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Abstract—With the development of unmanned aerial vehicle

(UAV) technology, visible image is playing an important role in
maintenance of the power system. To achieve the shed breakage
evaluation of composite insulator by UAV visible image, an
intelligent fault assessment method is proposed. Firstly, the
composite insulators in visible light images are identified by
Faster-RCNN. After image preprocessing, the image is enhanced
and the noise is removed. Then, the canny operator is used to
extract the edge of the sheds. Improved Randomized Hough
Transform (IRHT) is used to detect the ellipses in the edge image.
The parameters of the detected ellipse, length of major axes and
minor axes, center coordinates and deflection angle of major axes,
are used to realize the segmentation of composite insulator.
Finally, the number of pixel points in the ellipse and the distance
between the points and the ellipse boundary are used to judge
whether there are breakage or cracks on sheds. The area ratio of
the breakage to the whole shed is calculated based on the number
of pixel points inside the broken area. The method can be realized
without large amount of training dataset of the specific fault type
and provides a technical basis for the online fault assessment of
composite insulator on overhead transmission line.

Index Terms—composite insulator, breakage assessment,
Improved Randomized Hough Transform (IRHT), ellipse
detection.

I. INTRODUCTION
OMPOSITE insulator, as an important component on
overhead transmission line, is widely used due to its light

weight and good hydrophobicity [1], [2]. With the development
of UAV technology, visible image captured by UAV is playing
an important role in power system operation and maintenance
[3], [4], [5]. At present, although there are a lot of work on
equipment detection and identification, the technology of fault
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diagnosis is still not mature based on the visible images.
Breakage of the sheds and housings, a typical fault of

composite insulator, will not only shorten the flashover
distance but also lead to abnormal temperature rise [6], [7].
There are many methods to detect the breakage, even the
defects inside the composite insulators, such as infrared
imaging [8], [9], ultrasound [10], [11]. The method based on
visible images has high development potential because the
images are easy to be obtained. Some scholars have made
efforts in this aspect. Liu et al. [12] proposed a method to detect
the cracks of composite insulators based on edge detection. Liu
et al. [13] achieved the detection of cracks on composite
insulators through ART-2 neural network and equidistant
features. Quan [14] realized the detection of cracks on sheds of
composite insulator through SVDD classifier. Huang et al. [15]
realized the breakage detection of sheds on insulator by curve
fitting. These works contribute greatly on breakage detection of
composite insulator. However, the methods above are all based
on machine learning, which requires large amount of training
dataset of the specific fault type. As is known, composite
insulators with fault are rare and it’s a hard work to obtain
enough dataset cases. On the other hand, these methods can
only be used to detect whether there is breakage of the sheds,
but cannot be used to assess the fault quantitatively.
Image segmentation is a method to extract the insulator from

the background. Combining with edge detection, image
segmentation can be used to detect the breakage and cracks on
the sheds. It shows promising potential to realize the evaluation
of the breakage based on visible image. Image segmentation
can be realized by color characteristics [16], gray thresholds
[17], edge detection [19] and wavelet transform [20]. Jin et al.
[16] achieved the segmentation of composite insulators by
extracting the chromaticity and saturation of the visible image.
Jiang et al. [17] turned the visible image to gray-scale image
and segment the composite insulator according to gray
threshold. Yu et al. [18] achieved the segmentation of
composite insulators by extracting the gray scale, shape and
texture features of the insulators. Zhong et al. [19] realized the
segmentation of insulator through histogram of edge direction
and deformation model. In these methods, the segmentation
will be affected greatly by the background. The more complex
the background is, the worse the segmentation result will be. To
evaluate the breakage of composite insulator by visible image,
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it is important to find a new method that can extract the
insulator from the background precisely.
In this paper, a method based on Improved Randomized

Hough Transform (IRHT) is proposed to assess the breakage of
shed on composite insulator in UAV visible image. This
method can realize the detection of cracks, half breakage and
breakage of sheds on composite insulators through image
preprocessing, edge detection, ellipse detection, segmentation
and breakage evaluation and also achieve the quantitative
characterization of breakage.
The contributions of the work can be condensed as follows: 1.

It achieves a high recognition rate of different breakage types of
composite insulators with few breakage samples comparing
with the popular methods, deep learning and machine learning,
which need a large number of breakage samples with different
types and degrees for training. 2. It realizes quantitative
calculation on the breakage area of the sheds for the first time,
which would supply the basis for insulator maintenance
strategy according to the existing standard, DL/T 257-2012
[21]. On the other hand, the breakage area is related to the
creepage distance of the insulator directly and the method can
be used to evaluate the flashover risk of the insulator.

II. METHOD

A. Image preprocessing
Composite insulators are exposed to the open air and there are

always trees, farmlands, etc. in the visible images as the
background. On the other hand, light and electromagnetic
interferences will also influence the image quality. Therefore,
image preprocessing is carried out for the collected images to
reduce the interferences and improve the image contrast, laying
a foundation for fast and accurate identification of the sheds
breakage. Image preprocessing is generally divided into four
steps, which are object detection, graying, image denoising and
image enhancement.
Deep learning is a common method to recognize the

composite insulators in the images. According to the analysis of
different deep learning models, YOLO is a single-stage target
detection method, which is more suitable for real-time
monitoring. However, the shape, size and other characteristics
of the insulators are different in the captured images, leading to
a low detection accuracy. Faster-RCNN is a two-stage target
detection method with high detection accuracy. On the basis of
Fast-RCNN, RPN, which is used to generate candidate regions,
can greatly improve the detection speed. In this paper, Faster
R-CNN and VGG-16 network [22] is used to recognize
composite insulators in the visible images. The process is
divided into five processes: image input, extraction of image
features by VGG-16 network, generation of accurate candidate
areas by RPN, fault type classification and regression
calculation to obtain the detection frame of composite insulator.
800 images of composite insulators captured by UAV are
selected as the training set of Faster-RCNN network. The test
results show that this method can accurately identify the
composite insulators in the images. Then the region, containing
the composite insulator, in the image is segmented as the

follow-up research object.
The weighted average method is adopted to realize the

graying of the original image. The specific expression is shown
in (1),

0.299 0.587 0.114gray R G B      (1)

where gray is the gray value of the pixel, and R,G, and B are the
red, green, and blue values of the original image, which are
from 0 to 255.
Gaussian filter is used to remove the noise. The main idea is

to use a Gaussian template to convolve with the image. The
value of the center point is determined by the weighted average.
The convolution is shown in (2),

I I G   (2)

where Iσ is the image after filtering, and Gσ is a gaussian
template with a standard deviation of σ. Gauss template is
defined as (3),
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where x2 and y2 represent the distance between the pixels in the
center neighborhood of the gaussian template and the pixels in
the center of the template, respectively.
Histogram equalization of grayscale images is the most used

image enhancement method. For a discrete image, the
probability of the i-th gray level ri can be calculated by
following (4),

( ) i
r i

m
P r

m
 (4)

where mi is the number of pixels appearing at level ri. m is the
total number of pixels. The histogram equalization of the image
is shown in (5),

1 1

0 0
( ) ( )k k i

i i r ri i

m
S T r P r

m
 

 
    (5)

where Si is the number of pixel points in the i-th gray level and k
is the gray level series.

B. Edge detection
The edge information of the image is particularly important,

which can be used to extract the sheds of the composite
insulators.
Canny operator [23] has been widely used in various fields

due to its advantages of low misjudgment rate, high precision
and suppression of false edge. In this paper, canny operator is
used to extract the edge of composite insulators. However, due
to the existence of pollution or pulverization, the results of edge
detection show not only the edge of sheds, but also the edge of
pollution and pulverization. However, the gray value of the
edges is lower than that of the sheds. We use binarization to
remove the influence of pollution and pulverization on edge
detection. In the binarization method, threshold is a critical
factor that influence the result, which can be obtained by OTSU
[24], [25]. In order to select an appropriate threshold, this paper
compares the results of fixed threshold with those obtained by
OTSU, which will be analyzed in chapter 3.
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The steps of edge detection are as follows.
1) Calculate the magnitude and direction of the gradient of

the filtered image. The expressions are shown in (6), (7),
respectively.

2 2( , ) ( , ) ( , )x yM i j k i j k i j  (6)

( , ) arctan[ ( , ), ( , )]x yH i j k i j k i j (7)
2) Apply non-maximum suppression to the gradient

amplitude.
3) Use double threshold algorithm to detect and connect

edges, in which the high threshold is 0.8 and the low
threshold is 0.2.

4) Binarize the edge image.
5) Thin the edge.

C. Ellipse detection
Due to the shooting angle, the shape of the composite

insulator shed in the image captured by UAC is always oval.
Randomized Hough transform is a common method to find the
targets with fixed geometries, which is widely used on
detection of lines, circles and ellipses in image. In this paper,
Improved Randomized Hough transform (IRHT) [26] was put
forward to detect the sheds. The main idea is that 3 edge points
in the edge image are randomly selected and fitted as an ellipse.
Then, a 4th edge point is used to verified the correctness of the
fitted ellipse. The specific steps of IRHT are as follows and are
shown in Fig. 1.
1) Add all edge points into set V at first. z is defined as the

initial number of edge points in set V. np is the number of
the edge points that left in set V. Set three counters, f=0,
a=0, T0=0. Then, five thresholds, Tf, Ta, Td, Tem, and Tr are
defined. Tf is the maximum number of failures that can be
tolerated. Ta is shortest distance between two of the
randomly selected three edge points that can be allowed. Td
is longest distance from the 4th point in the boundary of the
ellipse that can be allowed. Tem is the minimum value of
np/z. Tr is minimum ratio of the detected pixel number on
the boundary of the ellipse and the pixel number on the
boundary of the ideal ellipse. Td can be obtained by
following (8),
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where (u0, v0) is the coordinate of the center point of the ellipse,
ddiff is the maximum distance from the edge point to the ellipse
boundary, A and � are the length of the major axes and the
deflection angle of the major axes, respectively.
2) When f<Tf and np≥zTem, 4 random points are selected and

removed from V. Otherwise, the algorithm will be
terminated.

3) According to 3 of the selected edge points, a possible
ellipse can be obtained. The shortest distance between two
of the 3 edge points (D1) should be larger than Ta. The
shortest distance between the 4th point to the boundary of
the ellipse (D2) should be less than Td, as well. Otherwise,

the selected 4 edge points will be moved back to set V and
f=f+1.

4) Find out the edge points, the distances between whom to
the boundary of the ellipse are less than Td in set V.Use a to
count the point number. nold is the collected point number.

5) If nold>Tr∙Cijk, where Cijk is the pixel number of the
boundary of the ellipse, build a new set Ve. to collect the
edge points, whose distances to the boundary of the ellipse
are less than ddiff, in set V. Otherwise, move the 4 points
back to set V and f=f+1.

6) Use the edge points in set Ve to fit a new ellipse as step 3)
shows. The number of the edge point on the boundary of
the new ellipse is nnew. Then, T0=T0+1.

Fig. 1. Flow chart of ellipse detection based on IRHT.
7) Define the maximum number of iterations and the

minimum rate of change as Tt and Tn, respectively. Tt=5
and Tn=0.1 in this work. If |nnew-nold|/nold>Tn and T0<Tt,
then jump to step 6). Otherwise, V=V-Ve, f=0, and output
the parameters of the ellipse.
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8) Go back to step 2) to find the other ellipses in the image.

D. Segmentation
The parameters of ellipse, including the lengths of major

axes and minor axes, center coordinate and deflection angle of
major axes, can be obtained by IRHT. Then, we set the pixels
outside the ellipse to white to realize the segmentation of the
shed. The specific steps are as follows.
1) Transform the image obtained by object detection from the

Red, Green, Blue (RGB) color model to the Hue,
Saturation, Value (HSV) model.

2) Traverse the entire image and set H, S and V component of
pixels which are not in any ellipse as 0°, 0 and 1.

The segmentation method proposed in this paper is based on
the shape characteristics of the composite insulators. Once the
ellipses are found, the composite insulator can be easily divided
from the background. The traditional method based on color
threshold cannot segment the composite insulator precisely.
There are always background information especially at the
edge of the composite insulator.

E. Breakage evaluation
There are three typical forms of breakage on the sheds of

composite insulator, which are crack, half-breakage and
breakage, as shown in Fig. 2.

(a) (b)

(c)
Fig. 2. Three typical forms of breakage. (a) cracks, (b) half-breakage, and (c)
breakage.

The crack of the shed is shown in Fig. 2(a). The shed keeps
the original shape even though there is crack on the surface.
Half-breakage means that part of the shed is broken but still
connects to the composite insulator, as shown in Fig. 2(b).
Breakage is a condition that the broken area of the shed has
fallen off as shown in Fig. 2(c).
When the sheds of composite insulator are broken, there will

be detected edge in the ellipse. Breakage detection can be
realized by analyzing the distance between the edge point of the
broken area and the ellipse boundary. The specific steps are as
follows.
1) Select a detected ellipse, traverse the whole image to

search the edge points inside the ellipse.
2) Estimate whether these edge points are on the boundaries

of the other ellipses and, if so, remove the edge points.
3) Calculate the distance D between the reserved edge points

and the boundary of the selected ellipse. If D>yA∙3% (yA is
the length of minor axes), The counter N=N+1. If N>100, it
is considered that there is breakage or crack in the shed.

4) Find the pixel point in the reserved edge points, which
shows the smallest distance to the ellipse boundary, and
calculate the distance Davg1. If Davg1>yA∙5%, the breakage
type is considered as crack.

5) Find the pixel point at the other end of the reserved edge
line, and calculate the distance from the point to the nearest
point of ellipse boundary Davg2. If Davg2<yA∙5%, it is
considered that there is breakage on the shed. Otherwise,
the breakage type is defined as half-breakage.

The flow chart to assess the breakage type of the shed is
presented in Fig. 3.

Fig. 3. Flow chart of breakage assessment of composite insulator shed.

Then, we are going to calculated the area ratio of the broken
area. The main idea is to find out the percentage of pixel
number in the broken, which follows (9),

1nS
n

 (9)

where n1 is the number of pixels in the broken area, and n is the
number of pixels in the ellipse. The specific steps are as
follows.
1) Select the shed, where breakage has been detected, and

obtain the pixel number n in the ellipse.
2) Find the pixel point in the reserved edge points, which is

the nearest to the center point of the ellipse, and establish a
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direction vector to indicate the position relationship
between the pixel point and the elliptic center.

3) Obtain the pixel number n1 between the reserved edge
points and the boundary of the selected ellipse in the
direction of the direction vector.

III. PARAMETER SETTING

A. Gaussian filter and binarization
In image processing, the Gaussian filtering results will be

affected by the standard deviation σ of the Gaussian tamplate.
The larger the standard deviation is, the greater the smoothing
effect is. However, large standard deviation will lead to image
distortion. Similarly, in the process of binarization, the lower
the threshold T is, the more the edge information in the image is.
However, the edges of pollution and pulverization will also be
highlighted with the decrease of the threshold. Therefore, it is
important to find the appropriate standard deviation and
threshold in the Gaussian filter and bunarization stages.
To evaluate the image processing effect under the conditions

with different standard deviations and thresholds, N1 and N2,
which represent the shed recognition rate and error detection
rate of the fault type of composite insulator influenced by the
pollution and pulverization, respectively, are put forward.
Images of 50 composite insulators are selected for testing. The
values of N1 and N2 with different standard deviations and
thresholds are shown in Tab. I and Tab. II, respectively.

TABLE I
RESULT OF N1 UNDER DIFFERENT STANDARD DEVIATIONS AND THRESHOLDS

σ=0.6 σ=0.8 σ=1.0 σ=1.2

T=0.1 73.54% 75.81% 71.39% 68.16%

T=0.2 76.36% 81.24% 78.61% 78.34%

T=0.3 68.49% 71.22% 67.53% 65.74%

OTSU 74.57% 77.42% 76.47% 75.83%

TABLE Ⅱ
RESULT OF N2 UNDER DIFFERENT STANDARD DEVIATIONS AND THRESHOLDS

σ=0.6 σ=0.8 σ=1.0 σ=1.2

T=0.1 12% 8% 10% 10%

T=0.2 4% 0 2% 4%

T=0.3 0 0 2% 2%

OTSU 6% 2% 2% 4%

From Tab. I, it is found that N1 doesn’t show monotonic
change with the standard deviation or threshold. When the
threshold of binarization is fixed at 0.2, the shed recognition
rate is higher than the other conditions. On this basis, when the
standard deviation of Gaussian filter is 0.8, the shed recognition
rate can even reach to 81.24%, which is the highest in Tab. I. In
Tab. II, when the threshold of binarization is 0.3, there is no
error detection of the fault type of composite insulator. As the
threshold decrease from 0.3 to 0.1, the error detection rate rises
from 0 to 12% when the standard deviation of Gaussian filter is
0.2. The reason is that a lower threshold of binarization
enhances the influence effect of background, pollution and

pulverization. When the threshold is determined by OTSU, the
error detection rate is 6%. It can be concluded as the best
strategy when the standard deviation of Gaussian filter is 0.8
and the threshold of binarization is 0.2. The shed recognition
rate is 81.24% and there is error detection of the fault type.

B. Parameters for ellipse detection
In the process of parameter selection of ellipse detection, the

suggested values of Tf and Tem are 5000 and 0.1, respectively,
according to Ref. [25].
The pixel size of the shed major axes in the image is about

200, while the pixel size of minor axes is about 30. According
to the ellipse detection requirements of the algorithm, Ta is set
to 30.
Parameter Tr, the threshold of ellipse defect rate ranging

from 0 to 1, is critical for the ellipse detection of the shed.
When Tr is too small, the detected ellipse may be over
segmented, dividing the real ellipse into several small pieces.
On the other hand, when Tr is too large, it may lead to the
detection failure of the small sheds which are partially covered
by the other sheds. In this section, N1, the shed recognition rate,
is also employed to obtain the appropriate value of Tr. The
result of N1 under different thresholds of ellipse defect rate are
shown in Tab. III.

TABLE III
RESULT OF N1 UNDER DIFFERENT THRESHOLDS OF ELLIPSE DEFECT RATE

Tr 0.3 0.4 0.5 0.6 0.7

N1 71.35% 75.58% 81.82% 67.16% 60.65%

As Tr rises from 0.3 to 0.5, N1 also increases from 71.35% to
81.82%. When Tr=0.5, the shed recognition rate reaches the
maximum value. Then, the shed recognition rate decreases
rapidly with the increase of Tr. When Tr=0.7, N1 drops to
60.65%. Therefore, we set Tr to 0.5.

IV. RESULT AND ANALYSIS

The composite insulator recognition based on Faster-RCNN
runs under the following computer configuration: Windows 10
operating system, Intel Xeon Gold 5120T CPU (2.20GHz×16),
GeForce RTX 2080Ti graphics card, and TensorFlow. And the
other algorithms run under the following computer
configuration: Windows 10 operating system, Intel Core i5
9400 CPU (2.90GHz×6), and GeForce GTX 1060Ti graphics
card.

A. Results
28 images of 35 kV composite insulators, and 29 images of

110 kV composite insulators are used to verify the effectiveness
of the proposed method. Fig. 4 shows 8 composite insulators
with different operation states. The detected results are also
presented in each figure. The targets in Fig. 4(a), 4(b) and in the
left of 4(g) are composite insulators with no breakage. Cracks
on the sheds are found in the composite insulators and
highlighted by white boxes in Fig. 4(c) and 4(d). The composite
insulators show half breakage on sheds in Fig. 4(e) and 4(f). In
Fig. 4(g) and 4(h), the breakage parts of the composite
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insulators are also highlighted in white boxes. What’s more, the
breakage areas have been calculated and marked near the white
box.
Take Figure 4(d) as an example, the detection process is

presented in Fig. 5. At first, target detection based on
Faster-RCNN is conducted and the composite insulator is
detected, as shown in Fig. 5(a). Secondly, we obtain Fig. 5(b), a
gray image of the composite insulator, by image preprocessing.
Then, Canny operator is used to detected the edge of the
insulator. Considering that the pollution on the sheds may be
detected as edges, binarization of the edge detection results is
conducted to remove the erroneous edges. The image after
binarization is shown in Fig. 5(c). Through ellipse detection,
the shed contour of the composite insulator can be found.
However, two small sheds, the second and sixth shed from the
low voltage end, are missing in Fig. 5(d). This is because the
shooting position of the UAV is too high to obtain each shed
contour accurately, which informs that the shooting position
and angle will influence the working efficiency directly. Next,
the background can be removed by segmentation, as shown in
Fig. 5(e). Following the step of breakage evaluation, the
breakage type can be identified and the breakage area is
highlighted in red box in Fig. 5(f). So as to the detection time,
the target detection by deep learning costs 0.531s. The total
time of the other steps are only 0.415s.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 4. Image of composite insulators. (a), (b) no breakage, (c), (d) crack, (e), (f)
half-breakage, (g), (h) breakage.

(a) (b) (c)

(d) (e) (f)
Fig. 5. Breakage detection process. (a) object detection, (b) image
preprocessing, (c) edge detection, (d) ellipse detection, (e) segmentation, and (f)
broken area marking.

TABLE IV
DETECTED RESULTS OF COMPOSITE INSULATOR

Voltage Operation
state

Detected results
No breakage Crack Half breakage Breakage

35 kV

No breakage 16 2 0 1
Crack 0 3 0 0

Half breakage 0 0 2 0
Breakage 0 0 0 4

110 kV

No breakage 8 3 0 2
Crack 0 6 0 0

Half breakage 0 0 3 0
Breakage 0 0 0 7

The detected results of all the composite insulators in the
images are shown in Tab. IV. It is found that crack and
breakage of the shed can be identified and quantitatively
assessed. However, some sheds with no breakage have been
detected as crack or breakage sheds. Crack and breakage are
found in three 35 kV composite insulators and five 110 kV
composite insulators with no breakage. There are several
reasons for the error detection. Firstly, the shadow will be
detected as breakage on the shed when the image is taken in
sunlight. It cannot be removed in binarization stage and there is
still no effective image enhancement method to get rid of the
shadow. It is suggested to avoid taking visible images of
composite insulator in sunlight for breakage assessment. On the
other hand, the pollution with clear edge on shed may be
detected as breakage. For the composite insulator with
breakage, no matter what type of the breakage is, the method
proposed in this paper can be used to achieve the detection.
This is because when there is breakage on sheds of composite
insulator, the edge of the breakage area will only appear inside
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the ellipse.
The correct recognition rate of composite insulators with

different fault types by the proposed method are summarized in
Tab. V. It also shows the correct recognition rates of the other
methods, including ART-2 neural network with equidistant
feature in Ref. [13] and SVDD classifier in Ref. [14]. Both the
methods in the references are based on machine learning, which
needs a large database of crack and breakage samples for
training. Though the case numbers of crack, half breakage and
breakage in this paper are only 9, 5 and 11, respectively, 100%
correct recognition rate has been achieved by the proposed
method in this paper. What’s more, the proposed method can
even realize the quantitative assessment of the breakage area,
which cannot be achieved by the methods of machine learning.

TABLE V
RECOGNITION RATE OF DIFFERENT METHOD

Method No breakage Crack Half
breakage Breakage

ART-2 by Liu [13] 95.0% 85.0% - -
SVDD by Quan [14] - 90.0% - 86.7%
Method in this paper 75.0% 100% 100% 100%

It’s worth noting that the pixel sizes of these images are
about 5472×3078. Due to the different image shooting
conditions of UAV, the pixel size of composite insulator in the
image varies a lot. If the pixel size is not large enough, the edge
of composite insulator will be blurred, which will influence the
results of edge detection and ellipse detection directly. Till now,
the minimum pixel size of the insulator for detection
requirements is still unclear. On the other hand, the shooting
position and angle of UAV also matter in the process of edge
detection. There is still no standard or mature rule for UAV
imaging. We are going to pay attention on these two aspects in
the following work.
In DL/T 257-2012 [21], it is mentioned that composite

insulator will be replaced when the number of shed, which
contains breakage, exceeds 1/3. The method proposed in this
paper cannot only help to evaluate the operation state of
composite insulator based on existing standard, but also holds
the possibility to realize further classification of the operation
state of composite insulator for its ability of quantitative
assessment.

B. Model sensitivity test
Due to the small size of sample dataset used in this paper,

overfitting may occur in this model. We carry out the model
sensitivity test by data augmentation. Different methods of data
augmentation, including rotation, mirror flipping, and
brightness change of the image, are used for the sample at
random. The method of data augmentation and parameters are
shown in Tab. VI. A total 146 images were obtained by data
augmentation.

TABLE VI
METHODS FOR DATA AUGMENTATION

Method Parameter

Rotation Clockwise 30 °, Anticlockwise 30 °

Mirror Flipping Horizontal, Vertical
Changing the Brightness Brightness of the original:120%, 150%

TABLE VII
DETECTED RESULTS OF COMPOSITE INSULATOR

Voltage Operation
state

Detected results
No breakage Crack Half breakage Breakage

35 kV

No breakage 42 5 0 2
Crack 0 10 0 0

Half breakage 0 0 5 0
Breakage 0 0 0 9

110 kV

No breakage 23 7 0 5
Crack 0 15 0 0

Half breakage 0 0 6 0
Breakage 0 0 0 17

The detected results of all the composite insulators after data
augmentation are shown in Table VII and summarized in Table
VIII. Some sheds with no breakage are still detected as crack or
breakage sheds. The recognition rate is 77.4%, which is close to
the recognition rate before data augmentation, 75.0%. The
recognition rates of the composite insulators with crack, half
breakage and breakage are all 100%. Data augmentation
doesn’t influence the recognition rate of the composite
insulators with crack or breakage. The results show that the
method proposed in this paper has no over-fitting problem even
though the sample size of the data is small.

TABLE VIII
RECOGNITION RATE AFTER DATA AUGMENTATION

No breakage Crack Half
breakage Breakage

Recognition Rate 77.4% 100% 100% 100%

V. CONCLUSION
In this study, an intelligent fault assessment method for

composite insulator based on visible image captured by UAV is
proposed. Four steps, image preprocessing, edge detection,
ellipse detection and segmentation, are included before fault
diagnosis. The values of standard deviation of the Gaussian
template and the binarization threshold have been discussed,
which are suggested to be fixed at 0.8 and 0.2, respectively.
This method can distinguish three typical faults of sheds, crack,
half breakage and breakage, without large amount of training
dataset of the specific fault type. Furthermore, it can realize the
quantitative evaluation of the breakage area, which provides a
new idea for online fault assessment of composite insulator on
overhead transmission line. In future work, we will study the
influence of image clarity on breakage detection of composite
insulator. And the effect of the UAV shooting conditions on the
detection results will also be studied.
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