
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.17775/CSEEJPES.2021.03680, CSEE Journal of Power and Energy Systems

1

Abstract—The limitations of the conventional master-slave-
splitting (MSS) method, which is commonly applied to power
flow and optimal power flow of integrated transmission and
distribution networks (I-T&D), are analyzed first. Considering
that the MSS suffers from a slow convergence rate or even
divergence under some circumstances, a least-squares-based
iterative (LSI) method is proposed. Compared with the MSS, the
LSI modifies the iterative variables in each iteration by solving a
least-squares problem with the information in previous iterations.
Practical implementation and a parameter tuning strategy for the
LSI are discussed. Further, a LSI-PF method is proposed to solve
I-T&D power flow and a LSI-heterogeneous decomposition
method (LSI-HGD) is proposed to solve optimal power flow.
Numerical experiments demonstrate that the proposed LSI-PF
and LSI-HGD methods can achieve the same accuracy as
benchmark methods. Meanwhile, these LSI methods with
appropriate settings significantly enhance the convergence and
efficiency of conventional methods. Also, in some cases where
conventional methods diverge, these LSI methods can still
converge.

Index Terms—integrated transmission and distribution
networks, least-squares-based iterative method, fixed-point
theory, master-slave-splitting method, power flow, optimal power
flow.

I. INTRODUCTION
ITH the high penetration of distributed energy resources,
the coupling between transmission networks (TNs) and

distribution networks (DNs) has been significantly enhanced
[1]. Administration separation between transmission system
operators (TSOs) and distribution system operators (DSOs)
and physical coupling between TNs and DNs have gradually
become contradictory in real-world operations. Under this
background, the conventional separated and hierarchical
analysis may lead to inaccurate results [2, 3].

To deal with this challenge, some countries have made
specific plans for future operations to enhance the cooperation
between TSOs and DSOs [4-6]. Meanwhile, some researchers
also explore the coordinated analysis of integrated
transmission-distribution networks (I-T&D) from different
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angles to provide theory basis and algorithm support, such as
power flow (PF) [2, 7-10], contingency analysis [7, 11-13],
optimal power flow (OPF) [3, 7, 14-19], etc. Reference [7]
further establishes a generalized TN-DN coordinated model
and proposes a generalized master-slave-splitting (MSS)
method to solve this model with alternating iterations between
TSOs and DSOs. The coordinated model and the MSS
universally and effectively work for I-T&D PF, OPF,
contingency analysis, voltage stability assessment, economic
dispatch, etc. In essence, the mathematical foundation of them
is the fixed-point theory, and the MSS is a specific application
of the conventional fixed-point iterative method.

In recent years, some works further discuss how to improve
the convergence of TN-DN alternating iterations and realize
acceleration, since convergence is an important issue for an
iterative method. For example, in I-T&D PF, [7] proposes a
modified MSS with a distribution-response function, which is
effective to make the algorithm converge faster. The loops in
DNs usually degrades the convergence and efficiency of I-
T&D PF calculation, and the modified MSS can handle this
problem. Reference [9] presents a successive-intersection-
approximation method to solve I-T&D PF. It can converge to
accurate results under the cases where PV-typed and QV-
typed distributed generations are accessed into DNs even if the
MSS diverges under these cases. A rigorous proof shows that
the method has a local quadratic convergence rate. In I-T&D
OPF, [7] constructs a response function of a subsystem to
reduce the derivative of the composite mapping of boundary
variables, and thus, the overall convergence is enhanced. The
response-function-based method is convenient, effective, and
efficient in some circumstances, such as I-T&D PF and DC-
model-based I-T&D OPF. Besides, some non-iterative
methods are proposed to solve I-T&D OPF to avoid the
potential divergence issue [18, 19]. However, these methods
have some limitations: i) When the power injections at the
root nodes of a DN is sensitive to their voltage magnitudes,
the response-function-based method sometimes cannot
guarantee the convergence; ii) When the model of a DN is
complicated, e.g., nonconvex AC models, constructing an
accurate response function is usually difficult since it involves
some integral operations [7]; iii) Non-iterative methods
usually sacrifice accuracy for higher efficiency.

One of the most important reasons for the bad convergence
of conventional methods is that these methods are
implemented with the simple fixed-point iteration, which
indicates that the update iterative variables are only
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determined by the information in the last iteration, regardless
of the information in earlier iterations. To deal with this
challenge, considering the features of I-T&D problems, some
advanced derivative-free fixed-point iteration methods could
be applied. The classical Krasnoselskii-Mann (KM) algorithm
is helpful to enhance the convergence of the simple fixed-
point iteration, but it usually suffers from a slower efficiency
compared with the later methods [20, 21].

Therefore, this paper proposes a least-squares-based
iterative (LSI) method to deal with I-T&D PF and OPF. The
main contribution of the paper is that it:

i) analyzes the limitations of the MSS when it is applied in
I-T&D PF and OPF based on the fixed-point theory;

ii) proposes a LSI with considerations about its practical
implementation and convergence analysis;

iii) proposes a LSI-PF method to solve I-T&D PF;
iv) proposes a LSI-heterogeneous decomposition (LSI-

HGD) method to solve I-T&D OPF;
The numerical experiment demonstrates that the proposed

LSI-PF and LSI-HGD have better convergence and efficiency
compared with conventional methods.

The rest of this paper is organized as follows. The
conventional MSS and its limitations are discussed in Section
II. Section III presents the LSI and its practical
implementation. The LSI-PF and LSI-HGD methods for
solving I-T&D PF and OPF are shown in Section IV.
Numerical experiments are presented in Section V.
Discussions and extensions are presented in Section VI.
Finally, conclusions are drawn in Section VII.

II. CONVENTIONAL MSS FOR I-T&D PF AND OPF
This section will present the basic theory of the

conventional MSS for I-T&D PF/OPF in Subsection A and
analyze the limitations of this method in Subsection B based
on the fixed-point theory.

A. Conventional MSS for I-T&D PF/OPF
Due to separate management and privacy issues, it is

unreasonable to gather the data and models of TNs and DNs in
a centralized manner to achieve an integrated system for
analysis [2, 3]. Thus, a heterogeneous model is established,
where TNs and DNs can be modeled with different approaches.

Fig. 1. Network partition of I-T&D

As shown in Fig. 1, one TN and multiple DNs are
connected by several boundary buses. Thus, an I-T&D system
can be divided into three parts: TN part, DN parts, and
boundary part. The TSO usually manages the TN part while
different DSOs usually manage different DN parts. The
boundary part will be managed coordinately by both TSO and
DSOs.

The MSS is proposed based on this heterogeneous model
[2]. In specific, I-T&D PF and OPF can be modeled as a TSO
subproblem and DSO subproblems as follows

2 1( ), : n ntransm transm x F y F R R 

1 2( ), : n ndistrib distrib y F x F R R 

where x represents the state variables of boundary nodes
(voltage magnitude and angle, usually) and y represents the
active and reactive power injections at boundary nodes. n1 is
the dimension of x and n2 is the dimension of y. Ftransm denotes
an abstract mapping of TSO, representing that x will be
achieved if the TSO subproblem is solved with the variables y.
Fdistrib denotes an abstract mapping of DSOs, representing that
y will be achieved if the DSO subproblems are solved with the
variables x. The goal of solving an I-T&D problem is to find
x* such that [2, 3]

1 1* ( ( *)), ( ( )) : n ntransm distrib transm distrib x F F x F F R R 

Here, 1* nx R is the fixed point of the composite mapping
( ( ))transm distribF F  , denoted as ( )f  .

The standard implementation of the conventional MSS is a
simple fixed-point iteration in essence. Given an initial value

0x of boundary state variables, the final solution will be
achieved with

1 ( ( )) ( ), 0,1,2,transm distrib
k k k k   x F F x f x  

Particularly, when solving I-T&D OPF, the MSS is also called
the HGD method [3].

B. Limitations of Conventional MSS
According to the convergence condition of the fixed-point

theory, the conventional MSS may diverge or suffer from
oscillations if [2]

( ) 1 



f
x



where ρ(·) represents the spectral radius.
In I-T&D PF, for example, [9] points out that, when the

power injections at boundary nodes are sensitive to the voltage
magnitude of boundary nodes, the MSS may diverge. For
example, the penetration of PV-typed distributed generations
(DGs) and heavy loads in DNs may both lead to this problem.
The numerical experiments in [9] also demonstrate this point.

In I-T&D OPF, Case E is used to illustrate this point. The
detailed information of Case E is shown in TABLE B-III in
Appendix B. Fig. 2 compares the voltage magnitude of a
boundary node (Bus No. 11) in this case under the MSS (HGD)
and a centralized method. It clearly shows that the voltage
magnitude of the boundary node is deterministic under the
centralized method. However, under the MSS (HGD), the
voltage magnitude of the boundary node fluctuates around the
accurate value and cannot converge within finite iterations.
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Fig. 2. Voltage magnitude of a boundary node

III. LSI AND ITS PRACTICAL IMPLEMENTATION

In this section, Subsection A presents the basic theory of
the LSI. Subsection B gives its detailed steps. Convergence
analysis is shown in Subsection C and parameter tuning is
discussed in Subsection D, finally.

A. LSI
As mentioned in Section II-B, the conventional MSS may

suffer from slow convergence or divergence in some
circumstances. To deal with this challenge, a method of
successive approximations on boundary iterative variables
could be applied. A conventional method is the KM iteration
method [20, 21]. In each iteration of this method, each
boundary variable is modified with the mean value in two
previous iterations. The effect of this method may not be
significant for two reasons: i) only the historical data of the
two previous iterations is used to modify boundary variables;
ii) take the mean value may not achieve the best effect of
improving convergence sometimes.

Thus, this paper extends and generalizes the conventional
methods of successive approximations into a LSI. The LSI is a
variant of the conventional fixed-point iteration. The basic
theory of the LSI is as follows.

Define : n n g D R R ,

( ) ( ) g x x f x 

Thus, in the k-th iteration, a least-squares problem (7) with a
normalization constraint will be solved

2

0 02

min ( ) . . 1
k k

k

m m

j k m j j
j j

s t  
 

 g x 

where mk is determined as (8), given a user-defined constant m
min{ , }km m k 

and the vector 0( , , )
k

k k k
m α  will be achieved.

Here, m represents a size, which indicates that the results of
at most m previous iterations are used to modify the values of
iteration variables in each iteration. Then,

1
0

( )
k

k

m
k

k j k m j
j
  



x f x 

As shown in (6)-(9), the LSI is a generalized form of the
conventional KM iteration method. On the one hand, a user-
defined m is introduced into the method, which indicates that
more historical data may be used to modify boundary

variables in each iteration. On the other hand, solving a least-
squares problem in each iteration minimizes the residual error,
which achieves a better effect than taking the mean value.

B. Detailed Steps
As shown in Subsection A, one constrained least-squares

problem (7) needs to be solved in each iteration. Admittedly, it
is feasible to solve this problem with mature solvers for
solving convex optimization problems. However, it is more
time-consuming compared with simple matrix operations.
Thus, a more efficient method is proposed. Since the
minimization problem (7) can be efficiently solved as an
unconstrained least squares problem by a variable elimination,
reformulate (7) as

2min k k
γ

g Y γ 

where 0 1( , , )
km

  γ  , ( )k kg g x , 1kk k m k    Y y y

with 1i i i y g g for 0 1ki m   . Thus,

0

1

1

, 0
,1 1

1 , 1
k

i

i i i k

i m k

i
i m

i m




  


    
    

α γ
α γ γ
α γ



When Yk is full column rank, the solution γk to (10) is
T 1 T( )k k k k k

γ Y Y Y g 

Thus,
1

1 1
0

T 1 T

( ) [ ( ) ( )]

( ) ( )( )

k

k k

m
k

k k i k m i k m i
i

k k k k k k k



     




  

  

x f x γ f x f x

f x S Y Y Y Y g


where 1kk k m k    S s s with 1i i i s x x for each i.

Based on (13), the detailed steps are as follows.
Step 1: Initialize 0x ,  , m, S0, and Y0, where  is the

convergence tolerance; S0 and Y0 are empty matrices. Let
iteration count 0k  .

Step 2: According to (13), calculate 1kx as

1 T 1 T

( ), 0

( ) ( )( ) , 1
k

k
k k k k k k k

k

k 

 
  

f x
x

f x S Y Y Y Y g


Step 3: If 1k k   x x , the LSI converges and stops,
otherwise, go to Step 4.

Step 4: If k m , calculate Sk+1 and Yk+1 as

 1 1k k k k  S S x x 

 1 1 1( ) ( )k k k k k    Y Y x f x g x 

Otherwise,

1 1k k k k 

  
   

  
S S x x

I
0


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1 1 1( ) ( )k k k k k  

  
    

  
Y Y x f x g x

I
0



where I represents an identity matrix, of which the dimension
is 1m  . The essence of (17) and (18) is to eliminate the first
column of 1kS and 1kY . Then, add a new column,
calculated with the updated iteration variables, as the last
column.

Step 5: Let 1k k  and go to Step 2.

C. Convergence Analysis
To analyze the convergence of the LSI, some assumptions

are established as follows.
i) There exists x* such that

( *) * ( *)  g x x f x 0 

ii) f is Lipschitz continuously differentiable in the ball
ˆ ˆ( ) { }  B x e for some ρ > 0, where

* e x x 

iii) There exists (0,1)c such that for all ˆ, ( )u v B ,

( ) ( ) c  f u f v u v 

iv) There is Mα such that for all 0k  ,

0

km

j
j

M


 

Here, it is assumed that all these prerequisites are satisfied
in I-T&D PF and I-T&D OPF. These assumptions are weak,
which implies common assumptions for local convergence of
Newton’s method. Thus, these assumptions will not severely
jeopardize the generality of the convergence analysis. With
these assumptions, Theorem 1 is established.

Theorem 1 Let Assumptions i)-iv) hold and ˆ 1c c  . If x0
is sufficiently close to x*, the LSI converges to x* as

0ˆ( ) ( )k
k cg x g x 

Theorem 1 is proved by induction in Appendix A. Note that
Theorem 1 gives a sufficient convergence condition, which is
useful for proving the convergence theoretically. Thus, even if
some assumptions are not satisfied, the LSI may still converge
in the practical implementation.

D. Parameter Tuning
As shown in Subsection A and B, m is an important user-

defined constant, which has a significant influence on the
overall efficiency of the LSI. If m is too small, the storage
information used by the method may be too limited to provide
fast convergence. While if m is too large, the least-squares
problem may be seriously ill-conditioned. Also, outdated
information from previous iterations may jeopardize the
convergence of the method.

Generally, it is hard to give a rigorous strategy for
parameter tuning of the LSI, and the best choice of m is
application-dependent. However, it is unnecessary to tune the
value of m for each system. According to numerical

experiments, m = 3 is usually a proper empirical setting for
most applications. The proposed methods have good
performance under this setting.

IV. LSI-BASEDMETHODS FOR I-T&D PF AND OPF
In this section, Subsection A proposes the LSI-PF method.

Subsection B proposes the LSI-HGD method. Subsection C
finally presents the data flow between TSO and DSOs.

A. LSI-PF Method for I-T&D PF
The goal of I-T&D PF is to solve the equations [2]

( , , , )

( , , , )

( , , , )

transm transm transm B B

B transm transm B B B
P
B transm transm B B B
Q

 
 
 

f V θ V θ

f V θ V θ P

f V θ V θ Q

0



( , , , )distrib distrib distrib B B f V θ V θ 0 

where PB and QB represent the active and reactive power
injections at boundary nodes; VB and θB represent the voltage
magnitude and angle of boundary nodes. f represents the
power flow equations. The superscripts ‘transm’, ‘distrib’, and
‘B’ represent the TN part, DN part, and boundary part.
Particularly, B B

P f P and B B
Q f Q respectively represent

the boundary power flow equations of active power and
reactive power.

In I-T&D PF, TSO sends VB and θB to DSOs while DSOs
send PB and QB to TSO. Thus, let

; , ;B B B B       x V θ y P Q 

Thus, based on (4) and (5), transmF represents TN power
flow, where the power injections at boundary nodes are given
and the voltage magnitude and angle of boundary nodes are
solved. Similarly, Fdistrib represents DN power flow, where the
voltage magnitude and angle of boundary nodes are given and
the power injections at boundary nodes are solved. According
to the LSI presented in Section III, a LSI-PF method could be
achieved as follows:

Step 1: Initialize 0x ,  , m, S0, and Y0, where  is the
convergence tolerance; S0 and Y0 are empty matrices. Let
iteration count 0k  .

Step 2: DSOs solve the DN power flow with kx to achieve

ky and send ky to TSO. Then, TSO solves the TN power
flow with ky to achieve 1ˆkx . Calculates 1kx as

1
1 T 1 T

1

ˆ , 0
ˆ ( )( ) , 1
k

k
k k k k k k k

k

k


 


 
  

x
x

x S Y Y Y Y g


Step 3: If 1k k   x x , the LSI-PF converges and stops,
otherwise, go to Step 4.

Step 4: TSO sends 1k x to DSOs. DSOs solve the DN
power flow with 1kx to achieve 1ky and send 1ky to TSO.
Then TSO solves the TN power flow with 1ky to achieve
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2ˆ k x . If k m , calculate Sk+1 and Yk+1 as

 1 1k k k k  S S x x 

 1 1 2 1ˆ ˆ( )k k k k k k      Y Y x x x x 

Otherwise,

1 1k k k k 

  
   

  
S S x x

I
0



1 1 2 1ˆ ˆ( )k k k k k k   

  
     

  
Y Y x x x x

I
0



Step 5: Let 1k k  and go to Step 2.

B. LSI-HGD Method for I-T&D OPF
In I-T&D OPF, the goal of I-T&D OPF is to solve [3]

, ,
, , ,
, ,

min ( , , , , )

( , , , , )

transm B distrib

transm B distrib

transm B distrib

transm transm B transm transm B B

distrib distrib distrib distrib B B

c

c

u u u
V V V
θ θ θ

u u V θ V θ

u V θ V θ

,
,



under a series of constraints, where u represents control
variables, such as the active and reactive output of generators
and distributed generations. c represents the cost function. The
superscripts ‘transm’, ‘distrib’, and ‘B’ represent the TN part,
DN part, and boundary part.

Considering the privacy issues, (32) could be decoupled
into DSO subproblems (33) and a TSO subproblem (34) with
optimal condition decomposition and boundary data exchange
based on the HGD [3].

, ,
, ,

min ( , , , , )

. . ( , , , , ) ( , )

distrib distrib

distrib B B

distrib distrib distrib distrib B B
transm transm auxD

distrib distrib distrib B B distrib B B
transm transm

c c

s t





u V
θ P Q

u V θ V θ

u V θ P Q V θ



, ,
, , ,

min ( , , , , )

. . ( , , , , ) ( , )

trnasm transm

transm B B B

transm transm B transm transm B B
auxT

transm B transm transm B B transm B B
distrib distrib

c c

s t





u V
θ u V θ

u u V θ V θ

u u V θ V θ P Q

,

,



where Ωdistrib and Ωtransm represent the feasible regions of DSO
and TSO subproblems, respectively. B

transmV and B
transmθ

represent the optimization results of BV and Bθ by solving

the TSO subproblem. B
distribP and B

distribQ represent the

optimization results of BP and BQ by solving the DSO
subproblems. cauxT and cauxD are two auxiliary functions, which
are introduced to ensure the optimality conditions of the model
[3].

To present more details about these two auxiliary functions,
(33) and (34) are rewritten as a more detailed form.

, ,
min ( , , , , )

. . ( , , , , ) :

( , , ,

distrib distrib distrib

distrib distrib distrib distrib B B
transm transm auxD

distrib B B distrib distrib distrib
transm transm distrib

distrib B B distrib distr
transm transm

c c

s t




u V θ

u V θ V θ

f V θ u V θ λ

g V θ u V

0

, ) :

( , , , , ) :

ib distrib
distrib

B
B distrib B B distrib distrib distrib

transm transm B distribB






 
 

  

θ μ

P
f V θ u V θ λ

Q

0 

, ,
, , ,

min ( , , , , )

. . ( , , , , ) :

( , , , , ) :

(

trnasm transm

transm B B B

transm transm B transm transm B B
auxT

transm transm B transm transm B B
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transm transm B transm transm B B
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






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0

0

,

,

,
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B
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

 
  
  

P
u V θ V θ λ

Q
,



where f and g represent equality and inequality constraints,
respectively; λ and μ represent Lagrange multipliers.
Particularly, the subscripts ‘B-distrib’ and ‘transm-B’
respectively represent the boundary power flow constraints in
the DSO subproblem and the TSO subproblem.

Thus, the two auxiliary functions can be calculated as

T( )
B

B
auxT B
c

 
  

  

V
h

θ


T
B

auxD transm B B
c 

 
  

  

P
λ

Q


where [3]

T

T T

[ ; ] [ ; ]

[ ; ] [ ; ]

distrib distrib

B distribB B B B

distrib B distrib

distrib B distribB B B B

c





 
 
 

 
 

 

fh λ
V θ V θ

g fμ λ
V θ V θ



In I-T&D OPF, TSO sends VB, θB, and λB-distrib to DSOs
while DSOs send hB, PB, and QB to TSO. Thus, let

; ; , ; ;B B B B B B       x V θ λ y P Q h 

Thus, based on (4) and (5), transmF represents the TSO
subproblem, where the power injections at boundary nodes, as
well as hB, are given and the voltage magnitude and angle of
boundary nodes, as well as λB, are achieved. Similarly, Fdistrib
represents the DSO subproblems, where the voltage
magnitude and angle of boundary nodes, as well as λB, are
given and the power injections at boundary nodes are, as well
as hB, solved. According to the LSI presented in Section III, a
LSI-HGD method could be achieved as follows:

Step 1: Initialize 0x ,  , m, S0, and Y0, where  is the
convergence tolerance; S0 and Y0 are empty matrices. Let
iteration count 0k  .

Step 2: DSOs solve the DSO subproblems with kx to
achieve ky and send ky to TSO. Then, TSO solves the TSO
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subproblem with ky to achieve 1ˆkx . Calculates 1kx as (27).
Step 3: If 1k k   x x , the LSI-HGD converges and

stops, otherwise, go to Step 4.
Step 4: TSO sends 1k x to DSOs. DSOs solve the DSO

subproblem with 1kx to achieve 1ky and send 1ky to TSO.
Then TSO solves the TSO subproblem with 1ky to achieve

2ˆ k x . If k m , calculate Sk+1 and Yk+1 as (28) and (29).
Otherwise, calculate Sk+1 and Yk+1 as (30) and (31).

Step 5: Let 1k k  and go to Step 2.

C. TSO-DSO Data Flow
Detailed steps and data flow between TSO and DSOs in the

LSI-PF and LSI-HGD are shown in Fig. 3.
It clearly shows that TSO and DSOs only need to exchange

boundary information, which will not lead to a heavy
communication burden. Also, in this way, the privacies of
TSO and DSOs are both well-protected.

Besides, the proposed LSI-based methods does not increase
TSO-DSO communication compared with the conventional I-
T&D PF and OPF methods, since it also solves f (x) only once
for each iteration.

Fig. 3. Steps and data flow of the LSI-PF and LSI-HGD

V. NUMERICAL EXPERIMENTS

The programs for the test are written in MATLAB R2019a
and run on the Windows 10 of 64 bits. The CPU is Intel Core
i7-7700K, with 4.20GHz master frequency and 32GB memory.
Several I-T&D cases are constructed, of which the detailed
information is shown in Appendix B.

A. LSI-PF for I-T&D PF
Three I-T&D PF methods are investigated: i) Centralized

Newton-based PF (C-PF): unrealistic in real-world operation,
it is an accurate model, which can be considered as a

benchmark in the test. The algorithm applied in the test is the
‘runpf’ function in MATPOWER 7.0; ii) MSS method (MSS-
PF) [2]; iii) the LSI-based I-T&D PF (LSI-PF). The
convergence tolerance is set as 1e-6. The flat start is applied
for initial value selection, i.e., the initial values of boundary
nodal voltage magnitudes are 1 p.u. and the initial values of
boundary nodal voltage angles are 0°. The maximum iteration
number between TSO and DSOs for ii) and iii) is set as 100.

TABLE I records the voltage magnitudes and angles of
boundary nodes in some cases. It shows that, under Case A
and C, the LSI-PF can achieve the same results as the C-PF
and the MSS-PF. Under Case B and D, the conventional MSS-
PF diverges, while the LSI-PF can still achieve the same
results as the C-PF.

TABLE II records the iterations and time consumptions
under different algorithms. It shows that the LSI-PF can
converge under all cases while the MSS-PF diverges under
Case B and D. Further, for most cases, the LSI-PF can
improve the convergence rate and take fewer iterations to
converge. Here, in Cases A-D, DGs in DNs are controlled
with PV mode while they are controlled in QV mode in Cases
A2-D2, which indicates that the proposed LSI-PF has good
adaptability to different control modes of DGs. The value of m
is closely related to the convergence rate and efficiency of the
algorithm. Generally, m ≥ 3 can achieve a satisfying result.

TABLE I
I-T&D PF RESULTS UNDER DIFFERENT ALGORITHMS

Case Boundary
Node No.

Voltage Magnitude (Angle) of Boundary Nodes /p.u. ( /°)
C-PF MSS-PF LSI-PF

A 14 1.0253 (-16.4631) 1.0253 (-16.4631) 1.0253 (-16.4631)
B 14 1.0190 (-16.4583) Diverge 1.0190 (-16.4583)

C

8 1.0050 (-4.9888) 1.0050 (-4.9888) 1.0050 (-4.9888)
9 0.9806 (-10.0724) 0.9806 (-10.0724) 0.9806 (-10.0724)
12 1.0148 (-10.8154) 1.0148 (-10.8154) 1.0148 (-10.8154)
18 1.0034 (-12.4245) 1.0034 (-12.4245) 1.0034 (-12.4245)

D

8 1.0050 (-5.1042)

Diverge

1.0050 (-5.1042)
9 0.9811 (-10.1886) 0.9811 (-10.1886)
12 1.0145 (-10.8892) 1.0145 (-10.8892)
18 1.0029 (-12.5811) 1.0029 (-12.5811)

TABLE II
ITERATIONS AND TIME CONSUMPTIONS OF I-T&D PF ALGORITHMS

Case Time Consumptions /ms (Iteration Number)
MSS-PF LSI-PF (m = 2) LSI-PF (m = 3) LSI-PF (m = ∞)

A 125.0 (20) 47.6 (8) 31.2 (6) 34.8 (6)
A2 53.6 (9) 32.6 (6) 29.7 (5) 29.9 (5)
B Diverge 66.8 (11) 36.4 (7) 38.6 (7)
B2 227.3 (45) 51.6 (9) 36.9 (7) 33.9 (6)
C 250.0 (20) 100.7 (8) 89.0 (7) 95.8 (7)
C2 80.1 (6) 68.9 (5) 71.1 (5) 72.4 (5)
D Diverge 136.9 (11) 114.7 (9) 100.4 (8)
D2 139.4 (11) 85.8 (7) 86.1 (7) 88.2 (7)

Then, Fig. 4 shows the variation curves of boundary nodal
voltage magnitude and angle under Case A and Case B. Fig.
4(a) and Fig. 4(b) show that the LSI-PF converges with a
faster convergence rate than the MSS-PF. Fig. 4(c) and Fig.
4(d) show that the LSI-PF can converge within finite iterations
even if the MSS-PF diverges.
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Fig. 4. Variation curves of boundary nodal voltage in I-T&D PF

B. LSI-HGD for I-T&D OPF
The detailed formulation (constraints and objective

functions) of the I-T&D OPF applied in this paper is presented
in Appendix B of [3]. The objective is to minimize the overall
generation costs of an I-T&D system. The cost function of
each generator is shown in TABLE B-II, Appendix B. The
constraints of I-T&D OPF include i) the power flow
constraints; ii) the nodal voltage magnitude and angle
constraints; iii) line capacity constraints; iv) generator
constraints; v) shunt capacitor constraints.

Three I-T&D OPF methods are investigated: i) Centralized
OPF (C-OPF): unrealistic in real-world operation, but it is an
accurate model, which can be considered as a benchmark in
the test. The algorithm applied in the test is the ‘runopf’
function in MATPOWER 7.0; ii) conventional HGD [3]; iii)
LSI-HGD. The convergence tolerance is set as 1e-6. The flat
start is applied for initial value selection, i.e., the initial values
of boundary nodal voltage magnitudes are 1 p.u. and the initial
values of boundary nodal voltage angles are 0°; the initial
values of sthe Lagrange multipliers of boundary power flow
equations are 0. The maximum iteration number between TSO
and DSOs for ii) and iii) is set as 100.

TABLE III records the boundary voltage magnitudes and
objective functions in some cases. It shows that, under Case A
and D, the LSI-HGD can achieve the same results as the C-
OPF and the HGD. Under Case B, C, and E, the conventional
HGD diverges, while the LSI-HGD can still achieve the same
results as the C-OPF.

TABLE III
I-T&D OPF RESULTS UNDER DIFFERENT ALGORITHMS

Case Objective Functions /$ (Voltage Magnitude of Boundary Nodes /p.u.)
C-OPF HGD LSI-HGD

A 585.59 (1.0360) 585.59 (1.0360) 585.59 (1.0360)
B 581.21 (1.0388) Diverge 581.21 (1.0388)

C 588.08 (1.0150,
1.0360, 1.0390) Diverge 588.08 (1.0150, 1.0360,

1.0390)
D 129692 (1.0213) 129692 (1.0213) 129692 (1.0213)

E
129474

(1.0444, 1.0426,
1.0381, 1.0136)

Diverge
129474

(1.0444, 1.0426, 1.0381,
1.0136)

TABLE IV records the iterations and time consumptions
under different algorithms. It shows that the LSI-HGD can
converge under all cases while the HGD diverges under Case
B, C, and E. Further, for Case A and D, the LSI-HGD can
improve the convergence rate and take fewer iterations to
converge. The selection of m is important for the performance.
When m is smaller than 3, more iterations are needed (except
for Case E). When m is too large, the matrix may be close to
singular which leads to inaccurate results. Also, larger m
degrades the convergence rate under Case E.

TABLE IV
ITERATIONS AND TIME CONSUMPTIONS OF I-T&D OPF ALGORITHMS

Case
Time Consumptions /ms (Iteration Number)

HGD LSI-HGD
(m = 2)

LSI-HGD
(m = 3)

LSI-HGD
(m = 4)

LSI-HGD
(m = 5)

LSI-HGD
(m = ∞)

A 2041 (21) 633 (7) 640 (7) * * *
B Diverge 1296 (14) 929.3 (10) * * *
C Diverge 5453 (33) 5174 (30) 4501 (25) 3684 (21) *
D 1253 (8) 988 (7) 1015 (7) * * *
E Diverge 2886 (13) 3675 (17) 3599 (17) 5134 (23) *
* Matrix is close to singular. The results may be inaccurate.

Admittedly, the optimal setting of m is case-dependent, and
it could be achieved by a batch of trials in numerical
experiments. However, it is time-consuming and unnecessary
to tune the best setting m for each case in real-world
operations. From a perspective of engineering practicability,
the setting of m = 3 could be applied for different systems
since the LSI-HGD with m = 3 can successfully achieve
solutions with relatively high efficiency.

Then, Fig. 5 shows the variation curves of boundary nodal
voltage magnitude under Case A and B. Fig. 5(a) shows that
the LSI-HGD converges with a faster convergence rate than
the HGD. Fig. 5(b) shows that the LSI-HGD can converge
within finite iterations even if the HGD cannot converge.

Fig. 5. Variation curves of boundary nodal voltage magnitude in I-T&D OPF

VI. DISCUSSIONS AND EXTENSIONS

A. Discussions about Unbalanced DNs
In real-world operation, the three-phase imbalance in DNs

should be considered. Usually, a heterogeneous model could
be established for an I-T&D system, where the TN is modeled
as single-phase while DNs are modeled as three-phase [2].
Thus, the proposed LSI-PF can be extended into a three-phase
form by adding some extra calculations in the boundary part.
In specific, for a DN, it is assumed that the three-phase voltage
at its root node is symmetric in each iterative step [9]. Also,
the boundary power injections for a boundary node are the
summation of the power injections of three phases for this
node. In this way, there is no significant change in the steps



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.17775/CSEEJPES.2021.03680, CSEE Journal of Power and Energy Systems

8

presented in Section IV-A.

B. Nonconvex Nature of AC OPF Models
Due to the nonconvex nature of AC OPF models, it is

difficult to guarantee the global optimality of final solutions.
However, for optimization problems, even a local optimal
solution is meaningful, and [3] points out that enforcing the
conventional HGD to I-T&D OPF can still achieve a
satisfying accuracy. The proposed LSI-HGD achieves the
same accuracy and improves the convergence compared with
the conventional HGD. Thus, in practical implementation, the
nonconvex nature of AC OPF models will not lead to large
deviations.

VII. CONCLUSIONS
This paper proposes a LSI-PF for I-T&D PF and a LSI-

HGD for I-T&D OPF. Through an extensive demonstration on
the test cases, the following observations can be obtained:
 The LSI-PF and LSI-HGD methods can achieve the same
accuracy as the methods under the centralized model as
well as the conventional MSS and HGD.

 The convergence of the LSI-PF and LSI-HGD is stable,
not sensitive to the effects of DNs. To be more specific, for
the cases under which the MSS-PF/HGD converges, LSI-
PF and LSI-HGD can achieve a better convergence rate;
for the cases under which the MSS-PF/HGD diverges,
LSI-PF and LSI-HGD can maintain a good convergence.

 The LSI-PF and LSI-HGD with appropriate settings of m
usually show higher efficiency, since the convergence is
significantly enhanced compared with the MSS-PF and the
HGD. A good empirical setting of m is 3, which could be
applied to different systems in real-world operations.
In conclusion, the proposed LSI-PF and LSI-HGD can

significantly benefit real practice.

APPENDIX A PROOF FOR THEOREM I
Assumption iii) implies that ( ) 1c  f x holds for all

ˆ( )x B , and thus, ( *)g x is nonsingular. Denote the
Lipschitz constant of g in ˆ( )B by  . Thus, Lemma 1 can
be established as follows based on Lemma 4.3.1 from [22].

Lemma 1 For sufficiently small ˆ  and all ˆ( )x B ,

2( ) ( *)
2
 g x g x e e 

(1 ) ( ) (1 )c c   e g x e 

Then, the proof for Theorem 1 is as follows [23].
First, choose ˆmin(2(1 ) / , )c    to make (A-3) hold.

1ˆ 1
ˆ 2(1 ) 2(1 )

mMc c
c c c

    
 



Then, choose x0 to make (A-4) hold.

0 0
( / 2) (1 )( / 2)ˆ ˆ( )
1 1

m mM c M c c
c c

c c
  

   
 

 
g x e 

Next, prove Theorem 1 by induction.
Assume that for all 0 k K  that (A-5) holds for 0K  .

0ˆ( ) ( )k
k cg x g x 

According to Lemma 1, denote

2( ) ( *) ,
2k k k k k
   g x g x e e 
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2

0

1
2

K

K

m
j

k K K m j
j
   



   e 

Lemma 1 implies that
2

0
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1
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1 1

K K K
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g x g x
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Thus, according to Assumption iv),
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K m m
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M M
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Since

1
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K
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K j K m j k
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
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According to (A-5),
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1
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1 1
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and thus,
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Thus, with (A-9) and (A-10),
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Since

1 1
0

( ) ( *) ( )
K

K

m
K
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according to Lemma 1,
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With (A-5), (A-9), (A-14), and (A-15),
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Thus, with (A-3),
1

1 0ˆ( ) ( )K
K c 
 g x g x 

So, (A-5) holds for 1k K  .

APPENDIX B CASE INFORMATION

A. I-T&D PF Cases
Several I-T&D cases are constructed, as shown in TABLE

B-I. Some DGs are accessed into IEEE case69 to construct
case69A and case69B. When they are considered as PV-typed
(QV-typed), they have a constant active/reactive power output
of 0.5MW/0.5MVar. Each feeder is connected to the TN via a
transformer with r  0.002 p.u., x  0.01 p.u., and ratio  1.

TABLE B-I
I-T&D PF CASES

Case TN
Case

DN
Case

DGs are accessed
into Node No.
(Control Mode)

DNs are
accessed into
Bus No.

Case A case14 case69A 8, 15, 20 (PV)

14Case A2 case14 case69A 8, 15, 20 (QV)
Case B case14 case69B 45, 61 (PV)
Case B2 case14 case69B 45, 61 (QV)
Case C case57 case69A 8, 15, 20 (PV)

8, 9, 12, 18Case C2 case57 case69A 8, 15, 20 (QV)
Case D case57 case69B 45, 61 (PV)
Case D2 case57 case69B 45, 61 (QV)

B. I-T&D OPF Cases
Two DN cases are constructed, of which the basic cases are

IEEE case69 as shown in TABLE B-II. Several DGs and
reactive power compensators (RPCs) are accessed into these
cases. The detailed information about DGs and RPCs are also
shown in TABLE B-II. The upper and lower limits of the
voltage magnitude of all nodes in DNs are 1.1 p.u. and 0.9 p.u.

TABLE B-II
DN CASE INFORMATION

DN
Case

Distribution System Cases and Their Modifications
Basic
Case

Accessed
Node No. Type Parameters (P/MW, Q/MVar) Cost

FunctionPmax Pmin Qmax Qmin

DN1 case69 15, 30 DG 2.0 0 1.0 0 0.5P2 + P

DN2 case69

15, 30 DG 2.0 0 1.0 0 0.5P2 + P
45 DG 0.5 0 1.0 0 0.5P2 + P
61 DG 1.0 0 1.0 0 0.5P2 + P
54 RPC - - 1.2 0 0

Then, several I-T&D cases are constructed by combining
one TN case and one or more DN cases. The detailed case
information is shown in TABLE B-III.

TABLE B-III
I-T&D OPF CASES

Case TN Case DN Cases DN(s) is(are) accessed into
Bus No.

Case A case30 DN1 30

Case B case30 DN2 30
Case C case30 DN2, DN2, DN2 8, 10, 30
Case D case118 DN1 118
Case E case118 DN2, DN2, DN2, DN2 11, 78, 82, 118
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