response of PV inverters, Table VI
compares the overall R2 of active power response estimated
by other machine learning methods, including the k nearest
neighbor with uniform weights - kNN Uni, k nearest neighbor
with inversely proportional distance weights – kNN Dis and
decision tree regressor - DT. It shows the estimation accuracy
of these three machine learning algorithms is lower than the
MRFR. However, they all outperform the EPRI model in
estimating the frequency response.

TABLE VI
OVERALL COEFFICIENT OF DETERMINATION (R2) OF ACTIVE POWER

RESPONSE ESTIMATED BY OTHER MACHINE LEARNING METHODS

Inverters KNN uni KNN Dis DT
Inv-A(old) 0.84 0.86 0.89
Inv-A(new) 0.77 0.77 0.92
Inv-B(old) 0.75 0.76 0.8
Inv-B(new) 0.8 0.8 0.8

C. Discussion for Future Study
This section discusses the potential of the proposed fre-

quency estimation approach and future study for feeder-level
frequency dynamic response estimation.

The barrier to the dynamic response estimation of small-
scale PV inverters is the high diversity of dynamic responses
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Fig. 11. Estimation verification of the developed dynamic frequency response model of different PV inverters with different frequency events.

and the lack of detailed inverter information. With the deploy-
ment of high precision sensors (e.g., PMUs) in distribution
networks, data-driven approaches can provide new solutions
for the power output estimation of complex electronic-based
devices. This paper has completed the fundamental study for
inverter frequency response estimation and an initial attempt
to demonstrate the effectiveness of the machine-learning-based
approaches for electronic-based energy resources. Although
the proposed data-driven method uses neither frequency re-
sponse of a large number of inverters nor the inverter control
parameters for the estimation, its generalization capability is

still assured as it is believed that the residential PV inverters
with the same model and manufacturer would share the
same control parameters which results in the same frequency
response during the disturbance. Therefore, for PV inverters
of the same manufacturer and model, a dedicated machine
learning algorithm can be trained to estimate the corresponding
frequency responses. The major challenges of the proposed
approach lie in the construction of an informative and complete
training database covering sufficient dynamic response of PV
inverters of interest, which deserves further investigation with
more inverters.
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The developed inverter response estimation approach in
this paper can provide a foundation for future feeder-level
inverter frequency dynamic response estimation. These devel-
oped estimation models can be the components to form feeder
level frequency dynamic responses. The network operators
usually have the statistics (e.g., capacity, installed location,
and manufacturer) of deployed PV inverters from the survey of
customers. Therefore, it is achievable for network operators to
obtain the composition of the inverters with different frequency
response behaviors in the feeder. Then, the combined dynamic
response of the PV inverters in the same feeder can be
accurately predicted.

V. CONCLUSION

This paper has conducted fundamental research to extract
new characteristics of frequency responses of small-scale PV
inverters, which has the potential to influence the dynamics of
the entire power grid. An inverter testing platform for small-
scale PV inverters is established and then frequency response
signatures of different inverters are extracted through extensive
experiments. Finally, a data-driven approach is proposed and
developed to estimate the active power response of small-scale
PV inverters under different frequency disturbances.

The extracted signatures from the experimental results
demonstrate that not all PV inverters are fully compliant with
the frequency responses required by AS 4777. For example,
two types of PV inverters are disconnected from the grid
within the required connection range. Moreover, the frequency
response behaviors are also different for the inverters from
the same manufacturer or the inverters following the same
standard. Some inverters (Inv-A) are grid-friendly by providing
active power support during under-frequency events, while
some inverters [Inv-B (old)] are very sensitive to frequency
disturbances by rebooting the inverters frequently during the
under-frequency events. The irregular frequency response be-
haviors are hard to describe by the traditional load model
and they pose new challenges to the PV inverter response
estimation. In response to these newly-emerging challenges,
this paper has demonstrated that the machine learning-based
approach could provide a good option for the frequency
response estimation of PV inverters.

The presented study has demonstrated substantial benefits
to network operators. The bottom-up study of the PV inverter
response behaviors can help the network operators identify the
root cause of the unexplainable dynamics during incidents for
high solar PV integrated networks. Moreover, this paper can
also help with top-down feeder-level and substation level load
modelling as it reveals fundamental characteristics of electrical
load components.
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