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Scheduling Framework Using Dynamic Optimal
Power Flow for Battery Energy Storage Systems

Fulin Fan , Ivana Kockar , Senior Member, IEEE, Han Xu , and Jingsi Li

Abstract—Battery energy storage systems (BESS) are instru-
mental in the transition to a low carbon electrical network
with enhanced flexibility, however, the set objective can be
accomplished only through suitable scheduling of their operation.
This paper develops a dynamic optimal power flow (DOPF)-based
scheduling framework to optimize the day(s)-ahead operation
of a grid-scale BESS aiming to mitigate the predicted limits
on the renewable energy generation as well as smooth out the
network demand to be supplied by conventional generators. In
DOPF, all the generating units, including the ones that model
the exports and imports of the BESS, across the entire network
and the complete time horizon are integrated on to a single
network. Subsequently, an AC-OPF is applied to dispatch their
power outputs to minimize the total generation cost, while
satisfying the power balance equations, and handling the unit
and network constraints at each time step coupled with inter-
temporal constraints associated with the state of charge (SOC).
Furthermore, the DOPF developed here entails the frequently
applied constant current-constant voltage charging profile, which
is represented in the SOC domain. Considering the practical
application of a 1 MW BESS on a particular 33 kV network,
the scheduling framework is designed to meet the pragmatic
requirements of the optimum utilization of the available energy
capacity of BESS in each cycle, while completing up to one cycle
per day.

Index Terms—Battery energy storage, day(s)-ahead scheduling,
dynamic optimal power flow, load smoothing, renewable energy.

I. INTRODUCTION

AS a means to render grid support, energy storage finds
widespread application both in distribution and trans-

mission networks not only to impart reinforced flexibility to
the electrical grids, but also to facilitate the transition of the
grids to low carbon energy systems with greater decentraliza-
tion [1]. Depending on the location in the grid, energy storage
systems (ESS) can offer potential benefits, such as enabling
the integration of renewables [2], smoothing the demand [3],
providing ancillary services [4], and curtailing the demand
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for network reinforcement [5], [6]. In the last decade, the
acceleration in the development of battery technology and the
dramatic decline in battery prices [7] boosted the technical
and economic feasibility in terms of the battery ESS (BESS)
implementation in the power systems.

Known to provide longer storage durations and fewer cycles
per day, grid-scale BESS are typically applied to the time shift
of renewable and conventional generation [8], [9], thereby
enhancing the operational efficiency of the generating units
together with curbing the utilization of fossil fuels. The
functioning of BESS, i.e., the time and rate at which the BESS
imports or exports, can either be determined in real time or
be planned several hours or days ahead. Regulated by real-
time algorithms, BESS can instantaneously respond to the fre-
quency deviation [4] and smooth out the fluctuation occurring
in the renewable generator (RG) export [10]–[12] or system
demand [3]. Although the real-time control evades the problem
caused by forecast errors, it predominantly concentrates on the
RG curtailment or load level at the present instant only, and
is likely to fully charge the BESS or consume all the stored
energy even before reaching a particular time period in the
future when the BESS operation would be required to further
smooth out the system demand and generator export.

Majority of the research related to BESS operation planning
deals with the day(s)-ahead schedules, which are driven by
different objectives, including but not limited to a minimized
cost (or a maximized revenue) of a BESS integrated sys-
tem [13]–[15] and an optimized utilization of renewable gen-
eration [16], [17]. In addition to electricity generation costs,
BESS-related adaptive operation and distribution networking
costs are reviewed in [13] and [14], respectively, to formulate
an economic scheduling of the BESS as well as the associated
power plants. In [15], day-ahead schedules of a BESS are
deliberated to maximize the revenues from the energy arbitrage
based on the predicted electricity prices of day-ahead markets.
For the BESS co-located with RGs, their schedules could be
optimized either to mitigate the predicted RG curtailment [16],
[17] or to amend the output dispatch plans of RGs in the
interest of energy arbitrage [18]. For quite some time now,
optimal power flow (OPF) [19] has served as an effective tool
to optimally dispatch generating units in a power system at a
particular instant by minimizing a selected objective function.
For addressing the scheduling problem across multiple time
steps, multi-period or dynamic OPF (DOPF) is proposed
to formulate the inter-temporal characteristics of BESS and
optimize day(s)-ahead plans under a particular scheduling
objective (e.g., minimizing the total generation cost), while sat-
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isfying the power balance and handling operating constraints
in spatiotemporal horizons [17]. In [20] and [21], DOPF is
further improved to deal with the prediction uncertainties of
system demands and/or available power of the RGs.

Although published scheduling methods have effectively
exhibited their capability of optimally planning BESS cycles,
the majority of them assume that a BESS can always import
at its rated power, while disregarding the fact that the charg-
ing phase is generally regulated in accordance to a specific
pragmatic profile, such as the prevalent constant current (CC)-
constant voltage (CV) method [22]. The reason could be
because the CC-CV profile presumes that a battery imports
constantly at the maximum allowable rates |P ch| specified
in time domain, which appears impractical in the scheduling
of a grid-scale BESS where the import is determined by
the RG curtailment and/or demand troughs. To address this
issue, this paper converts the CC-CV profile |P ch| from the
time domain to the state of charge (SOC) domain, and then
integrates the SOC-dependent |P ch| within the DOPF, which
is employed here to optimize the day(s)-ahead schedule of a
1 MW BESS, with the objective of mitigating the predicted
limits on RG export and smoothing the demand to be supplied
by the conventional generating units on a particular 33 kV
network. Furthermore, to fulfil the pragmatic requirements of
the optimum utilization of the available energy capacity of
BESS in each cycle and execute up to one full cycle per day,
this paper devises a scheduling framework that divides a plan
time horizon into various charging and discharging periods at
each of the potential split time points, and then selects the
DOPF-based schedule that results in a complete battery cycle
with the minimal overall generation cost.

Herein, the DOPF-based scheduling framework is tested
based on the 15-minute average load data of the network over
2 years. Hourly average wind speeds used for synthesizing the
available power outputs of wind farms on the network during
the same period were provided by the British Atmospheric
Data Centre [23].

The paper is structured as follows: Section II presents the
DOPF and operational constraints specified for the 33 kV
network and BESS; Section III introduces the scheduling
framework and the modeling of wind generation inputs;
Section IV presents an assessment of the optimized day(s)-
ahead schedules in terms of the practical scheduling objectives
and requirements; and Section V presents conclusions and
recommendations for future work.

II. DOPF WITH OPERATIONAL CONSTRAINTS

A. Dynamic Optimal Power Flow (DOPF)

In an OPF problem, the control and state variables of a
power system at a particular time step are determined to
minimize a predefined objective function [19], [24]. DOPF
extends an OPF problem formulation in the time domain,
managing the optimization across the system and the time
horizon. In DOPF, the power system under consideration must
first satisfy the power balance equations along with the unit
and system constraints at each time step within the plan time
horizon independently; then the systems at all future time
steps are correlated with each other by formulating additional
equality and/or inequality constraints related to inter-temporal
technologies (e.g., energy storage). The inter-temporal con-
straint typically formulated in the BESS scheduling problem
is based on the state of charge (SOC) of the BESS, which is
calculated by its imports and exports and must be maintained
within a specified range [17], [20].

Given a plan time horizon consisting of T consecutive
time steps, a simplified network at each future time step t
(t = 1, · · · , T ) is shown in Fig. 1, where terms θ(t−1)nb+j

and V (t−1)nb+j (j = 1, · · · , nb) represent the voltage angle
and magnitude of the jth bus, respectively; real and reactive
powers produced by the ith generator are P

(t−1)ng+i
g and

Q
(t−1)ng+i
g (i = 1, · · · , ng), and those consumed at the jth

bus are P
(t−1)nb+j
d and Q

(t−1)nb+j
d , respectively; the charge

and discharge of BESS are modeled by two virtual generators
which produce negative and positive active powers (i.e., P t

ch
and P t

dis), respectively, at a particular time step t. Subsequently,
the networks across T time steps correlated by the SOC can be
deemed as a single virtual network for the purpose of DOPF
implementation.

Herein, the DOPF problem is formulated based on a
standard AC-OPF formulation [25]. The vector of optimiza-
tion variables XT = [θ(t−1)nb+j , V (t−1)nb+j , P

(t−1)ng+i
g ,

Q
(t−1)ng+i
g , P t

ch, P t
dis] in the single virtual network is calcu-

lated to minimize the overall generation costs across T time
steps, based on the cost function f i

g(·) specified for each actual
generator:

X = argmin
X

T∑
t=1

ng∑
i=1

f i
g

(
P (t−1)ng+i
g

)
(1)

A single, imaginary network across T time stepsThe real network at t = 1
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Fig. 1. Integration of the simplified networks across T time steps into a single imaginary network for the DOPF implementation.
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Subject to:

gP(θ
∗t, V ∗t, P ∗t

d , P (t−1)·ng+i
g , P t

ch, P
t
dis) = 0 ∀t (2)

gQ(θ
∗t, V ∗t, Q∗t

d , Q(t−1)·ng+i
g ) = 0 ∀t (3)

|Sfr(θ
∗t, V ∗t)| − S ≤ 0 ∀t (4)

|Sto(θ
∗t, V ∗t)| − S ≤ 0 ∀t (5)

X ≤ X ≤ X (6)

hG

(
P (t−1)·ng+i
g

)
≤ 0 ∀t (7)

hB

(
P t

ch, P
t
dis

)
≤ 0 ∀t (8)

where superscript (∗t) represents (j + (t − 1)nb); gP(·) and
gQ(·) denote active and reactive power balance equations for
each bus, respectively; Sfr(·) and Sto(·) calculate apparent
powers at the “from” and “to” ends of each branch, respec-
tively, which must not exceed the branch flow limit S in
magnitude; X and X signify the minimum and maximum
limits on X , respectively; and (7) and (8) reflect the additional
operational constraints specified for the generators and BESS,
which are explained in Sections II.B and II.C, respectively.
Noticeably, the virtual generators modeling imports/exports
of the BESS are treated as zero-cost generators. Although
they are excluded from the objective function (1), the cost
of cycling the BESS is reflected by the energy losses, which
in turn are measured by the round-trip efficiency of the BESS.

To accomplish the objective of reducing the predicted power
curtailment of RGs, here, the f i

g(·) of RGs is defined by
zero, which stimulates power injections from the zero-cost
RGs, and promotes the absorption of forecast curtailment by
BESS, subsequently putting it onto the network at peak times.
For the BESS with a round-trip efficiency ηB, the outputs of
conventional generators (CGs) are shifted when the CG cost
of charging the BESS by, for instance, 1 MWh is smaller than
the savings in the CG cost by the BESS exporting 1 × ηB
MWh, which would otherwise be supplied by the CGs. When
f i
g(·) of a CG is defined as the xth power of the real power, its

incremental cost of producing an additional unit of electricity
is the derivative of f i

g(·) with respect to the real power, i.e., the
(x−1)th power of the real power. Hence, the BESS is expected
to shift the conventional generation given the ratio between
high and low export of a CG exceeds at least by (x−1)

√
1/ηB.

Here, since the BESS with ηB of 75% is designed to shift the
CG export when the ratio between high and low CG export
is greater than 1.1, f i

g(·) of CGs are set as the 4th power of
real power (i.e., x = 4 leading to 3

√
1/75% ≈ 1.1). The CG

outputs can be smoothed out further by defining f i
g(·) with a

higher-order power of its real power.
The generation cost functions defined here for RGs, CGs,

and the BESS-related virtual generators allow the DOPF to
concentrate heavily on mitigating the RG curtailment, followed
by smoothing the CG export, given a particular degree of the
export variation. A BESS cycle is implemented only if the
zero-cost RG is to be curtailed and/or the CG export variation
exceeds the target degree, i.e., the cost of charging the BESS
is found to be lower than the cost of the CG displaced by the
BESS export over a plan time horizon. Although the modeling
of the investment cost or the lifetime loss (or degradation)

of a BESS is essential to invest in a BESS project and/or
evade an excessive utilization of battery causing a costlier
loss in lifetime [26], they are not considered for this paper.
The reason being that this paper develops the DOPF to deal
with the day-ahead schedule or operational issues of a BESS
and aims to fully exploit the available energy capacity of
the BESS over each cycle given the warranty covering the
maintenance within a specific number of cycles. If the capacity
fade of a BESS is available to the operators through a BESS
management system [27], the remaining energy capacity of
the BESS could be updated in the DOPF at the onset of the
day-ahead scheduling.

B. Operational Constraints on 33 kV Network

The 33 kV network analyzed in this paper is supplied by
two conventional generators, CG1 and CG2, which provide
the base load and the spinning reserve, respectively. Four
wind farms are located across the network: a 3.7 MW wind
farm (WF1) with a firm or must-take network connection and
three non-firm wind farms (denoted by WF2, WF3, and WF4,
respectively), which bear a total capacity of 8 MW and are
connected under flexible contracts to the network. A 1 MW
grid-scale BESS is placed on the network to execute the time
shift of non-firm wind and conventional generation.

Two specific operational constraints are introduced here to
ensure that CG1 contributes at least 40% of the total generation
and that the spinning reserve provided by CG2 is sufficient
to compensate for the loss of all wind generation at each
instant. These are formulated by (9) and (10), where, PCG1

g ,
PCG2
g , and PWFw

g denote the real powers of CG1, CG2, and
WFw (w = 1, · · · , 4), respectively, and P

CG2

g represents the
maximum limit on PCG2

g , i.e., 20 MW. In times of low system
demand coinciding with high wind periods, the non-firm wind
generation is likely to be curtailed, to evade breaching the two
operational constraints.

0.4PCG2
g + 0.4

4∑
w=1

PWFw
g − 0.6PCG1

g ≤ 0 (9)

PCG2
g +

4∑
w=1

PWFw
g ≤ P

CG2

g (10)

The operational constraints formulated in (9) and (10) are
incorporated into DOPF as inequality constraints related to
(7). The export limits of CG1 and CG2 together with available
power forecasts of non-firm wind farms across T time steps
are taken into account in (6). For the firm WF1, the maximum
and minimum limits on the export are both equal to the
predicted available power, such that all its power is injected
into the network. Here, the time-varying load at each bus
is approximated as a product of the load capacity at that
particular bus and the normalized data, which is extracted from
the time series of the total system demand on the network.

C. Operational Constraints on BESS

As noted in Section II.A, the state of charge (SOC) of a
BESS remains an inter-temporal variable that connects the
networks across T time steps over a plan time horizon. The
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SOC at the end of a particular time step t, denoted by SOCt,
is calculated by:

SOCt = SOC0 −
∆t

Cr
B

t∑
τ=1

(
ηchP

τ
ch +

P τ
dis

ηdis

)
(11)

where SOC0 is the initial SOC at the start of the plan time
horizon; Cr

B represents the rated energy capacity of the BESS;
∆t denotes the time step length (i.e., 15 minutes here); and ηdis
and ηch are the discharge and charge efficiencies, respectively.
Further, SOCt is constrained by the minimum and maximum
SOC levels (i.e., SOC and SOC), leading to:

t

Cr
B

t∑
τ=1

(
ηchP

τ
ch +

P τ
dis

ηdis

)
≤ (SOC0 − SOC) ∀t (12)

− t

Cr
B

t∑
τ=1

(
ηchP

τ
ch +

P τ
dis

ηdis

)
≤ (SOC − SOC0) ∀t (13)

Unlike a discharging phase where P t
dis is constantly limited

by the rated power P r
B (i.e., 0 ≤ P t

dis ≤ P r
B), the charg-

ing phase is usually regulated based on a specific charging
method [22]. One of the most prevalent methods is a CC-CV
profile (see Fig. 2(a)), where a BESS can constantly import
at P r

B until its SOC increases to a particular level— SOCC,
which results in the battery voltage reaching its maximum
allowable level at time tC; then, the import rate exponentially
declines with time to a predefined cut-off rate P co

B , until the
BESS realizes its full charge at time tE to maintain a constant
voltage at the maximum allowable level [22], [28]. The open
circuit voltage of the battery varying with its SOC [29] may
not ensure a strictly constant limit on the import rate at the
CC stage. Enabling the formulation of CC-CV profile in the
DOPF, a constant P r

B is introduced here over the CC stage, as
shown in Fig. 2.
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Fig. 2. CC-CV charging profiles in (a) time and (b) SOC domains.

In general, the CC-CV method presumes that a BESS con-
stantly follows the charging profile in time, which is impracti-
cal in terms of the scheduling problem for the work conducted
in this paper. To facilitate functional relevance of the CC-CV
method, we convert the charging profile from the time domain
to the SOC domain (see Fig. 2(b)) by proving that, in the
CV stage, the exponential decline of the maximum allowable
charge rate with time is equivalent to a linear decrease with

the SOC at a rate of α = (P co
B − P r

B)/(1− SOCC). Given
SOCt−1 at the end of the time step (t−1) modeled by (11), the
CC-CV-related limits on P t

ch in the following time step t can
be formulated in (14) and (15), which illustrate the boundaries
defined by two straight lines in Fig. 2(b), respectively.

− P t
ch +

αt

Cr
B

t−1∑
τ=1

(
ηchP

τ
ch +

P τ
dis

ηdis

)
≤ P r

B + α(SOC0 − SOCC) ∀t (14)
− P r

B ≤ P t
ch ≤ 0 ∀t (15)

The operational limits on BESS formulated in (12)–(14)
and (15) are taken into account for the DOPF as inequality
constraints, related to (8) and (6), respectively. The BESS
parameters required for the modeling are as listed in Table I.

TABLE I
PARAMETERS OF THE BESS FOR THE MODELING

Parameter Value Parameter Value
P r
B 1 MW Cr

B 6.34 MWh
SOC 45% SOC 100%
ηdis 86.1% ηch 87.1%
P co
B 0.33 MW SOCC 80%

III. SCHEDULING FRAMEWORK WITH WIND INPUT
MODELING

A. DOPF-based Scheduling Framework

Although the generation can be more cost-effective if mul-
tiple small cycles are implemented over a plan time horizon,
this could result in the escalated degradation of a battery’s
lifetime [30]. In addition, the minimum SOC level SOC of
the BESS is set to 45% (see Table I), to reduce the battery
degradation caused by large SOC variations [31]. The BESS
generally has a warranty that covers the maintenance until
reaching a specified number of cycles. Therefore, optimum
utilization of the available energy capacity (i.e., 45% SOC–
100% SOC) of the BESS over each cycle is preferred for
the work conducted in this paper. Due to the timing of peak
demand on the network (i.e., two peak periods over 5:00–9:00
and 13:00–18:00 on an average, which are separated by around
4 hours) and the durations that were required for discharging
and charging phases (i.e., at least 3 hours and 5 hours under
a CC-CV curve, respectively), the BESS could rationally only
perform a complete cycle per day. Taking into account these
realistic requirements, a scheduling framework is developed
based on DOPF to optimize a full battery cycle in a day(s)-
ahead schedule.

In this framework, a plan time horizon is defined as the
time period from the time step (t = 1) following the previous
full cycle (i.e., the time step before which the BESS is just
discharged to SOC in the previous plan time horizon) to the
final time step (t = T ) in the subsequent day(s). Subsequently,
the plan time horizon is split by a particular time point into
charging and discharging periods, within which export rates
and import rates are forced to zero, respectively, to fulfil
the single-cycle requirement per day. The morning peaks on
the network usually occurred at around 5:00–9:00, where
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the discharging period would start. Nonetheless, since wind
generation would influence the peak demands to be met by
CGs, in this study, each time point in the first 12 hours of
the final day is adopted as a potential split time point with an
index k (k = 1, · · · , 49), which defines that the discharging
period starts at the time step tdis = (T − 96 + k). Fig. 3
demonstrates an example of splitting a 27-hour time horizon
(i.e., T = 108) at 5:00 (i.e., k = 21 with tdis = 33). Then, P t

dis
in the charging period and P t

ch in the discharging period are
all limited to zero, to constraint the BESS to carry out a single
cycle in the plan time horizon. This is achieved by employing
(16) and (17), which are expressed in the DOPF as inequality
constraints related to (8).

tdis−1∑
τ=1

(P τ
dis) ≤ 0 (16)

−
T∑

τ=tdis

(P τ
ch) ≤ 0 (17)

Based on available wind power and system demand across
T time steps, the optimal schedules of all the network compo-
nents are calculated by DOPF for each potential split point. If
the BESS was not fully charged before the discharging period
in any schedule (i.e., SOCtdis−1 < 1 ∀k), the horizon would
be extended to include the next 24 hours, totally comprising
(T + 96) time steps; then, DOPF is applied to the new
horizon. The schedule resulting in a 100% SOCtdis−1 and the
smallest overall generation cost is finally selected. A flow chart
illustrating the DOPF-based scheduling framework is shown
in Fig. 4.

B. Modeling of Available Wind Generation

The available powers PW of wind farms on the network,
i.e., an input of DOPF, are estimated based on wind speeds
vh at hub heights combined with a generic power curve
model [32], which is employed here to deduce the power
curves from the available technical parameters for wind tur-
bines at WF1 [33], [34], WF2 [35], WF3 [36], and WF4 [35],
respectively:

PW =


0 for vh ≤ vi

P r
W(a+ bvh + cv2h) for vi < vh ≤ vr

P r
W for vr < vh ≤ vo

0 for vh > vo

(18)

where P r
W is the rated power of the wind turbine. vi, vr, and

vo represent the cut-in, rated, and cut-out wind speeds for a
wind turbine, respectively, and constants a, b, and c are only
subject to vi and vr [32]:

a = −vi(vi + vr)(v
2
i + 2vivr − v2r )

2(vi − vr)2v2r
(19)

b =
v4i + 4v3i vr + 6v2i v

2
r − 2viv

3
r − v4r

2(vi − vr)2v3r
(20)

c = −v3i + 3v2i vr + 3viv
2
r − 3v3r

2(vi − vr)2v3r
(21)

The vh at the hub height of each wind farm is estimated
from hourly wind speeds measured at the surrounding five
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k = 2 k = 21 k = 22 k = 49

Fig. 3. A 27-hour plan time horizon (i.e., T = 108) from 21:00 on day 1 to
24:00 on day 2 being split at 05:00 on day 2 (k = 21).
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+

1

T
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+

9
6

Fig. 4. A flow chart showing the DOPF-based scheduling framework.

MIDAS (Met Office Integrated Data Archive System) sta-
tions [23] by employing an inverse distance weighting (IDW)
interpolation method and modeling the influence of the ground
roughness on the wind speed [37], [38]:

vh =
ln (zh/rh)

ln (zhr /rh)

5∑
l=1

vlm
ln
(
zlr/r

l
m

)
ln (zlm/r

l
m)

1/dlm
2∑5

l=1

(
1/dlm

2
)

(22)

where dlm is the horizontal distance from a particular wind
farm to the lth (l = 1, · · · , 5) MIDAS station. rh and rlm
denote ground roughness lengths at the wind farm and the lth

MIDAS station, respectively, based on which the wind speed
measurements vlm at the anemometer heights zlm above ground
level (AGL) are first converted to a selected reference level zlr
AGL by adopting a log-law wind profile [37]. Subsequently,
the IDW is applied to estimate the interpolation result for the
wind farm at the reference level zhr AGL, which is converted to
the hub height zh AGL to get vh. Several available reference
levels, e.g., ≥ 200 m AGL or above sea level (ASL), have
been tested through a cross-validation procedure [38], [39],
where each MIDAS station is deemed as the target location.
Based on the average interpolation performance in terms of
root mean square error, a reference level of 200 m ASL is
adopted here, such that zhr and zlr are the deviations of the
altitudes of the wind farm and MIDAS stations from 200 m
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ASL.
Based on the modeled PW, WF1 sharing a firm connection

with the network is estimated to bear a capacity factor of
around 56%. This is slightly higher than the recorded capacity
factor of 52%, partly due to the fact that the modeling approach
devised in this study does not consider wind turbine outages.
The similar capacity factors indicate that the modeled PW can
be employed here as a reasonable approximation for testing
the scheduling framework. The hourly PW are then converted
to 15-minute intervals in line with ∆t in DOPF.

IV. RESULTS AND MODEL VALIDATION

All the mathematical calculations incorporated in this pa-
per are undertaken using MATLAB [40]. The DOPF-based
scheduling framework is implemented in conjunction with
MATPOWER [41] based on the available modeled wind
powers and the time-varying load at each bus across a plan
time horizon. The optimized real powers of the two virtual
generators that model the imports and exports of the BESS are
merged together to acquire the BESS schedule. The optimized
schedules are analyzed under the context of the incorpora-
tion of CC-CV profile, the mitigation of wind curtailment,
the smoothing of conventional generation, and the optimum
utilization of the available energy capacity of the BESS in
each cycle. Considering that the primary focus of this paper
is the effectiveness of the developed scheduling framework,
the scheduling process is applied to historical data of system
demand and available wind power estimates instead of their
forecasts in this study.

A. Assessment on Time-shift of Non-firm Wind Generation

The non-firm wind farms (NFWFs) on the 33 kV network
are highly likely to diminish their power outputs over high
wind periods that coincide with low system demand, to main-
tain the network stability under the operational constraints,
as described in Section II.B. To quantify the non-firm wind
generation to be curtailed without the BESS cycling, power
outputs of all generating units are dispatched for each time step
by adopting the DOPF, where the virtual generators modeling
the BESS and the operational constraints on the BESS are
removed. Fig. 5 illustrates the first 8 hours of a particular
24-hour time horizon from 19:00 on Day 4 to 19:00 on Day
5 during which the total available power outputs

∑
PNF of

NFWFs exceeded the constraints determined by (9) and (10)
for most of that time period. Driven by the minimization of
the overall generation cost, the BESS is scheduled by DOPF
to import at times of the anticipated curtailment, to alleviate
the limit on

∑
PNF (see Fig. 5), and then export at peak times,

as shown in Fig. 6.
The day-ahead schedule in Fig. 6 demonstrates that the

BESS completes a full cycle as required in this study, with
import rates being maintained within the range of CC-CV-
related constraints that are calculated from the CC-CV charg-
ing profile represented in the SOC domain (see Fig. 2(b)). The
import rates of the BESS and the reduced wind curtailment
are compared in Fig. 7, where only around 60% of the energy
absorbed by the BESS is obtained from the otherwise curtailed
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Fig. 5. The aggregated available non-firm wind generation
∑

PNF and the
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Fig. 7. Import rates of BESS and otherwise curtailed wind generation
absorbed by the BESS from 19:00 on Day 4 to 03:00 on Day 5.

wind generation. This is because the constraints on
∑

PNF
over this period are found to be consistently dominated by
(9), which requires CG1 to contribute at least 40% of the
total system generation. Therefore, in this case, the import
of the BESS also boosts the power output of CG1, as shown
in Fig. 5. Since CG1 generating at a lower level has a smaller
incremental cost per MWh, the BESS generally imports at a
higher rate when the wind curtailment coincides with a lower
export of CG1. For example, although the wind curtailment
would exceed 0.6 MW in both 19:00–20:00 and 23:45–00:45,
the BESS is charged at 1 MW for the latter 1-hour period only
(see Fig. 7), where the CG1 export is observed to be much
lower (see Fig. 5). Furthermore, it is found that the electricity
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used to charge the BESS is smaller than the increase of total
system generation due to transmission losses.

B. Assessment on Time-shift of Conventional Generation

In the plan time horizons where NFWFs are to be slightly
or not curtailed, the schedules of the BESS are determined
by the differences occurring in incremental generation costs
of CGs among T time steps. The BESS having a round-trip
efficiency ηB of 75% in this study is cycled if the incremental
generation costs of CGs at high export levels are greater than
1/75% ≈ 1.33 times as much as those at low export levels,
without considering the power losses on the transmission
cables. As noted in Section II.A, the incremental costs of CGs
are dependent on the cube of their active power outputs in the
DOPF developed in this study. Therefore, the export of CG1

and CG2 is shifted by the BESS given that the ratio between
high and low active power outputs exceeds 3

√
1.33 ≈ 1.1.

Noticeably, this ratio increases when transmission losses are
included.

Figure 8 compares the aggregated export of CGs dispatched
by using the DOPF without the BESS operation against those
that are smoothed by the DOPF-based BESS cycle over a
particular 24-hour time horizon from 19:00 on Day 1 to 19:00
on Day 2, where NFWFs are not curtailed. The significant
differences in aggregated MW outputs of CGs, e.g., between
22:45–03:00 and 06:00–08:30, are observed to be minimized
by the BESS cycle. Additionally, BESS is designed to import
(or export) at a higher rate subject to the maximum allowable
limit associated with the CC-CV curve (or the rated power
P r
B) at times of CGs exporting at a lower (or higher) level,

e.g., during 01:45–03:00 (or 07:30–08:30). In this manner, the
system demand to be supplied by CGs can be smoothed to a
great extent, minimizing the overall generation cost across the
plan time horizon.

C. Assessment on Utilization of Available Energy Capacity of
BESS

As described in Section III.A, the scheduling framework
implements the DOPF for each potential split time point,
which divides a plan time horizon into charging and discharg-
ing periods, to meet the pragmatic requirement of completing
one cycle per day in the plan time horizon. If there are
available schedules where the BESS is completely charged
up to the split point, the schedule leading to the least overall
generation cost is selected to operate the BESS; otherwise,
the plan time horizon is extended to include the following 96
quarter-hour time steps until the available energy capacity of
BESS is fully utilized in the schedule. Fig. 9 demonstrates
the outputs of the BESS and CGs scheduled by DOPF over
a plan time horizon from 22:30 on Day 48 to 24:00 on
Day 49 during which NFWFs exporting at low levels are
not curtailed. Although the use of a split point at 12:00
provides the longest charging period of 13.5 hours in this
case, the BESS performs an incomplete cycle, with the SOC
reaching 71.3% only at the split point due to the relatively
small variation in conventional generation. It is found that
the maximum/minimum of CG1 and CG2 outputs at times
of the BESS discharging/charging at less than 1 MW is
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10.28 MW/8.91 MW and 11.05 MW/9.59 MW, respectively,
with both having a ratio of around 1.15. This is slightly higher
than the ratio of 3

√
1.33 ≈ 1.1, beyond which the BESS with

ηB of 75% is expected to shift the conventional generation due
to transmission losses, as noted in Section IV.B. It appears that
the schedule of an incomplete battery cycle is likely to occur
when the NFWFs export at low levels and CGs have flat power
outputs in the plan time horizon.

Since no schedule over the plan horizon, as depicted in
Fig. 9, can offer a full BESS cycle execution, the BESS oper-
ation is re-scheduled in an extended horizon, which terminates
at 24:00 on Day 50. The new horizon offers a longer period for
the BESS charging and increases the likelihood of maximizing
the utilization of available energy capacity of the BESS. The 2-
day-ahead schedules of the BESS and conventional generation
in the new plan time horizon are plotted in Fig. 10 (the time
period with a complete battery cycle from 22:30 on Day 48 to
19:00 on Day 50 is shown). The BESS is scheduled to import
during demand troughs of the two days and reach the full
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100% SOC before the morning peak on Day 50, thereby
fulfilling the pragmatic requirement of completely utilizing the
available energy capacity of BESS. The scheduling framework
has been examined based on the data for a span of two-years,
realizing that the BESS is designed to perform a complete
cycle in each plan time horizon.

V. CONCLUSIONS AND FUTURE WORK

Grid-scale battery energy storage systems (BESS) are con-
ducive to achieving flexible and low carbon operation of mod-
ern electrical networks. Unlike the BESS designed to respond
to the deviation of a specific system variable (e.g., frequency)
from an expected level in real-time, the BESS applied to the
shifting of renewable and conventional generation typically
requires forecasting an optimal schedule that determines the
best time periods and volumes for charging and discharging
in advance. To meet this increasing demand, in this paper
we developed a dynamic Optimal Power Flow (DOPF)-based
scheduling framework to optimize the day(s)-ahead operation
of a 1 MW BESS, to mitigate the predicted curtailment of
non-firm wind generation and smooth out the system demand
supplied by the conventional generating units on a particular
33 kV network. In addition to the traditionally formulated
inter-temporal constraints that maintain the state of charge
(SOC) of the BESS within the maximum and minimum levels,
a constant current-constant voltage (CC-CV) charging profile
converted from the time domain to the SOC domain has been
incorporated into the DOPF to limit the import rate of the
BESS in this study.

To fulfil the practical requirements of optimally utilizing
the available energy capacity of the BESS and completing
a full cycle up to once per day, the scheduling framework
developed here splits a plan time horizon into charging and
discharging periods at each potential instant, and then selects
the schedule that results in a 100% SOC at the split time

point with the least overall generation cost, or extends the
plan time horizon if the BESS is not fully charged at the
split time point in any schedule optimized by the DOPF. The
effectiveness of the scheduling framework has been discussed
based on the day(s)-ahead schedules over three particular
plan time horizons, i.e., a high wind period and two low
wind periods, in concurrence with relatively significant and
small diurnal changes of conventional generation, respectively.
By defining the incremental costs of wind and conventional
generation as zero and a cube of active power, respectively,
the schedules have alleviated the forecast limits on the non-
firm wind generation, and shifted the conventional generation,
given that the ratio between high and low active power outputs
exceeds the cube root of the reciprocal of the round-trip
efficiency of BESS. Furthermore, the scheduling framework
has effectively exhibited its capability of maximizing the
utilization of available energy capacity of the BESS in each
cycle as required.

In light of the existing work, predictions of available wind
power outputs and system demand for day(s)-ahead should
be estimated by using the numerical weather prediction and
statistical models, and taken into the scheduling framework to
investigate the impacts of forecast errors on the performance
of day(s)-ahead schedules in terms of the alleviated wind cur-
tailment and the shifted conventional generation. The CC-CV
profile in the SOC domain also requires further enhancement
to reflect the influence of the SOC-dependent open circuit
voltage of the battery. In addition, the scheduling framework
could be developed further to deal with the forecast uncertain-
ties and incorporate other inter-temporal technologies, such
as demand side management and different energy storage
systems. Furthermore, capital and operating cost (and the
degradation mechanisms, if applicable) of these technologies
should be modeled as well to estimate their optimal sizes (MW,
MWh) that lead to significant factors, such as the maximum
amount of the reduced wind curtailment per unit cost during
their lifetime. This will enable the determination of the most
appropriate technology or combination of technologies, facil-
itating efficient project planning and investment.
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