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Abstract—Line parameters play an important role in the

control and management of distribution systems. Currently,
phasor measurement unit (PMU) systems and supervisory control
and data acquisition (SCADA) systems coexist in distribution
systems. Unfortunately, SCADA and PMU measurements usually
do not match each other, resulting in inaccurate detection and
identification of line parameters based on measurements. To solve
this problem, a data-driven method is proposed. SCADA
measurements are taken as samples and PMU measurements as
the population. A probability parameter identification index
(PPII) is derived to detect the whole line parameter based on the
probability density function (PDF) parameters of the
measurements. For parameter identification, a power-loss PDF
with the PMU time stamps and a power-loss chronological PDF
are derived via kernel density estimation (KDE) and the
conditional PDF. Then, the power-loss samples with the PMU
time stamps and chronological correlations are generated by the
two PDFs of the power loss via the Metropolis-Hastings (MH)
algorithm. Finally, using the power-loss samples and PMU
current measurements, the line parameters are identified using
the total least squares (TLS) algorithm. Hardware simulations
demonstrate the effectiveness of the proposed method for
distribution network line parameter detection and identification.

Index Terms—Line parameter detection and identification, the
time skew of PMU and SCADA measurements, distribution
systems, probability density function, sampling algorithm.

I. NOMENCLATURE

K The number of the Gaussian components in
the Gaussian mixture models (GMM).

R Resistance of the line.
X Reactance of the line.
P Active power loss of the line.
Q Reactive power loss of the line.
A Matrix of the current square measurements.
RXx Matrix of the line impedance.
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PQy Matrix of the power loss.
1T 

The smallest singular value.

ijI Current phasor of line between bus i and bus j.

iP Active power flow of line from bus i to bus j.

iQ Reactive power flow of line from bus i to bus j.

iU Voltage phasor at bus i.

jP Active power flow of line from bus j to bus i.

jQ Reactive power flow of line from bus j to bus
i.

| |jU Voltage amplitude at bus j.

| |jk  The mean of | |jU  .
j
k The mean of | |jU .

( , , )k k k   The weight, mean, and standard deviation of
the kth Gaussian component in the GMM
probability density function (PDF).

2 2 2

( , , )ij ij ijI I I
k k k   GMM PDF parameters of current square.

( , , )i i iP P P
k k k   GMM PDF parameters of active power flow iP .

( , , )j j jP P P
k k k   GMM PDF parameters of active power flow

jP .

( , , )P P P
k k k     GMM PDF parameters of active power loss.
 1,t tm Time stamp.

1( )tP P  PDF value of 1tP  at time stamp t-1 for the
time interval [1, tm].

1( , )t tP P P   Joint PDF value of tP and 1tP  at time stamp t
and t-1 for the time interval [1, tm].

1( )tP Q  PDF value of 1tQ  at time stamp t-1 for the
time interval [1, tm].

1( , )t tP Q Q   Joint PDF value of tQ and 1tQ  at time stamp
t and t-1 for the time interval [1, tm].

2( )tP I PDF value of 2
ijI at time stamp t for the time

interval [1, tm].
2( , )t tP P I Joint PDF value of tP and 2

ijI at time stamp t
for the time interval [1, tm].

2( , )t tP Q I Joint PDF value of tQ and 2
ijI at time stamp

t for the time interval [1, tm].
( |X)q x The proposal PDF with mean X and constant

variance q .
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II. INTRODUCTION
n smart distribution systems, with a higher penetration of the
distributed generation (DG), demand response (DR) enabled

loads, renewable energy, and power electronics equipment,
people have higher requirements for power distribution.
Through careful monitoring, protection, and control of the
power distribution, distribution systems can be ensured of
efficient, reliable, and flexible operation [1]. In distribution
grids, line parameter is one of the backbones of state estimation
[2], fault location, reactive power optimization, and blackout
management; therefore, a more accurate line parameter would
improve power flow calculations and fault isolation. However,
incorrect parameters may arise from poor line length estimation,
slow updating of network changes in the database, aging, or
environmental factors [3], [4]; therefore, the detection and
identification of incorrect line parameters based on related
measurements is of great importance. Furthermore, the
accuracy of the line parameters can be directly affected by
measurements.
Phasor measurement units (PMUs) are equipped with a

global positioning system (GPS) receiver and render voltage
and current phasors with exact time stamps [5], [6]. When a
PMU is installed at a bus, the current phasors of the line
connected to the other buses and the voltage phasor of this bus
can be measured. The accuracy of PMU measurements is high,
with a refresh rate of up to 50 (or even 100) times per second for
a 50-Hz system [7]. In contrast, modern supervisory control and
data acquisition (SCADA) measurements do not have exact
time references and render voltage and current magnitude
measurements. SCADA systems typically consist of remote
terminal unit computers that can record real-time
measurements and deliver this data to a control center with a
communication system [8]. Owing to the SCADA architecture,
its measurement value at present will not match the value of the
moment when the SCADA measurement is taken, if the
magnitude measurement is oscillates over time [9]. SCADA
measurements taken at time t are delayed for ati + bti + cti,
where ati is the period of the cyclic measurement gathering, bti
is the time for the set of data to be received by the control center,
and cti is the dead time between the arrival of measurements
and their processing. For a given bus, the ati is different from
one measurement to another with its value is between 0.1 s and
0.9 s. Furthermore, bti varies from one bus to another and its
value is between 0.1 s and 0.5 s [10]. At a given time t, one
SCADA measurement was taken at time ts1<t that can be
assigned to the time interval [t-T, t] such that 0 ≤ t – ts1 < T;
where T is approximately 1 s, and this delay appears reasonable
[11]. In this study, the time skew of the SCADA measurements
randomly delays in the range [0 s, 1 s].
Despite the advantages of the PMU system over that of

SCADA, it still cannot replace the traditional SCADA system
overnight, owing to the significant long-term investment and
smooth operation of the SCADA system in existing power
systems [12]. In the future, when a distribution system is
capable of high PMU penetration, it will be possible to use
sufficient PMU measurements to detect and identify line
parameters. Therefore, at present, line parameter detection and

identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line

parameter identification, especially when SCADA
measurements incorrectly identify parameters [13], [14]. For
transmission line parameters identification, authors [15] used
an augmented state-parameter hybrid weighted least squares
state estimator that was based on SCADA and PMU
measurements to update the approach proposed in [16]. In [5],
the line parameter estimation method required PMU
measurements at one end of a given line and SCADA
measurements at the other. During the short collection interval
of the PMU and SCADA measurements, the magnitude of the
voltage and current did not exhibit significant waveform
changes; therefore, the time skew of the measurements was
ignored. Considering the inconsistent sampling time of the
PMU and SCADA measurements in a real system, the PMU
and SCADA measurement systems were discussed separately
in [17]. A method for estimating the self and mutual
zero-sequence impedances for mutually coupled transmission
lines was proposed using the unsynchronized three-phase
current and voltage signals measured during the fault period.
The unsynchronized data were aligned to complete the
synchronization using a Time Time-transform (TT-transform)
based on abrupt change detection [22]. Based on the magnitude
measurements, a non-iterative estimation of the transmission
line and transformer parameters was proposed using SCADA
data [23]. Based on PMU measurements, a transmission line
parameter estimation by at least one PMU was proposed by
using several measurement snapshots from PMUs and
estimated states provided by a hybrid state estimator, which
used conventional magnitude measurements and available
PMU synchronized measurements [4]. Furthermore, based on
PMU measurements, an adaptive linear neuron (ADALINE)
and IGG (Institute of Geodesy & Geophysics, Chinese
Academy of Sciences) methods [24], robust identification
methods [25]-[29], the least trimmed squares estimation
method [30], a robust M-estimator method [31], and a
maximum likelihood estimation method [32] were proposed to
identify line parameters. These methods can address PMU
measurement errors [24], PMUmeasurement outliers [25], [30],
[31], the uncertainty in PMU measurements [32], instrument
transformers errors [26]-[28], and PMU phase angle error [29].
In addition, many other methods for transmission line
parameter identification [33]-[35] have been proposed using
PMU measurements. Moreover, a measurement-based
transmission line parameter estimation with an adaptive data
selection scheme was proposed, which is applicable to both
SCADA and wide area measurement system (WAMS) data
[36].
The line parameter identification of hybrid measurements in

the distribution and transmission networks is different. In
transmission networks, line parameters include series
resistance, series reactance, and shunt susceptance [4], [5], [15],
[17]. However, in distribution networks the shunt susceptance
is neglected [18]-[20]. A recent study used the precise time
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stamp of the PMU to align the SCADAmeasurement data at the
same time section based on the instantaneous voltage values
and the line parameter can be identified [37]. As is well known,
SCADA renders voltage and current magnitude measurements;
thus, we will investigate the SCADAmagnitude measurements.
In distribution grids, based on magnitude measurements,
off-line tracking of series parameters [21] and regressing of the
line impedance using the approximate relationship between the
voltage drop amplitude and current [20] were used to identify
line parameters. In addition, others have proposed a discrete
dynamic Bayesian network method with advanced metering
infrastructure (AMI) measurements and weather measurements
[38] and a parameter estimation scheme that considers the
influence of measurement and instrument transformer
uncertainties with SCADA measurements [42]. Moreover, an
automated determination of topology and line parameters with
smart meters measurements [39], the identification of topology
and line parameters with time-stamped voltage magnitude and
injection samples of leaf nodes [40], and the identification of
topology and line parameters without the information of
voltage angles [41] can realize the parameter identification.
Based on PMU measurements, iterations between the
parameter estimation and topology identification were used for
the joint line parameter and topology estimation, which
combined PMUs and AMI measurements [18]. A PMU-based
iterative line parameter estimation algorithm using only PMU
data was presented, which included in the estimation model
systematic measurement errors [43]. Our previous work [44]
presented a classification identification method based on PMU
measurements for line parameter identification under
insufficient measurement conditions.
However, current approaches to the line parameter

identification of hybrid measurements still pose serious
limitations in distribution grids. For example, PMU
measurements have exact time stamps, whereas SCADA
measurements do not.
In this paper, we propose a measurement-based method for

the detection and identification of parameters of a line with
PMU and unsynchronized SCADA measurements in
distribution systems. Owing to the nonsynchronization of the
PMU and SCADA measurements, we analyze the probability
distribution of PMU and SCADA measurements based on
probabilistic approaches, respectively. The suspicious line
parameter is detected using a probability parameter
identification index (PPII). The PPII is the sum of relative
errors of the means of the voltage magnitude measurements.
Based on the probability distribution of measurements, we
generate samples of the power loss with PMU time stamps and
chronological correlations and identify the line parameter based
on the current measurements from PMU device and the
power-loss samples. The main contributions of this study are as
follows:
1) The probability distribution of the measurements is used

to solve the problem that SCADA measurements do not match
with the PMU measurements. We take the SCADA
measurements as the samples and the PMU measurements as
the population. Then, based on probabilistic approaches, we

realize line parameter detection and identification.
2) A PPII of the line parameter detection is proposed based

on the probability density function (PDF) parameters of the
measurements. The PPII contains the features of the line
parameter and can be used to detect the line parameter. When
comparing the PPII with a threshold many times over, we can
determine whether the line parameter is correct. However, the
proposed detection method cannot distinguish between the
errors of the resistance and the reactance, but it can detect the
errors as a whole.
3) A power-loss PDF with PMU time stamps is derived to

model the correlation between the power loss and PMU time
stamps, and a power-loss chronological PDF is derived to
model the chronological correlation of the power loss. First, we
build a joint PDF between the power loss and current
measurements with the PMU time stamps, and a joint PDF of
the power loss at the prior time stamp and the following time
stamp. Then, using the conditional PDF, two PDFs of power
loss can be obtained.
4) The power-loss samples with the PMU time stamps and

chronological correlations are generated by the two PDFs of the
power loss based on the sampling algorithm. The line
parameter is identified by the power-loss samples and PMU
current measurements. Hardware simulations show the
proposed method is substantially effective for line parameter
detection and identification when considering that the SCADA
and PMU measurements do not match.
The remainder of this paper proceeds as follows: Section III

details the method for dealing with the nonsynchronization of
the PMU and SCADA measurements. Section IV considers the
Gaussian mixture model (GMM) PDF and the Gaussian model
PDF of the measurements, respectively. We derive a PPII for
the line parameter detection based on the parameters of the
PDFs. Section V describes the proposed approach for the line
parameter identification. We derive two PDFs of the power loss,
i.e., a power-loss PDF with PMU time stamps and a power-loss
chronological PDF. We introduce two sampling algorithms to
sample power-loss samples. Then, the line parameter is
identified by the PMU current measurements and the
power-loss samples with the features of the PMU time stamps
and chronological correlations. Section VI presents the
hardware simulation results of the proposed approach for line
parameter detection and identification, and comparison
analyses. Section VII presents our conclusions.

III. PMU MEASUREMENTS POPULATION AND SCADA
MEASUREMENTS SAMPLES

When a SCADA meter rather than a PMU meter is installed
at one bus, we analyze how PMU measurements of this bus can
be expressed by SCADA measurements. One measurement is
produced by a SCADA meter every second [45], and 50
measurements are produced by a PMUmeter every second with
exact time stamps. In Fig. 1, tx1 denotes the time stamp of the
SCADA measurement and t1, t2, … t50 denote the time stamps
of the PMU measurements. In real distribution networks, we
cannot obtain the real time of tx1. In this study, the PMU
measurements of a fixed number in a fixed timeframe are taken
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as the population, and one SCADA measurement (the time
stamp is tx1 in Fig. 1) is taken as a sample of the subpopulation
of 50 PMU measurements (the time stamps are t1, t2, … t50 in
Fig. 1) in the first second. Therefore, an unbiased estimator of
the population mean of the PMUmeasurements can be obtained
from the sample mean of the SCADA measurements in the
abundant measurement snapshots. The population distribution
of the PMU measurements can be obtained from the sample
distribution of the SCADA measurements in the abundant
measurement snapshots. This proposed solution is in
accordance with the method of stratified random sampling [46],
[47]. Therefore, when a SCADA is installed at one bus without
installing a PMU, an unbiased estimator of the population mean
of PMU measurements for this bus can be obtained by the
sample mean of SCADA measurements. Moreover, the
population distribution of PMU measurements for this bus can
be obtained by the sample distribution of SCADA
measurements.

Fig. 1. Inconsistent sampling time of PMU and SCADA measurements

IV. LINE PARAMETER DETECTION

A. PDF Parameters of Measurements
The GMM is the weighted finite sum of several Gaussian

components. Mathematically, the PDF can be expressed as in
[48]-[52].
We assume that the PDF of the measurement data is the

Gaussian PDF or the GMM PDF. The advantage of the GMM
approach is that the different types of the measurement
distributions can be fairly represented by several normal
distributions. The parameters of the GMM PDF can be
determined using the expectation maximization (EM)
algorithm [53]. The EM algorithm obtains the parameter set by
iterating between the E-step and M-step until convergence has
been reached [49], [54], [55]. However, the final solution is
very sensitive to the given initial parameters when the EM
algorithm converges [49]. In this study, we evaluate the
performance of the EM algorithm based on the weights of each
GMM, where GMMs of the measurements of the different
types have the same weights for the same load fluctuation.
Therefore, if the weights of different GMMs are different, then
the GMM PDF parameters need to be recalculated using the
EM algorithm. Through this method, we can obtain the PDF of
the measurements based on the estimated parameter set.

B. PPII of Line Parameter Detection

Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a

SCADA meter is installed at another bus of the same line, the
line parameter can be detected and identified. The location of
the PMU and SCADA measurements in Fig. 2 is an example of
the analysis. In Fig. 2, a PMU meter is installed at bus i, and a
SCADA meter is installed at bus j. Note that when a PMU
meter is installed at bus j and a SCADAmeter is installed at bus
i, the theory of the proposed method is similar to that of the
locations in Fig. 2.
According to Section III, in the abundant measurement

snapshots,
iU and ijI are the population of the voltage phasor

and current phasor, respectively, and | |jU is the samples of
voltage magnitude. According to Ohm's law, the population of
| |jU based on the line impedance is given as

| | | ( ) |j i ijU U I R jX   (1)
If the line impedance is correct, the mean of the samples | |jU

is the same as the mean of the population | |jU  . However, if the
line impedance is incorrect, the means of the samples and
population differ. At bus j, the PDF of the voltage magnitude
can be expressed using a GMM PDF or a Gaussian PDF.
Comparing the mean of the samples | |jU with the mean of the
population | |jU  , we propose a PPII to realize incorrect line
parameter detection:

1

| |
PPII 100

j jK
k k

j
k k

 



 
  (2)

Here, K can be determined by the voltage magnitude, which
is influenced by load fluctuation. When the PDF of the voltage
magnitude is a Gaussian PDF, K is one. For a Gaussian
distribution, if the PPII is greater than one threshold in most
cases, this line parameter is incorrect. We determine this
threshold experimentally. For the GMM distribution, this
threshold of PPII is K multiplied by the threshold of the
Gaussian PDF.

V. LINE PARAMETER IDENTIFICATION

A. PDF Parameters of Active and Reactive Power Loss
In Fig. 2, the expression of the line parameter identification

can be given as
2 ( ) ( ) ( )ij i j i jI R jX P Q P P j Q Q         (3)

However, the active and reactive power loss cannot be
precisely determined owing to the SCADA measurements that
do not match with the PMU measurements. First, we analyze
the PDF parameters of the active power loss. Next, we take the
GMM PDF is an example of the analysis.
According to Section III, in abundant measurement

snapshots, we can determine the GMM PDF parameters of the
current square 2

ijI population, the GMM PDF parameters of the
active power flow iP population, and the GMM PDF
parameters of the active power flow jP samples. Therefore, the
PDF parameters of the active power loss P is expressed as

2

= ij jiI PPP
k k k k      (4)
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ji PPP
k k k     (5)

2
ijIP

k k   (6)

Where the standard deviation P
k
 is equal to 22 2( )ijI

kR  , and

the standard deviation P
k
 is approximately equal to 2

ijI
k when

the resistance value in per-unit (p.u.) is approximately one.
We can determine the GMM PDF of the active power loss
P based on the PDF parameters. Using the same method, the

GMM PDF and GMM PDF parameters of the reactive power
loss Q can be determined.

B. Nonparametric Kernel Density Estimation
The PDF of the measurements can be obtained from the

nonparametric kernel density estimation (KDE), which is a
data-driven method. In a univariate KDE [56]-[58], the type of
kernel function has very little effect on the accuracy of the KDE.
Furthermore, the Gaussian kernel function has a wide range of
applications [57], [59]-[62]. In this study, a Gaussian kernel
function is selected as the kernel function. For a Gaussian
kernel, the optimal bandwidth can be determined as given in
[58], [63].
In this study, a multivariate KDE with two-dimensional

random variables [57] is used to develop a probability model
with the PMU time stamps and a chronological probability
model of the data. For a multivariate normal distribution kernel,
the optimal bandwidth can be determined as given in [64].

C. Probability Model of Power Loss
1) Chronological Probability Model
The active power loss at time t-1 affects the loss at time t, and

the active power loss at time t affects that at time t+1. In other
words, the active power loss at the preceding time stamp affects
that at the following time stamp. Consider the pair of active
power losses at time stamp t-1 and at time stamp t as an
example. The probability distribution of 1tP  has an impact on
the probability distribution of tP . The conditional PDF value
of tP can be expressed as

1
1

1

( , )
( | )=

( )
t t

t t
t

P P P
P P P

P P





 
 


(7)

Where 1( )tP P  can be calculated based on the univariate
KDE for the time interval [1, tm], and 1( , )t tP P P   can be
calculated based on the multivariate KDE for the time interval
[1, tm]. Because the power-loss data are not time series samples,
the samples of tP and 1tP  are data within the time interval [1,
tm] when 1( , )t tP P P   and 1( )tP P  are calculated using the
KDE, which neglects the effect of one sample in the abundant
measurement data.
Similarly, we can obtain the conditional PDF value of tQ .

1
1

1

( , )
( | )=

( )
t t

t t
t

P Q Q
P Q Q

P Q





 
 


(8)

Therefore, PDFs (7) and (8) are the active and reactive
power-loss chronological PDFs, respectively.
2) Probability Model with PMU Time Stamps
The chronological PDFs of tP and tQ simply reflect the

relationship between the prior time stamp and the following

time stamp and do not contain the time stamps of the PMU
measurements. The PMUs provide accurate synchronized
phasor measurements and have a high sampling rate. In this
section, we obtain the PDF of tP with the time stamps of the
PMUmeasurements. The current

ijI is the PMU measurements
with exact time stamps, and thus, 2

ijI is the measurements with
the exact time stamps. The conditional PDF value of tP with
the PMU time stamps can be obtained when the current

ijI is
obtained from a PMU meter installed at bus i.

2
2

2

( , )( | )=
( )
t t

t t
t

P P IP P I
P I


 (9)

2( )tP I is calculated based on the univariate KDE for the time
interval [1, tm], and 2( , )t tP P I is calculated based on
multivariate KDE for the time interval [1, tm].
Similarly, we can obtain the conditional PDF value of tQ .

2
2

2

( , )( | )=
( )
t t

t t
t

P Q IP Q I
P I


 (10)

In this section, the conditional PDF values of tP and tQ

reflect the effects of the exact time stamps of the PMU
measurements. Therefore, PDFs (9) and (10) are power-loss
PDFs with PMU time stamps.

D. Sampling Algorithm
Acceptance-rejection sampling (ARS) [65]-[66] is a

technique for generating random variates from an alternative
distribution, and then these variates are accepted or rejected
according to a criterion. The Metropolis-Hastings (MH)
algorithm [67]-[69] is a famous Markov chain Monte Carlo
(MCMC) scheme. For MH sampling, the proposal distribution
should generate random variates conveniently and can be any
fixed distribution [70]. In this study, we choose a normal
distribution as the proposal PDF ( |X)q x with mean X and
constant variance q .

E. Line Parameter Identification Algorithm
The expression of the power loss in (3) can be written as a

matrix equation:
2

2
ij

ij

I R P
X QI

              
(11)

By MH sampling, a lot of power-loss data with PMU time
stamps and chronological correlations are generated from the
PDFs of (7), (8), (9), and (10). Many current square
measurements can be obtained. In abundant measurement
snapshots, Equation (11) can be expressed as

RX PQAx y (12)
By using the total least squares (TLS) method, both the

errors of the coefficient matrix A and observed data vector PQy

can be taken into account simultaneously [18]. The line
parameter can be obtained through the TLS method that utilizes
singular value decomposition:

2 1
1( - )T T

RX T PQx A A I A y 
 (13)
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where 1T 
is the smallest singular value of the expanded

sample matrix [ , ]PQA y .
To show the proposed algorithm, the line parameter

identification is shown in Algorithm 1 and in the flow chart in
Fig. 3.
Algorithm 1 line parameter identification
Stage 1: (conditional PDF of active power loss for the time
interval [1, tm])
if K=1
calculate iP

k , jP
k , 2

ijI
k

calculate P
k
 and P

k
 in (5) (6)

build PDF of power loss ( )P P
generate random samples P from ( )P P
else
calculate iP

k , jP
k , 2

ijI
k , 2

ijI
k by EM

calculate P
k
 , P

k
 and P

k
 in (4) (5) (6)

build PDF of power loss ( )P P
generate random samples P from ( )P P by ARS
end if
build PDF ( , )tm tmP P P  based on KDE
build PDF 2( , )tm tmP P I based on KDE
generate PDF ( | )tm tmP P P 

generate PDF 2( | )tm tmP P I

Stage 2: (population of power loss and  1,t tm )
generate tP from 1( | )t tP P P   and 2( | )t tP P I by MH
output population of active power loss tP
generate population of reactive power loss tQ using the
same method in stage 1 and stage 2
Stage 3: (line parameter identification)
identify line parameter RXx by TLS in (13)

VI. HARDWARE SIMULATION RESULTS

A. Hardware Simulation Settings
In this study, the PDF of the measurement data is assumed to

be the Gaussian PDF or the GMM PDF; however, the PDF of
the real measurements in the distribution system is unknown.
This section discusses the performance of the proposed method
using the real measurements of the measuring equipment. Fig. 4
shows the hardware simulation in which two terminals of the
line are deployed by measuring equipment with different
accuracies. The specific network topology of the hardware
simulation is illustrated in Fig. 5. The equipment that is used for
the hardware simulation is presented in Tables I and II.
Therefore, the measuring accuracies of the voltage and current
of bus 1 are ±0.1% and ±(0.1%+0.06%), respectively, which
are used to simulate the PMU measurements. The measuring
accuracies of the voltage and current of bus 2 are ±(0.1%+0.5%)
and ±(0.1%+1%), respectively, which are used to simulate the
SCADA measurements.
A memory recorder can measure data and store data in real

time. The measurements of bus 1 and bus 2 have the same
refresh rate (i.e., 50 measurements per second) and the exact

time references, but different measuring accuracies. The
measurements of bus 2 have a lower measuring accuracy than
that of bus 1. Therefore, we randomly select one measurement
per second as one SCADA measurement per second. The PMU
measurements of bus 1 and the SCADA measurements of bus 2
are used to detect and identify the line parameters using the
proposed method.

Fig. 3. Flow chart of line parameter identification

Fig. 4. Hardware simulation

Fig. 5. Circuit of the hardware simulation
TABLE Ⅱ

OTHER EQUIPMENT PARAMETERS OF THE HARDWARE SIMULATION

Name (or name in Fig. 5) Equipment type Parameter
Transformer TDGC-2 220V/0-250V;50Hz
Resistance BX7-22 6A;30Ω
Inductance DKB-2 20A;5mH

Load B16 6A;30Ω
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TABLE Ⅰ
THE MEASURING EQUIPMENT OF THE HARDWARE SIMULATION

Name (or name in Fig. 5) Equipment type Measuring accuracy Ratio
Memory recorder HIOKI MR6000 ±0.1% ---
Current sensor 1 HIOKI CT6862 ±0.06% (amplitude); 0.2° (phasor angle) 2V/50A
Current sensor 2 FLUKE i30s ±1% 100mV/A
Voltage sensor 2 CHNT JDG4 ±0.5% 380/100V

Digital electric bridge VC4092A ±0.3% (resistance); ±0.3% (inductance) ---
In this section, we identify the line parameters using

Algorithm 1. The PDF of the measurement data is assumed to
be a Gaussian PDF when K=1. In stage two of Algorithm 1, we
obtain 15,000 power-loss samples with PMU time stamps and
chronological correlations. However, the first sample may not
follow the correct distribution and should be discarded [67].
Therefore, in this study, we choose the power-loss samples
from 1,001 to 15,000. The PDF of the measurement data is
assumed to be the GMM PDF when K is not one. In this GMM,
the PDF of the measurements contains three Gaussian
components, and the power-loss samples from 1 to 100 in each
Gaussian component are discarded. Then, the remaining
power-loss samples are used to identify the line parameters.
As the time skew of the SCADA measurement randomly

delays, to simulate this situation, we randomly select one
SCADA measurement each time. Therefore, the results of the
line parameter detection and identification are different each
time. However, to verify the effectiveness of the proposed
method, the detection or identification of each line parameter
will be performed five-times consecutively. Finally, the
average value of the five results is regarded as the estimated
impedance values.

B. Comparative Experiment

Fig. 6. Measurements of comparative experiment
To make a comparison, the tests are also performed under the

condition that the delay of the SCADA measurement is
neglected, i.e., the SCADA measurements obtained match with
the closest PMU measurements. In Fig. 6, for each second, the
time stamp of the SCADA measurement is the same as the
fiftieth time stamp of the PMU measurements in the
comparative experiment, i.e., the green tx1 is the same as t50.
At one end of the line, there are 300 PMU measurements (the
time stamps are t50, t100, … t15000). However, at the other
end of the line, there are 300 SCADA measurements (the green
time stamps are tx1, tx2, … tx300). The line parameter is
directly identified by the TLS.

C. Experimental Results Analysis
In theory, the method proposed in this study can successfully

detect line parameters and obtain more accurate line parameters.
However, errors in detection and identification are inevitably
caused by the following three factors:

1) The number of SCADA sample measurements: according
to Section III, an unbiased estimator of the population mean can
be given by the sample mean in the abundant measurement
snapshots. When the number of samples is large, the probability
distribution of the samples will be very close to that of the
original population. In this study, 300 SCADA measurements
are used as the samples of the population of 15,000 PMU
measurements, which may lead to errors but can realize the
detection and identification of line parameters.
2) The error of PMU and SCADA measurements: the PMU

and SCADA measurements are provided by measuring
equipment that possesses inherent measuring accuracy. When
the measurements at both ends of the line have the same exact
time stamps, the deviation of the estimated line parameter may
be brought about by the related measurements.
3) The choice of the base power and base voltage: when the

resistance value, in p.u., is approximately one, Equation (6) is
used. However, the real value of the impedance is unknown.
The impedance value, in p.u., can be approximately one, rather
than exactly equal to one, using the appropriate choice of base
power and base voltage. Therefore, the standard deviation of
the power loss in the proposed algorithm deviates from the true
standard deviation.
In this study, the real values of impedance are the measured

resistance and inductance based on a digital electric bridge, i.e.,
VC4092A. The measuring accuracy of the VC4092A for the
resistance and inductance is ±0.3% in Table I, which shows that
the measured value of VC4092A can be believed. The initial
value of the branch is known, but may have an error with the
real value of this line. Because some real line parameters are
unknown in the actual distribution network, we adjust the base
power and base voltage such that the p.u. value of the initial
parameter is close to one. The initial values of the line
parameters are within a 20% error from their real values. Table
III lists the impedance parameters, base power, and base
voltage. In this study, the proposed method is analyzed using
MATLAB 2018b installed on a computer with 8 GB of RAM,
2.60 GHz and 2.59 GHz processors, and an Intel Core i7-9750H
CPU. The results of the line parameter detection and
identification for five consecutive times are shown in Tables IV,
V, and VI. We determine this threshold (0.5) based on many
experiments of real measurements. For the GMM distribution,
this threshold is 1.5.
As can be seen in Table IV, each PPII of the Gaussian PDF

and GMM PDF of the measurements is larger than 0.5 and 1.5,
respectively. Therefore, the initial impedance of the line
parameters is different from the measured impedance using the
VC4092A, that is, the initial impedance is incorrect. The
detection results of hardware simulation are credible according
to Table III, in which the initial impedance is different from the
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measured impedance of VC4092A. The average errors of the
line parameter identification of the hardware simulation by the
comparative experiment are 25.3233% and 20.6801% in Table
Ⅴ, and 21.9467% and 15.9152% in Table VI. However, those
by the proposed method are -2.3084% and -1.1009% in Table Ⅴ,
and -3.7267% and -0.5621% in Table VI. It is clear from this
data that the maximal error of the proposed method (3.7267%)
is smaller than the minimal error of the comparative experiment
(15.9152%), and the difference is more than 10%. The line
parameter identification of the proposed method is close to the
measured impedance based on a digital electric bridge.
Therefore, in both Gaussian and GMM distributions, it is
evident that for an unsynchronized issue of the PMU and
SCADA measurements, the line parameter can be detected by
comparing the PPII with a threshold, and the error of the line
parameter identification is less than 3.7267% using the method
proposed in this paper.

TABLE Ⅲ
PARAMETERS SETTINGS OF HARDWARE SIMULATION

Parameters Gaussian GMM
Initial values of impedance (p.u.) 1+j×0.8 1+j×0.8
Measured impedance of VC4092A 11.18Ω;28.60mH 11.09Ω;28.66mH

Base power (VA) 90 90
Base voltage (V) 30 30

TABLE Ⅳ
DETECTION RESULTS OF HARDWARE SIMULATION

Distribution PPII-1 PPII-2 PPII-3 PPII-4 PPII-5
Gaussian 2.1522 2.1907 2.2954 2.0197 1.5622
GMM 4.5543 6.5463 6.1470 4.3911 6.6003

VII. CONCLUSION
This paper presents a data-based method for line parameter

detection and identification where PMU measurements have
exact time stamps and SCADA measurements do not in
distribution grids. Because the proposed method is a
data-driven method, the PDFs obtained from the data do not
need to be known previously. For the time skew of the PMU
and SCADA measurements, we take SCADA measurements as
the samples and PMU measurements as the population. This
study derives a PPII to detect the line parameters. We generate
samples of the power loss with PMU time stamps and

chronological correlations from a power-loss PDF with PMU
time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclusions of
this study are as follows:
1) The time skew of the PMU and SCADAmeasurements for

the line parameter detection and identification is solved using
probabilistic approaches. Both the probability distribution of
the measurements and the sampling algorithm play a crucial
role in realizing the line parameter detection and identification.
2) A PPII is proposed to detect the line parameter. The

proposed PPII is the sum of the relative errors of the voltage
magnitude measurement means, derived from the PDF
parameters of the measurements and line parameters. A PPII is
derived based on the measurement-based method (i.e., the
data-driven method). The detection of the accuracy of the line
parameter depends on the PPII and threshold over many
comparisons.
3) A power-loss chronological PDF and a power-loss PDF

with PMU time stamps are derived based on the conditional
probability and nonparametric KDE, which provides the PDF
of the measurements based on the measurements-based method,
i.e., the data-driven method. The power-loss chronological PDF
is used to model the chronological correlation of the power loss
at the prior time stamp and the following time stamp.
Furthermore, the power-loss PDF with the PMU time stamps is
used to model the correlation between the power loss and PMU
time stamps.
4) The power-loss samples are sampled from two PDFs of

the power loss by the MH algorithm. Using the PMU current
measurements and power-loss samples with PMU time stamps
and chronological correlations, we identify line parameters
based on the data-driven and model-driven methods. For the
Gaussian and GMM distributions, hardware simulations show
that when SCADA measurements do not match with PMU
measurements, the incorrect line parameter can be detected and
the identification errors of the line parameters are between
-3.7267% and -0.5621%.

TABLE Ⅴ
IDENTIFICATION OF HARDWARE SIMULATION FOR GAUSSIAN DISTRIBUTION

Method type Estimated impedance Test 1 Test 2 Test 3 Test 4 Test 5 Average value

Identification of
proposed
method

Estimated values of impedance (p.u.)
1.0876+j×0.

8908
1.1018+j×0.

8883
1.1532+j×0.

8790
1.0684+j×0.

8756
1.0500+j×0.

9068 1.0922+j×0.8881
Relative errors of resistance (%) -2.7207 -1.4476 3.1473 -4.4373 -6.0836 -2.3084
Relative errors of reactance (%) -0.8031 -1.0776 -2.1137 -2.4894 0.9795 -1.1009

Identification of
comparative
experiment

Estimated values of impedance (p.u.)
1.3801+j×1.

0871
1.4140+j×1.

0781
1.4132+j×1.

0660
1.4447+j×1.

1052
1.3536+j×1.

0821 1.4011+j×1.0837
Relative errors of resistance (%) 23.4432 26.4744 26.4004 29.2251 21.0736 25.3233
Relative errors of reactance (%) 21.0630 20.0514 18.7069 23.0732 20.5060 20.6801

TABLE Ⅵ
IDENTIFICATION OF HARDWARE SIMULATION FOR GMM DISTRIBUTION

Method type Estimated impedance Test 1 Test 2 Test 3 Test 4 Test 5 Average value

Identification of
proposed
method

Estimated values of impedance (p.u.)
1.1084+j×0.

8702
1.0277+j×0.

8855
1.0180+j×0.

8985
1.1189+j×0.

9210
1.0654+j×0.

8994 1.0677+j×0.8949
Relative errors of resistance (%) -0.0558 -7.3336 -8.2044 0.8926 -3.9323 -3.7267
Relative errors of reactance (%) -3.3082 -1.6094 -0.1646 2.3335 -0.0620 -0.5621

Identification of
comparative
experiment

Estimated values of impedance (p.u.)
1.3816+j×1.

0415
1.3252+j×1.

0508
1.3427+j×1.

0551
1.3762+j×1.

0249
1.3363+j×1.

0439 1.3524+j×1.0432
Relative errors of resistance (%) 24.5762 19.4949 21.0760 24.0893 20.4969 21.9467
Relative errors of reactance (%) 15.7204 16.7588 17.2283 13.8765 15.9920 15.9152
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The detection method presented here has its limitations: first,
if the errors of the line parameters are too small, we cannot
distinguish between the PPII and threshold; therefore, we may
not detect the incorrect line parameters of the small errors.
Second, despite the ability of the proposed detection method to
detect errors that result from the resistance and reactance, it
cannot detect whether the error is brought about by resistance
or reactance. Nevertheless, the results of the hardware
simulations are credible, and the detection method is feasible.
In our future work, we will attempt to remove some of the

limitations of the detection method, and investigate the PMU
deployment in distribution systems and the model of the line
with a shunt capacitor to improve the scalability of the method.
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