Parameters with PMU and Unsynchronized
 SCADA Measurements in Distribution Grids
 Inping Sun, Student Member, IEEE, Qifang Chen, *Member, IEEE*, Mingchao Xia, *Senior Member,*
 IEEE
 Abstract—Line parameters pla icle has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

information: DOI: 10.17775CSEDPES.2020.06860, CSEE Journal of Power a been accepted for publication in a fiture issue of this journal, but has not been fully edited. Content may change prior to final publication.

16. DOI: 10.1773/CSEEJPES.2020.0660, CSEE Journal of Power and Energy Systems
 As been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

SCADA Measurements in Distribution Grids

SCADA Measurements in Distributi Matrice ISOE 10,17775(CSEEPES.2020.06860, CSEE Journal of Power and Energy Systems

Journal of Power and Energy Systems

Journal of Power and Energy Systems

Journal of Democratic Member, *IEEE*
 SCADA Measurements in Dis

	current measurements, the line parameters are identified using		probab
	the total least squares (TLS) algorithm. Hardware simulations	$(\omega_{k}^{I_{ij}^2},\mu_{k}^{I_{ij}^2},\sigma_{k}^{I_{ij}^2})$	GMM
	demonstrate the effectiveness of the proposed method for distribution network line parameter detection and identification.	$(\omega_k^{\scriptscriptstyle P_i},\mu_k^{\scriptscriptstyle P_i},\sigma_k^{\scriptscriptstyle P_i})$	GMM
		$(\omega_k^{P_j}, \mu_k^{P_j}, \sigma_k^{P_j})$ GMM	
	<i>Index Terms—Line parameter detection and identification, the</i> time skew of PMU and SCADA measurements, distribution	$(\omega_{\scriptscriptstyle{k}}^{\scriptscriptstyle{\Delta P}},\mu_{\scriptscriptstyle{k}}^{\scriptscriptstyle{\Delta P}},\sigma_{\scriptscriptstyle{k}}^{\scriptscriptstyle{\Delta P}})$ GMM	
	systems, probability density function, sampling algorithm.	$t \in [1,tm]$	Time s
		$P(\Delta P_{t-1})$	PDF
	I. NOMENCLATURE		time in
Κ	The number of the Gaussian components in	$P(\Delta P_t, \Delta P_{t-1})$	Joint P
\boldsymbol{R}	the Gaussian mixture models (GMM). Resistance of the line.	$P(\Delta Q_{t-1})$	and $t-1$ PDF
X	Reactance of the line.		time in
ΔP	Active power loss of the line.	$P(\Delta Q_t, \Delta Q_{t-1})$	Joint P
ΔQ	Reactive power loss of the line.		t and t
\overline{A}	Matrix of the current square measurements.	$P(I_t^2)$	PDF
x_{RX}	Matrix of the line impedance.		interva
		$P(\Delta P_t, I_t^2)$	Join
		for the $P(\Delta Q_t, I_t^2)$	
	This work was supported by the National Key Research and Development Program under Grant 2017YFB0902900 and Grant 2017YFB0902902.		Join
	J. P. Sun, Q. F. Chen, M. C. Xia (corresponding author, e-mail:		t for th
	$mchxia@bitu.edu.cn)$ are with the School of Electrical Engineering, Beijing	q(x X)	The
Jiaotong University (BJTU), Beijing 100044, China.			variano
		© CSEE	

Jinping Sun, Student Member, IEEE, Qifang Chen, Member, IEEE, Mingchao Xia, Senior Member, <i>IEEE</i>		
Abstract-Line parameters play an important role in the control and management of distribution systems. Currently, phasor measurement unit (PMU) systems and supervisory control and data acquisition (SCADA) systems coexist in distribution systems. Unfortunately, SCADA and PMU measurements usually do not match each other, resulting in inaccurate detection and identification of line parameters based on measurements. To solve this problem, a data-driven method is proposed. SCADA measurements are taken as samples and PMU measurements as the population. A probability parameter identification index (PPII) is derived to detect the whole line parameter based on the probability density function (PDF) parameters of the measurements. For parameter identification, a power-loss PDF with the PMU time stamps and a power-loss chronological PDF are derived via kernel density estimation (KDE) and the conditional PDF. Then, the power-loss samples with the PMU time stamps and chronological correlations are generated by the two PDFs of the power loss via the Metropolis-Hastings (MH) algorithm. Finally, using the power-loss samples and PMU current measurements, the line parameters are identified using the total least squares (TLS) algorithm. Hardware simulations demonstrate the effectiveness of the proposed method for distribution network line parameter detection and identification. Index Terms-Line parameter detection and identification, the time skew of PMU and SCADA measurements, distribution	y_{PQ} $\sigma_{\scriptscriptstyle T+1}$ I_{ij} P_i Q_i U_i P_{j} Q_i $ U_j $ $\mid \mu_k^j \mid'$ μ_k^j $(\omega_k, \mu_k, \sigma_k)$ $(\omega_{k}^{I_{\bar{y}}^{2}}, \mu_{k}^{I_{\bar{y}}^{2}}, \sigma_{k}^{I_{\bar{y}}^{2}})$ $(\omega_k^{P_i},\mu_k^{P_i},\sigma_k^{P_i})$ $(\omega_k^{P_j},\mu_k^{P_j},\sigma_k^{P_j})$	Matrix of the power loss. The smallest singular value. Current phasor of line between bus i and bus j. Active power flow of line from bus i to bus j. Reactive power flow of line from bus i to bus j. Voltage phasor at bus i. Active power flow of line from $busj$ to bus i. Reactive power flow of line from $busj$ to bus Voltage amplitude at bus j. The mean of $ U_i '$. The mean of $ U_i $. The weight, mean, and standard deviation of the kth Gaussian component in the GMM probability density function (PDF). GMM PDF parameters of current square. GMM PDF parameters of active power flow P_i . GMM PDF parameters of active power flow P_i . $(\omega_k^{\Delta P}, \mu_k^{\Delta P}, \sigma_k^{\Delta P})$ GMM PDF parameters of active power loss.
systems, probability density function, sampling algorithm. I. NOMENCLATURE K The number of the Gaussian components in the Gaussian mixture models (GMM). Resistance of the line. R Reactance of the line. X ΔP Active power loss of the line. ΔQ Reactive power loss of the line. Matrix of the current square measurements. A Matrix of the line impedance. $x_{_{RX}}$ This work was supported by the National Key Research and Development Program under Grant 2017YFB0902900 and Grant 2017YFB0902902. J. P. Sun, Q. F. Chen, M. C. Xia (corresponding author, e-mail: $mchxia@bitu.edu.cn)$ are with the School of Electrical Engineering, Beijing Jiaotong University (BJTU), Beijing 100044, China.	$t \in [1,tm]$ $P(\Delta P_{t-1})$ $P(\Delta P_t, \Delta P_{t-1})$ $P(\Delta Q_{t-1})$ $P(\Delta Q_t, \Delta Q_{t-1})$ $P(I_t^2)$ $P(\Delta P_t, I_t^2)$ $P(\Delta Q_t, I_t^2)$ q(x X)	Time stamp. PDF value of ΔP_{t-1} at time stamp t-1 for the time interval $[1, tm]$. Joint PDF value of ΔP_t and ΔP_{t-1} at time stamp t and $t-1$ for the time interval $[1, tm]$. PDF value of ΔQ_{t-1} at time stamp t-1 for the time interval $[1, tm]$. Joint PDF value of ΔQ_i and ΔQ_{i-1} at time stamp t and t-1 for the time interval $[1, tm]$. PDF value of I_n^2 at time stamp t for the time interval $[1, tm]$. Joint PDF value of ΔP_t and I_u^2 at time stamp t for the time interval $[1, tm]$. Joint PDF value of ΔQ_t and I_{ii}^2 at time stamp <i>t</i> for the time interval $[1, tm]$. The proposal PDF with mean X and constant variance σ_a .

VER AND ENERGY SYSTEMS
II. INTRODUCTION id
systems, with a higher penetration of the
on (DG), demand response (DR) enabled
virgy, and power electronics equipment, EE JOURNAL OF POWER AND ENERGY SYSTEMS

II. INTRODUCTION

IS CONSIDER TO CONSIDER THE CONSIDER T EE JOURNAL OF POWER AND ENERGY SYSTEMS

II. INTRODUCTION

II. INTRODUCTION dentification of hybrid 1

distributed generation (DG), demand response (DR) enabled

with PMU measurements in

distributed generation (DG), demand CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

II. INTRODUCTION identification of hybri
 II. INTRODUCTION identification of hybri
 II. INTRODUCTION identification of hybri

considering the fact that

distributed generation CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

II. INTRODUCTION identification of hybroduction

II. INTRODUCTION identification of hybroduction

Idistributed generation (DG), demand response (DR) enabled with PMU measurement

l CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

II. INTRODUCTION

II. INTRODUCTION

II. INTRODUCTION

IN URES CALD

Interference on the properties of the considering the fact that SCAD

Ioads, renewable energy, and power electro CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

II. INTRODUCTION

II. INTRODUCTION

II. INTRODUCTION

IN the mass considering the fact that SCAD/

loads, renewable energy, and power electronics equipment,

poople have higher req CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

II. INTRODUCTION

II. INTRODUCTION

II. INTRODUCTION

INCOLUSITY CONTINUES (DR) enabled with PMU measurement

loads, renewable energy, and power electronics equipment, incorporatin CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

II. INTRODUCTION identification of hybric

II. INTRODUCTION identification of hybric

II. INTRODUCTION identification of hybric

considering the fact that

distributed generation CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

II. INTRODUCTION identification of hybrid

II. INTRODUCTION identification of hybrid

In smart distribution systems, with a higher penetration of the considering the fact that S

l II. INTRODUCTION identification of hybrid m

Identification of hybrid m

distributed generation (DG), demand response (DR) enabled with PMU measurements in-

loads, renewable energy, and power electronics equipment, incor II. INTRODUCTION identification of hybrid

distributed generation (DG), demand response (DR) enabled with PMU measurements

loads, renewable energy, and power electronics equipment, Incorporating PMU r

people have higher II. INTRODUCTION

II. INTRODUCTION

Idistributed generation (DG), demand response (DR) enable might fact that

loads, renewable energy, and power electronics equipment,

localized monitoring, protection, and control of the In smart distribution systems, with a higher penetration of the

distributed generation (DG), demand response (DR) enabled

with PMU measurements in distribution

loogle, havewell energy, and power electronics equipment,
 Ldistributed generation (DG), demand response (DR) enabled with PMU measurements in dis
loads, renewable energy, and power electronics equipment,
people have higher requirements for power distribution. Through careful mo loads, renewable energy, and power electronics equipment,

people have higher requirements for power distribution. Through careful monitoring, protection, and control of the measurements incorrectly in

efficient, reliabl people have higher requirements for power distribution. Parameter identification, (Through careful monitoring, protection, and control of the measurements incorrectly identificient, reliable, and flexible operation [1]. In Through careful monitoring, protection, and control of the measurements incorrectly identifieven distribution systems can be ensured of transmission line parameters identifiering, relable, and flexible operation [1]. In d measurements. Fraction , reliable, and flexible operation [1]. In distribution an augmented state-parameter hyds, line parameter is one of the backbones of state estimation and blackout measurements to update the approximation, magneme grids, line parameter is one of the backbones of state estimation

[2], fault location, reactive power optimization, and blackout measurements to update the

management; therefore, a more accurate line parameter would the [2], fault location, reactive power optimization, and blackout measurements to update the approx approx power flow calculations and fault isolation. However, imeasurements at one end of imcorrect parameters may arise from management; therefore, a more accurate line parameter would
improve power flow calculations and fault isolation. However,
measurements at one end o
incorrect parameters may arise from poor line length estimation, measurem In smart distribution systems, with a higher penetration of the distributed generation (DG), demand response (DR) enabled loads, renewable energy, and power electronics equipment,

improve power flow calculations and fault isolation. However,

incorrect parameters may arise from poor line length estimation,

solow updating of the PMU and SCADA meas

solve updating of the parameters and the detables, incorrect parameters may arise from poor line length estimation,
slow updating of network changes in the database, aging, or
environmental factors [3], [4]; therefore, the detection and voltage and current did no
identifi slow updating of network changes in the database, aging, or
environmental factors [3], [4]; therefore, the detection and voltage and current did not
demotische in parameters based on related changes; therefore, the time sk environmental factors [3], [4]; therefore, the detection and voltage and current did not
identification of incorrect line parameters based on related changes; therefore, the time sace
measurements is of great importance. F identification of incorrect line parameters based on related

measurements is of great importance. Furthermore, the stands Considering the incorrect sequencements.

measurements accuracy of the line parameters can be dire measurements is of great importance. Furthermore, the space and SCADA meads are also are also are directly affected by and SCADA meads are equipped with a in [17]. A method for measurement units (PMUs) are equipped with a accuracy of the line parameters can be directly affected by

measurements.

measurements.

Thasor measurement units (PMUs) are equipped with a

in [17]. A method for

global positioning system (GPS) receiver and render vol measurements.

Mus) are equipped with a

equipped with a

in [17]. A method for

global positioning system (GPS) receiver and render voltage income

and current phases was proposed usin

PMU is installed at a bus, the cur Phasor measurement units (PMUs) are equipped with a
 $^{\text{m}}$ [17]. A method for estimal

global positioning system (GPS) receiver and render voltage

allows was proposed using the

and current phasors with exact time sta global positioning system (GPS) receiver and render voltage
and current phasors with exact time stamps [5], [6]. When a
lines was proposed
PMU is installed at a bus, the current phasors of the line
current and voltage sinc and current phasors with exact time stamps [5], [6]. When a

PMU is installed at a bus, the current phasors of the line

current and voltage sign measurements and the voltage phasor of this bus

can be measured. The accura PMU is installed at a bus, the current phasors of the line current and voltage signals measure
connected to the other buses and the voltage phasor of this bused on abruptomized data we
can be measured. The accuracy of PMU connected to the other buses and the voltage phasor of this bus
can be measured. The accuracy of PMU measurements is high,
with a refresh rate of up to 50 (or even 100) times per second for
based on abrupt change detecti
 can be measured. The accuracy of PMU measurements is high, synchronization using a 1 ime 1
with a refresh rate of up to 50 (or even 100) times per second for these don abrupt change detection
at are distant (7). In contra with a refresh rate of up to 50 (or even 100) times per second for
a 50-Hz system [7]. In contrast, modern supervisory control and
a coupling the carrelative (data causainements, a non-iterative
dime and transformer param a 50-Hz system [7]. In contrast, modern supervisory control and

data acquisition (SCADA) measurements do not have exact line and transformer parameter

time references and render voltage and current magnitude

measuremen data acquisition (SCADA) measurements do not have exact
time references and render voltage and current magnitude
data [23]. Based on
measurements. SCADA systems typically consist of remote altimation
terminal unit compute time references and render voltage and current magnitude

measurements. SCADA systems typically consist of remote

terminal unit computers that can record real-time

terminal unit computers that can record real-time

term measurements. SCADA systems typically consist of remote large several measurements and deliver this data a corord real-time estimated states provided by a communication system [8]. Owing to the SCADA architecture, used co terminal unit computers that can record real-time using several measurement s
measurements and deliver this data to a control center with a
estimated states provided by a
its measurement value at present will not match th measurements and deliver this data to a control center with a
communication system [8]. Owing to the SCADA architecture,
moment when the value of the value of the particular moment when the value of measurement is taken, communication system [8]. Owing to the SCADA architecture, used conventional magnitude
its measurement value at present will not match the value of the PMU synchronized measurement
magnitude measurement is can be can be m its measurement value at present will not match the value of the
measurement when the SCADA measurement is taken, if the
measurements is excillates over time [9]. SCADA and IGG (Institute of Geode
measurements taken at ti moment when the SCADA measurement is taken, if the PMU measurements, and magnitude measurement is oscillates over time [9]. SCADA and IGG (Institute of measurements taken at time t are delayed for ati + bti + cti, Academy magnitude measurement is oscillates over time [9]. SCADA and IGG (Institute measurements taken at time t are delayed for ati + bti + cti, Academy of Science with the study of Science of data to be received by the control measurements taken at time *t* are delayed for ati + bti + cti, Academ
where ati is the period of the cyclic measurement gathering, bti
is the time for the set of data to be received by the control center, method
and cti here at is the period of the cyclic measurement gathering, bti

methods [25]-[29], the least

the time for the set of data to be received by the control center, method [30], a robust M-esti

d cti is the dead time between is the time for the set of data to be received by the control center, method [30], a robust M-esti
and cti is the dead time between the arrival of measurements and their processing. For a given bus, the at is different fr and cti is the dead time between the arrival of measurements
and their processing. For a given bus, the ati is different from
intentificant measurement errors [24], PMU
one measurement to another with its value is between and their processing. For a given bus, the ati is different from

one measurement to another with its value is between 0.1 s and

0.9 s. Furthermore, bti varies from one bus to another and its

1311, the uncertainty in PM one measurement to another with its value is between 0.1 s and

0.9 s. Furthermore, bti varies from one bus to another and its

1311, the uncertainty in PMU m

value is between 0.1 s and 0.5 s [10]. At a given time *t*, o

0.9 s. Furthermore, bti varies from one bus to another and its [31], the uncertainty in PMU is value is between 0.1 s and 0.5 s [10]. At a given time t_0 , one transformers errors [26/D]-[28], and sasigned to the time in value is between 0.1 s and 0.5 s [10]. At a given time t, one transformers errors [26]-[28], a SCADA measurement was taken at time ts| $\lt t$ that can be in addition, many other m interval [t-T, t] where T is approximately SCADA measurement was taken at time $tsl < t$ that can be \ln addition, many other measurement identification [33]-[11]. In samporameter identification [33]-[11]. In this study, the time skew of the SCADA measurements there

identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter i identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter i

identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter i entification of hybrid measurements is appealing when

insidering the fact that SCADA measurements do not match

th PMU measurements in distribution grids.

Incorporating PMU measurements can improve the line

rameter iden identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter i identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter i identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter i identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter i identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter i identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter i identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter i identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
measurement identification of hybrid measurements is appealing when
considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter i considering the fact that SCADA measurements do not match
with PMU measurements in distribution grids.
Incorporating PMU measurements can improve the line
parameter identification, especially when SCADA
measurements incorr with PMU measurements in distribution grids.

Incorporating PMU measurements can improve the line

parameter identification, especially when SCADA

measurements incorrectly identify parameters [13], [14]. For

transmission Incorporating PMU measurements can improve the line
parameter identification, especially when SCADA
measurements incorrectly identify parameters [13], [14]. For
transmission line parameters identification, authors [15] use parameter identification, especially when SCADA
measurements incorrectly identify parameters [13], [14]. For
transmission line parameters identification, authors [15] used
an augmented state-parameter hybrid weighted least measurements incorrectly identify parameters [13], [14]. For
transmission line parameters identification, authors [15] used
an augmented state-parameter hybrid weighted least squares
state estimator that was based on SCADA transmission line parameters identification, authors [15] used
an augmented state-parameter hybrid weighted least squares
state estimator that was based on SCADA and PMU
measurements to update the approach proposed in [16] an augmented state-parameter hybrid weighted least squares
state estimator that was based on SCADA and PMU
measurements to update the approach proposed in [16]. In [5],
the line parameter estimation method required PMU
mea state estimator that was based on SCADA and PMU
measurements to update the approach proposed in [16]. In [5],
the line parameter estimation method required PMU
measurements at one end of a given line and SCADA
measurements measurements to update the approach proposed in [16]. In [5],
the line parameter estimation method required PMU
measurements at one end of a given line and SCADA
measurements at the other. During the short collection inter the line parameter estimation method required PMU measurements at one end of a given line and SCADA measurements of the PMU and SCADA measurements, the magnitude of the voltage and current did not exhibit significant wavef measurements at one end of a given line and SCADA
measurements at the other. During the short collection interval
of the PMU and SCADA measurements, the magnitude of the
voltage and current did not exhibit significant wave measurements at the other. During the short collection interval
of the PMU and SCADA measurements, the magnitude of the
voltage and current did not exhibit significant waveform
changes; therefore, the time skew of the meas of the PMU and SCADA measurements, the magnitude of the voltage and current did not exhibit significant waveform changes; therefore, the time skew of the measurements was ignored. Considering the inconsistent sampling time voltage and current did not exhibit significant waveform
changes; therefore, the time skew of the measurements was
ignored. Considering the inconsistent sampling time of the
PMU and SCADA measurements in a real system, the changes; therefore, the time skew of the measurements was ignored. Considering the inconsistent sampling time of the PMU and SCADA measurements in a real system, the PMU and SCADA measurement systems were discussed separat ignored. Considering the inconsistent sampling time of the PMU and SCADA measurements in a real system, the PMU and SCADA measurement systems were discussed separately in [17]. A method for estimating the self and mutual z PMU and SCADA measurements in a real system, the PMU
and SCADA measurement systems were discussed separately
in [17]. A method for estimating the self and mutual
zero-sequence impedances for mutually coupled transmission
l and SCADA measurement systems were discussed separately
in [17]. A method for estimating the self and mutual
zero-sequence impedances for mutually coupled transmission
lines was proposed using the unsynchronized three-phas in [17]. A method for estimating the self and mutual
zero-sequence impedances for mutually coupled transmission
lines was proposed using the unsynchronized three-phase
current and voltage signals measured during the fault zero-sequence impedances for mutually coupled transmission
lines was proposed using the unsynchronized three-phase
current and voltage signals measured during the fault period.
The unsynchronization using a Time Time-trans lines was proposed using the unsynchronized three-phase
current and voltage signals measured during the fault period.
The unsynchronized data were aligned to complete the
synchronization using a Time Time-transform (TT-tra current and voltage signals measured during the fault period.
The unsynchronized data were aligned to complete the
synchronization using a Time Time-transform (TT-transform)
based on abrupt change detection [22]. Based on The unsynchronized data were aligned to complete the
synchronization using a Time Time-transform (TT-transform)
based on abrupt change detection [22]. Based on the magnitude
measurements, a non-iterative estimation of the synchronization using a Time Time-transform (TT-transform)
based on abrupt change detection [22]. Based on the magnitude
measurements, a non-iterative estimation of the transmission
line and transformer parameters was prop based on abrupt change detection [22]. Based on the magnitude
measurements, a non-iterative estimation of the transmission
line and transformer parameters was proposed using SCADA
data [23]. Based on PMU measurements, a tr measurements, a non-iterative estimation of the transmission
line and transformer parameters was proposed using SCADA
data [23]. Based on PMU measurements, a transmission line
parameter estimation by at least one PMU was p line and transformer parameters was proposed using SCADA
data [23]. Based on PMU measurements, a transmission line
parameter estimation by at least one PMU was proposed by
using several measurement snapshots from PMUs and
 data [23]. Based on PMU measurements, a transmission line
parameter estimation by at least one PMU was proposed by
using several measurement snapshots from PMUs and
estimated states provided by a hybrid state estimator, wh parameter estimation by at least one PMU was proposed by
using several measurement snapshots from PMUs and
estimated states provided by a hybrid state estimator, which
used conventional magnitude measurements and available using several measurement snapshots from PMUs and
estimated states provided by a hybrid state estimator, which
used conventional magnitude measurements and available
PMU synchronized measurements [4]. Furthermore, based on estimated states provided by a hybrid state estimator, which
used conventional magnitude measurements and available
PMU synchronized measurements [4]. Furthermore, based on
PMU measurements, an adaptive linear neuron (ADAL used conventional magnitude measurements and available
PMU synchronized measurements [4]. Furthermore, based on
PMU measurements, an adaptive linear neuron (ADALINE)
and IGG (Institute of Geodesy & Geophysics, Chinese
Acad PMU synchronized measurements [4]. Furthermore, based on
PMU measurements, an adaptive linear neuron (ADALINE)
and IGG (Institute of Geodesy & Geophysics, Chinese
Academy of Sciences) methods [24], robust identification
me PMU measurements, an adaptive linear neuron (ADALINE)

and IGG (Institute of Geodesy & Geophysics, Chinese

Academy of Sciences) methods [24], robust identification

methods [25]-[29], the least trimmed squares estimation
 and IGG (Institute of Geodesy & Geophysics, Chinese
Academy of Sciences) methods [24], robust identification
methods [25]-[29], the least trimmed squares estimation
method [30], a robust M-estimator method [31], and a
maxi Academy of Sciences) methods [24], robust identification
methods [25]-[29], the least trimmed squares estimation
method [30], a robust M-estimator method [31], and a
maximum likelihood estimation method [32] were proposed methods [25]-[29], the least trimmed squares estimation
method [30], a robust M-estimator method [31], and a
maximum likelihood estimation method [32] were proposed to
identify line parameters. These methods can address PM [36]. in in likelihood estimation method [32] were proposed to
entify line parameters. These methods can address PMU
assurement errors [24], PMU measurement outliers [25], [30],
1], the uncertainty in PMU measurements [32], inst identify line parameters. These methods can address PMU
measurement errors [24], PMU measurement outliers [25], [30],
[31], the uncertainty in PMU measurements [32], instrument
transformers errors [26]-[28], and PMU phase measurement errors [24], PMU measurement outliers [25], [30], [31], the uncertainty in PMU measurements [32], instrument transformers errors [26]-[28], and PMU phase angle error [29]. In addition, many other methods for tr [31], the uncertainty in PMU measurements [32], instrument transformers errors [26]-[28], and PMU phase angle error [29].
In addition, many other methods for transmission line parameter identification [33]-[35] have been transformers errors [26]-[28], and PMU phase angle error [29].
In addition, many other methods for transmission line
parameter identification [33]-[35] have been proposed using
PMU measurements. Moreover, a measurement-bas In addition, many other methods for transmission line
parameter identification [33]-[35] have been proposed using
PMU measurements. Moreover, a measurement-based
transmission line parameter estimation with an adaptive data

JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
stamp of the PMU to align the SCADA measurement data at the realize
same time section based on the instantane JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PMU A
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
stamp of the PMU to align the SCADA measurement data at the realize line parameter dete JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PM
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
stamp of the PMU to align the SCADA measurement data at the realize line parameter detecti JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PY SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
stamp of the PMU to align the SCADA measurement data at the realize line parameter detecs
 JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
stamp of the PMU to align the SCADA measurement data at the realize line parameter
same time secti JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
stamp of the PMU to align the SCADA measurement data at the realize line parameter
same time secti JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
stamp of the PMU to align the SCADA measurement data at the realize line parameter
same time secti JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PMU A
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
stamp of the PMU to align the SCADA measurement data at the realize line parameter dete JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PMU ASCADA MEASUREMENTS IN DISTRIBUTION GRIDS
stamp of the PMU to align the SCADA measurement data at the realize line parameter detect JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PSCADA MEASUREMENTS IN DISTRIBUTION GRIDS

stamp of the PMU to align the SCADA measurement data at the realize line parameter detectio JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PISCADA MEASUREMENTS IN DISTRIBUTION GRIDS

stamp of the PMU to align the SCADA measurement data at the realize line parameter detects
 DRATION DESCRIPTION GRIDS

SCADA MEASUREMENTS IN DISTRIBUTION GRIDS

stamp of the PMU to align the SCADA measurement data at the realize line parameter dets

same time section based on the instantaneous voltage values and stamp of the PMU to align the SCADA measurement data at the realize line paramete
same time section based on the instantaneous voltage values 2) A PPII of the 1
and the line parameter can be identified [37]. As is well kno stamp of the PMU to align the SCADA measurement data at the

same time section based on the instantaneous voltage values

2) A PPII of the line parameter can be identified [37]. As is well known, on the probability density same time section based on the instantaneous voltage values

2) A PPII of the line

and the line parameter can be identified [37]. As is well known, on the probability den

SCADA renders voltage and current magnitude measu and the line parameter can be identified [37]. As is well known, on the probability density func
SCADA renders voltage and current magnitude measurements; measurements. The PPII contatus, we will investigate the SCADA magn SCADA renders voltage and current magnitude measurements; measurements. The PPII coronus, we will investigate the SCADA magnitude measurements, comparing the PPII with a three Their tracking of series parameters [21] and thus, we will investigate the SCADA magnitude measurements. parameter and can be used
in distribution grids, based on magnitude measurements, comparing the PPII with a
off-line tracking of series parameters [21] and regres In distribution grids, based on magnitude measurements, comparing the PPII with a three micelaries parameters [21] and regressing of the determine whether the line prarmeters with the parameters with the proposed detectio off-line tracking of series parameters [21] and regressing of the determine whether the line parametical infermation coverage drop amplificule and current [20] were used to identify errors of the resistance and the rolline line impedance using the approximate relationship between the
voltage drop amplitude and current [20] were used to identify
errors of the resistance and the line parameters. In addition, others have proposed a discrete
err voltage drop amplitude and current [20] were used to identify

line parameters. In addition, others have proposed a discrete

errors as a whole.

dynamic Bayesian network method with advanced metering 3) A power-loss P

in line parameters. In addition, others have proposed a discrete errors as a whole.

dynamic Bayesian network method with advanced metering 3) A power-loss PDF with P

infrastructure (AMI) measurements and weaker measurements dynamic Bayesian network method with advanced metering 3) A power-loss PDF with P
infrastructure (AMI) measurements and weather measurements model the correlation between
138] and a parameter estimation scheme that conside infrastructure (AMI) measurements and weather measurements model the correlation between

[38] and a parameter estimation scheme that considers the stamps, and a power-loss of

influence of measurements and instrument tran [38] and a parameter estimation scheme that considers the

influence of measurement and instrument transformer model the chronologica

uncertainties with SCADA measurements [42]. Moreover, an build a joint PDF b

automate influence of measurement and instrument transformer model the chronological correl
uncertainties with SCADA measurements [42]. Moreover, an build a joint PDF between
automated determination of topology and line parameters uncertainties with SCADA measurements [42]. Moreover, an build a joint PDF betwee
automated determination of topology and line parameters with measurements with the PML
smart meters measurements [39], the identification of automated determination of topology and line parameters with measurements with the PMU smart meters measurements [39], the identification of topology the power loss at the prior time and line parameters with time-stamped v smart meters measurements [39], the identification of topology

imped voltage magnitude and

injection samples of leaf nodes [40], and the identification of loss can be obtained.

topology and line parameters without the i and line parameters with time-stamped voltage magnitude and

injection samples of leaf nodes [40], and the identification of loss can be obtained.

topology and line parameters without the information of 4) The power-loss injection samples of leaf nodes [40], and the identification of
topology and line parameters without the information of
voltage angles [41] can realize the parameter identification.
Based on PMU measurements, iterations be bey and line parameters without the information of 4) The power-loss sant
age angles [41] can realize the parameter identification. chronological correlation
sed on PMU measurements, iterations between the power loss based voltage angles [41] can realize the parameter identification. Chronological correlations and
Based on PMU measurements, iterations between the power loss based on the
parameter estimation and topology estimation, which cur Based on PMU measurements, iterations between the power loss based on the parameter estimation and topology eidentification were used for parameter is identified by the the joint line parameter and topology estimation, whi parameter estimation and topology identification were used for

the joint line parameter and topology estimation, which current measurements. Har

combined PMUs and AMI measurements [18]. A PMU-based

iterative line parame the joint line parameter and topology estimation,
combined PMUs and AMI measurements [18]. A PMU
iterative line parameter estimation algorithm using only
data was presented, which included in the estimation
systematic meas

presented a classification identification method based on PMU details the method for dues

measurements for line parameter identification under

However, current approaches to the line parameter PDF of the measurement

How measurements for line parameter identification under the PMU and SCADA measurem

insufficient measurement conditions.

However, current approaches to the line parameter por of the measurements, respectively

identification insufficient measurement conditions.

Gaussian mixture model (GMM

However, current approaches to the line parameter PDF of the measurements, respectively

dimitations of hybrid measurements still pose serious the line par However, current approaches to the line parameter PDF of the measurement
identification of hybrid measurements still pose serious the line parameter detect
imitations in distribution grids. For example, PMU PDFs. Section V identification of hybrid measurements still pose serious the line parameter detectic
limitations in distribution grids. For example, PMU PDFs. Section V describes
measurements do not.
measurements of the sum over-loss PDF limitations in distribution grids. For example, PMU PDFs. Section V de
measurements have exact time stamps, whereas SCADA parameter identifica
measurements do not.
In this paper, we propose a measurement-based method for c measurements have exact time stamps, whereas SCADA parameter identification. We demonstrements do not i.e., a power-loss PDF with PMI

In this paper, we propose a measurement-based method for chronological PDF. We introduc i.e., a power-loss PDF with PM

In this paper, we propose a measurement-based method for chronological PDF. We introduced

PMU and identification of parameters of a line with detection and identified by the PMU

PMU and st In this paper, we propose a measurement-based method for chronological PDF. We intro
the detection and identification of parameters of a line with sample power-loss samples
PMU and unsynchronized SCADA measurements in iden the detection and identification of parameters of a line with sample power-loss samples.

PMU and unsynchronized SCADA measurements in identified by the PMU curdistribution systems. Owing to the nonsynchronization of PMU PMU and unsynchronized SCADA measurements in identified by the PMU curr

distribution systems. Owing to the nonsynchronization of the power-loss samples with the feat

PMU and SCADA measurements, we analyze the probabilit follows: A SCADA measurements, we analyze the probability

and chronological correlatic

tribution of PMU and SCADA measurements based on

hardware simulation results of

babilistic approaches, respectively. The suspicious line

pa distribution of PMU and SCADA measurements based on hardware simulation results
probabilistic approaches, respectively. The suspicious line parameter detection and
parameter is detected using a probability parameter analys probabilistic approaches, respectively. The suspicious line parameter detection and identification index (PPII). The PPII is the sum of relative analyses. Section VII presents identification index (PPII). The PPII is the parameter is detected using a probability parameter analyses. Section VII presents or detectrication index (PPII). The PPII is the sum of relative massurements.

Based on the probability distribution of measurements, we ME identification index (PPII). The PPII is the sum of relative
errors of the means of the voltage magnitude measurements.

Based on the probability distribution of measurements, we

generate samples of the power loss with P

F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED

realize line parameter detection and identification.

2) A PPII of the line parameter detection is proposed based

on the probability density function (PDF) parameters of the INE PARAMETERS WITH PMU AND UNSYNCHRONIZED 3

alize line parameter detection and identification.

2) A PPII of the line parameter detection is proposed based

the probability density function (PDF) parameters of the line
 F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 3
realize line parameter detection and identification.
2) A PPII of the line parameter detection is proposed based
on the probability density function (PDF) parameters of the
m F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 3
realize line parameter detection and identification.
2) A PPII of the line parameter detection is proposed based
on the probability density function (PDF) parameters of the
m F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 3
realize line parameter detection and identification.
2) A PPII of the line parameter detection is proposed based
on the probability density function (PDF) parameters of the
m F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 3
realize line parameter detection and identification.
2) A PPII of the line parameter detection is proposed based
on the probability density function (PDF) parameters of the
m FLINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 3
realize line parameter detection and identification.
2) A PPII of the line parameter detection is proposed based
on the probability density function (PDF) parameters of the li FLINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 3
realize line parameter detection and identification.
2) A PPII of the line parameter detection is proposed based
on the probability density function (PDF) parameters of the
me FLINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 3
realize line parameter detection and identification.
2) A PPII of the line parameter detection is proposed based
on the probability density function (PDF) parameters of the
me F LINE PARAMETERS WITH PMU AND UNSYNCHRON
realize line parameter detection and identification
2) A PPII of the line parameter detection is pr
on the probability density function (PDF) parameasurements. The PPII contains th The FANAWELERS with FMO RID ORSTRETINGORIZED
2) A PPII of the line parameter detection is proposed based
the probability density function (PDF) parameters of the
assurements. The PPII contains the features of the line
rame realize line parameter detection and identification.

2) A PPII of the line parameter detection is proposed based

on the probability density function (PDF) parameters of the

measurements. The PPII contains the features o realize line parameter detection and identification.

2) A PPII of the line parameter detection is proposed based

on the probability density function (PDF) parameters of the

measurements. The PPII contains the features o 2) A PPII of the line parameter detection is proposed based
on the probability density function (PDF) parameters of the
measurements. The PPII contains the features of the line
parameter and can be used to detect the line

on the probability density function (PDF) parameters of the measurements. The PPII contains the features of the line parameter and can be used to detect the line parameter. When comparing the PPII with a threshold many tim measurements. The PPII contains the features of the line
parameter and can be used to detect the line parameter. When
comparing the PPII with a threshold many times over, we can
determine whether the line parameter is corr parameter and can be used to detect the line parameter. When
comparing the PPII with a threshold many times over, we can
determine whether the line parameter is correct. However, the
proposed detection method cannot distin comparing the PPII with a threshold many times over, we can
determine whether the line parameter is correct. However, the
proposed detection method cannot distinguish between the
errors of the resistance and the reactance, determine whether the line parameter is correct. I
proposed detection method cannot distinguish
errors of the resistance and the reactance, but it c.
errors as a whole.
3) A power-loss PDF with PMU time stamps
model the co posed detection method cannot distinguish between the
ors of the resistance and the reactance, but it can detect the
ors as a whole.
3) A power-loss PDF with PMU time stamps is derived to
odel the correlation between the p errors of the resistance and the reactance, but it can detect the
errors as a whole.
3) A power-loss PDF with PMU time stamps is derived to
model the correlation between the power loss and PMU time
stamps, and a power-loss errors as a whole.

3) A power-loss PDF with PMU time stamps is derived to

model the correlation between the power loss and PMU time

stamps, and a power-loss chronological PDF is derived to

model the chronological corre 3) A power-loss PDF with PMU time stamps is derived to model the correlation between the power loss and PMU time stamps, and a power-loss chronological PDF is derived to model the chronological correlation of the power los model the correlation between the power loss and PMU time
stamps, and a power-loss chronological PDF is derived to
model the chronological correlation of the power loss. First, we
build a joint PDF between the power loss a

stamps, and a power-loss chronological PDF is derived to model the chronological correlation of the power loss. First, we build a joint PDF between the power loss and current measurements with the PMU time stamps, and a jo model the chronological correlation of the power loss. First, we build a joint PDF between the power loss and current measurements with the PMU time stamps, and a joint PDF of the power loss at the prior time stamp and the build a joint PDF between the power loss and current
measurements with the PMU time stamps, and a joint PDF of
the power loss at the prior time stamp and the following time
stamp. Then, using the conditional PDF, two PDFs examing with the PMU time stamps, and a joint PDF of

power loss at the prior time stamp and the following time

mp. Then, using the conditional PDF, two PDFs of power

scan be obtained.

4) The power-loss samples with the the power loss at the prior time stamp and the following time
stamp. Then, using the conditional PDF, two PDFs of power
loss can be obtained.
4) The power-loss samples with the PMU time stamps and
chronological correlation stamp. Then, using the conditional PDF, two PDFs of power
loss can be obtained.
4) The power-loss samples with the PMU time stamps and
chronological correlations are generated by the two PDFs of the
power loss based on the loss can be obtained.

4) The power-loss samples with the PMU time stamps and

chronological correlations are generated by the two PDFs of the

power loss based on the sampling algorithm. The line

parameter is identified

mbined PMUs and AMI measurements [18]. A PMU-based

proposed method is substantial

rative line parameter estimation algorithm using only PMU

detection and identification whe

tate was presented, which included in the est iterative line parameter estimation algorithm using only PMU detection and identification which are detailed in the estimation model and PMU measurements do not assigned a classification identification method based on PMU data was presented, which included in the estimation model
systematic measurement errors [43]. Our previous work [44] The remainder of this paper presented a classification identification method based on PMU details the me systematic measurement errors [43]. Our previous work [44] The remainder of this paper presented a classification identification method based on PMU details the method for dealing uneasurements for line parameter identific 4) The power-loss samples with the PMU time stamps and
chronological correlations are generated by the two PDFs of the
power loss based on the sampling algorithm. The line
parameter is identified by the power-loss samples chronological correlations are generated by the two PDFs of the
power loss based on the sampling algorithm. The line
parameter is identified by the power-loss samples and PMU
current measurements. Hardware simulations show power loss based on the sampling algorithm. The line
parameter is identified by the power-loss samples and PMU
current measurements. Hardware simulations show the
proposed method is substantially effective for line paramet parameter is identified by the power-loss samples and PMU
current measurements. Hardware simulations show the
proposed method is substantially effective for line parameter
detection and identification when considering that current measurements. Hardware simulations show the proposed method is substantially effective for line parameter detection and identification when considering that the SCADA and PMU measurements do not match. The remainde proposed method is substantially effective for line parameter
detection and identification when considering that the SCADA
and PMU measurements do not match.
The remainder of this paper proceeds as follows: Section III
det detection and identification when considering that the SCADA
and PMU measurements do not match.
The remainder of this paper proceeds as follows: Section III
details the method for dealing with the nonsynchronization of
the and PMU measurements do not match.

The remainder of this paper proceeds as follows: Section III

details the method for dealing with the nonsynchronization of

the PMU and SCADA measurements. Section IV considers the

Gau The remainder of this paper proceeds as follows: Section III
details the method for dealing with the nonsynchronization of
the PMU and SCADA measurements. Section IV considers the
Gaussian mixture model (GMM) PDF and the G details the method for dealing with the nonsynchronization of
the PMU and SCADA measurements. Section IV considers the
Gaussian mixture model (GMM) PDF and the Gaussian model
PDF of the measurements, respectively. We deriv the PMU and SCADA measurements. Section IV considers the Gaussian mixture model (GMM) PDF and the Gaussian model PDF of the measurements, respectively. We derive a PPII for the line parameter detection based on the paramet Gaussian mixture model (GMM) PDF and the Gaussian model

PDF of the measurements, respectively. We derive a PPII for

the line parameter detection based on the parameters of the

PDFs. Section V describes the proposed appr PDF of the measurements, respectively. We derive a PPII for
the line parameter detection based on the parameters of the
PDFs. Section V describes the proposed approach for the line
parameter identification. We derive two P Fs. Section V describes the proposed approach for the line ameter identification. We derive two PDFs of the power loss, a power-loss PDF with PMU time stamps and a power-loss prological PDF. We introduce two sampling algor a a power-loss PDF with PMU time stamps and a power-loss
conological PDF. We introduce two sampling algorithms to
mple power-loss samples. Then, the line parameter is
entified by the PMU current measurements and the
wer-lo chronological PDF. We introduce two sampling algorithms to
sample power-loss samples. Then, the line parameter is
identified by the PMU current measurements and the
power-loss samples with the features of the PMU time stam sample power-loss samples. Then, the line parameter is
identified by the PMU current measurements and the
power-loss samples with the features of the PMU time stamps
and chronological correlations. Section VI presents the

MEASUREMENTS SAMPLES

identified by the PMU current measurements and the
power-loss samples with the features of the PMU time stamps
and chronological correlations. Section VI presents the
hardware simulation results of the proposed approach f prower-loss samples with the features of the PMU time stamps
and chronological correlations. Section VI presents the
hardware simulation results of the proposed approach for line
parameter detection and identification, and and chronological correlations. Section VI presents the
hardware simulation results of the proposed approach for line
parameter detection and identification, and comparison
analyses. Section VII presents our conclusions.
I hardware simulation results of the proposed approach for line
parameter detection and identification, and comparison
analyses. Section VII presents our conclusions.
III. PMU MEASUREMENTS POPULATION AND SCADA
MEASUREMENTS parameter detection and identification, and comparison
analyses. Section VII presents our conclusions.
III. PMU MEASUREMENTS POPULATION AND SCADA
MEASUREMENTS SAMPLES
When a SCADA meter rather than a PMU meter is installe analyses. Section VII presents our conclusions.

III. PMU MEASUREMENTS POPULATION AND SCADA

MEASUREMENTS SAMPLES

When a SCADA meter rather than a PMU meter is installed

at one bus, we analyze how PMU measurements of th III. PMU MEASUREMENTS POPULATION AND SCADA
MEASUREMENTS SAMPLES
When a SCADA meter rather than a PMU meter is installed
at one bus, we analyze how PMU measurements of this bus can
be expressed by SCADA measurements. One m

CSEE JOURNAL OF POWER AND ENERGY SYSTEMS
as the population, and one SCADA measurement (the time CSEE JOURNAL OF POWER AND ENERGY SYSTEMS
as the population, and one SCADA measurement (the time Fig. 2. PMU and SCAD
stamp is $tx1$ in Fig. 1) is taken as a sample of the subpopulation When a PMU meter is installed
of 50 P CSEE JOURNAL OF POWER AND ENERGY SYSTEMS
as the population, and one SCADA measurement (the time
stamp is *tx*1 in Fig. 1) is taken as a sample of the subpopulation When a PMU met
of 50 PMU measurements (the time stamps ar CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

as the population, and one SCADA measurement (the time Fig. 2. PMU and SCADA measurement

stamp is $tx1$ in Fig. 1) is taken as a sample of the subpopulation When a PMU meter is in CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

as the population, and one SCADA measurement (the time

stamp is tx1 in Fig. 1) is taken as a sample of the subpopulation

of 50 PMU measurements (the time stamps are t1, t2, ... CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

as the population, and one SCADA measurement (the time

stamp is tx1 in Fig. 1) is taken as a sample of the subpopulation

of 50 PMU measurements (the time stamps are t1, t2, ... CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

as the population, and one SCADA measurement (the time

stamp is xt in Fig. 1) is taken as a sample of the subpopulation

of 50 PMU measurements (the time stamps are $t1$, $t2$, . CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

as the population, and one SCADA measurement (the time

stamp is $x1$ in Fig. 1) is taken as a sample of the subpopulation

of 50 PMU measurements (the time stamps are $t1$, $t2$, CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

as the population, and one SCADA measurement (the time

stamp is tx1 in Fig. 1) is taken as a sample of the subpopulation

of 50 PMU measurements (the time stamps are t1, t2, ... CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

as the population, and one SCADA measurement (the time

stamp is $\kappa 1$ in Fig. 1) is taken as a sample of the subpopulation

of 50 PMU measurements (the time stamps are $t1$, t CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

as the population, and one SCADA measurement (the time

stamp is *tx*1 in Fig. 1) is taken as a sample of the subpopulation

of 50 PMU measurements (the time stamps are *t*1, *t*2 as the population, and one SCADA measurement (the time
stamp is *tx* l in Fig. 1) is taken as a sample of the subpopulation when a PMU meter is installed at is
of 50 PMU measurements (the time stamps are *t*1, *t2*, ... as the population, and one SCADA measurement (the time
stamp is $\kappa 1$ in Fig. 1) is taken as a sample of the subpopulation
of 50 PMU measurements (the time stamps are $t1$, $t2$, ... $t50$ in
SCADA meter is installed
Fi as the population, and one SCADA measurement (the time
stamp is κ 1 in Fig. 1) is taken as a sample of the subpopulation
of 50 PMU measurements (the time stamps are $t1$, $t2$, ... $t50$ in SCADA meter is installed a
f stamp is κ 1 in Fig. 1) is taken as a sample of the subpopulation
of 50 PMU measurements (the time stamps are $t1$, $t2$, ... $t50$ in SCADA meter is installed at a
Fig. 1) in the first second. Therefore, an unbiased e of 50 PMU measurements (the time stamps are $t1$, $t2$, ... $t50$ in

Fig. 1) in the first second. Therefore, an unbiased estimator of

the PMU mad SCADA measurements and the PMU measurements are botained

the poultaion m Fig. 1) in the first second. Therefore, an unbiased estimator of the parameter can be detected
the population mean of the PMU measurements can be obtained the PMU at SCADA measurement
from the sample manusum is in the SCA the population mean of the PMU measurements can be obtained

from the sample mean of the SCADA measurements in the the analysis. In Fig. 2, a PMU

abundant measurement samples. The population distribution

abundant measur measurements.

[48]-[52].

PMU

Population differ. At *bus j*, the PDF c

Fig. 1. Inconsistent sampling time of PMU and SCADA measurements

Fig. 1. Inconsistent sampling time of PMU and SCADA measurements

Population $|U_j|'$, we propose a PPII

IV. Population 11 2 150 151 152 1100

an be expressed us
 $\frac{1}{2}$ time
 $\frac{1}{2$ Example the Fig. 1. Inconsistent sampling time of PMU and SCADA measurements

Fig. 1. Inconsistent sampling time of PMU and SCADA measurements

IV. LINE PARAMETER DETECTION

A. PDF Parameters of Measurements

The GMM is t Fig. 1. Inconsistent sampling time of PMU and SCADA measurements

TV. LINE PARAMETER DETECTION

The GMM is the weighted finite sum of several Gaussian

The GMM is the weighted finite sum of several Gaussian

The GMM is th EV. INSERT SURFAINETER DETECTION
 μ and μ an IV. LINE PARAMETER DETECTION

A. PDF Parameters of Measurements

The GMM is the weighted finite sum of several Gaussian

The CMM is the weighted finite sum of several Gaussian

1991– $\sum_{k=1}^{K} 100 \times$

1991– $\sum_{k=1}^{K} 10$ A. PDF Parameters of Measurements

The GMM is the weighted finite sum of several Gaussian

There, K can be determined by

components. Mathematically, the PDF can be expressed as in

is influenced by load fluctuation

[48] A. PDF Parameters of Measurements

The GMM is the weighted finite sum of several Gaussian

The CMM is the weighted finite sum of several Gaussian

is influenced by load fluctuation.

[48]-[52].

We assume that the PDF of The GMM is the weighted finite sum of several Gaussian

verg K can be determined by the v

(48)-[52].

We assume that the PDF of the measurement data is the

distribution, if the PPII is K in $\frac{1}{2}$

Gaussian PDF or components. Mathematically, the PDF can be expressed as in is influenced by load fluctuation magnitude is a Gaussian PDI
We assume that the PDF of the measurement data is the distribution, if the PPII is green
Gaussian PD [48]-[52]. magnitude is a Gaussian PI

We assume that the PDF of the measurement data is the distribution, if the PPII is gre

Gaussian PDF or the GMM PDF. The advantage of the GMM

distribution, if the PPII is gre

distr We assume that the PDF of the measurement data is the distribution, if the PPII is
Gaussian PDF or the GMM PDF. The advantage of the GMM
distributions can be fairly represented by several normal threshold experimentally.
 Gaussian PDF or the GMM PDF. The advantage of the GMM

cases, this line param

approach is that the different types of the measurement

distributions can be fairly represented by several normal

distributions. The paramet approach is that the different types of the measurement threshold experimentally. For distributions can be fairly represented by several normal therehold of PPII is K mult distributions. The parameters of the GMM PDF can distributions can be fairly represented by several normal
distributions. The parameters of the GMM PDF can be
determined using the RNM algorithm [53]. The EM algorithm obtains the parameter set by
algorithm [53]. The EM a distributions. The parameters of the GMM PDF can be
determined using the expectation maximization (EM)
algorithm [53]. The EM algorithm obtains the parameters et by
iterating between the E-step and M-step until convergenc determined using the expectation maximization (EM)
algorithm [53]. The EM algorithm obtains the parameter set by
tierating between the Estep and M-step until convergence has
been reached (49), [54], [55]. However, the fin *B. PPII of Line Parameter Detection*
B. PPII of Line Parameter Set operation reading between the E-step and M-step unil convergence has
been reached [49], [54], [55]. However, the final solution is
very sensitive to the

Fig. 2. PMU and SCADA measurements of the line
PMU meter is installed at one bus of the line and a
neter is installed at another bus of the same line, the
eter can be detected and identified. The location of Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
'ADA meter is installed at another bus of the same line, the
e parameter can be detected and identified. The locatio Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
SCADA meter is installed at another bus of the same line, the
line parameter can be detected and identified. The loc Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
SCADA meter is installed at another bus of the same line, the
line parameter can be detected and identified. The lo Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
SCADA meter is installed at another bus of the same line, the
line parameter can be detected and identified. The loc Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
SCADA meter is installed at another bus of the same line, the
line parameter can be detected and identified. The loc Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
SCADA meter is installed at another bus of the same line, the
line parameter can be detected and identified. The loc Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
SCADA meter is installed at another bus of the same line, the
line parameter can be detected and identified. The loc Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
SCADA measurements of the similar another bus of the same line, the
line parameter can be detected and identified. Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line
SCADA meter is installed at another bus of the same l
line parameter can be detected and identified. The locitie PMU and Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
'ADA meter is installed at another bus of the same line, the
e parameter can be detected and identified. The locati Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
SCADA meter is installed at another bus of the same line, the
line parameter can be detected and identified. The lo Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
SCADA measurements installed another bus of the same line, the
line parameter can be detected and identified. The l SCADA meter is installed at another bus of the same line, the
sCADA meter is installed at another bus of the same line, the
line parameter can be detected and identified. The location of
the PMU and SCADA measurements in Fig. 2. PMU and SCADA measurements of the line
When a PMU meter is installed at one bus of the line and a
SCADA meter is installed at another bus of the same line, the
line parameter can be detected and identified. The lo MU and SCADA measurements of the line
meter is installed at one bus of the line and a
installed at another bus of the same line, the
h be detected and identified. The location of
 SDA measurements in Fig. 2 is an example Fig. 2. PMU and SCADA measurements of the line
SCADA meter is installed at one bus of the line and a
SCADA meter is installed at another bus of the same line, the
line parameter can be detected and identified. The locatio

$$
|U_j|' = |U_i - I_{ij}(R + jX)| \tag{1}
$$

i, the theory of the proposed method is similar to that of the locations in Fig. 2.

According to Section III, in the abundant measurement

snapshots, U_i and I_{ij} are the population of the voltage phasor

and current locations in Fig. 2.
According to Section III, in the abundant measurement
snapshots, U_i and I_{ij} are the population of the voltage phasor
and current phasor, respectively, and $|U_j|$ is the samples of
voltage magnitu According to Section III, in the abundant measurement
snapshots, U_i and I_{ij} are the population of the voltage phasor
and current phasor, respectively, and $|U_j|$ is the samples of
voltage magnitude. According to Ohm' line parameter can be detected and identited. The location of
the PMU and SCADA measurements in Fig. 2 is an example of
the analysis. In Fig. 2, a PMU meter is installed at *bus j*, and a
scADA meter is installed at *bus* not rive and so-rxibr measurements in rig. z is an example of
the analysis. In Fig. 2, a PMU meter is installed at *bus i*, and a
SCADA meter is installed at *bus j* and a SCADA meter is installed at *bus*
i, the voltage magnitude. According to Ohm's law, the $|U_j|$ based on the line impedance is given as $|U_j|' = |U_i - I_{ij}(R + jX)|$
If the line impedance is correct, the mean of the is the same as the mean of the population $|U_j|'$. H
li at bus j and a SCADA meter is installed at bus

e proposed method is similar to that of the

.

.

.

Section III, in the abundant measurement
 \int_{l_a} are the population of the voltage phasor
 r , respectively, and $|U$ $U_i - I_{ij}(R + jX)$ (1)

s correct, the mean of the samples $|U_j|$

f the population $|U_j|'$. However, if the

rect, the means of the samples and
 i, the PDF of the voltage magnitude

a GMM PDF or a Gaussian PDF.

the sample *f*(1)
 k mean of the samples $|U_j|$

lation $|U_j|'$. However, if the

means of the samples and
 F of the voltage magnitude

PDF or a Gaussian PDF.
 k $|U_j|$ with the mean of the

PII to realize incorrect line

PII *Five meta is instanted at bus <i>j*, Mote that when a PMU and a SCADA meter is installed at *bus* μ . Note that when a PMU and a SCADA meter is installed at *bus* obosed method is similar to that of the 1 III, in the abu alled at *bus j.* Note that when a PMU
 sj and a SCADA meter is installed at *bus*

oposed method is similar to that of the

oposed method is similar to that of the

oposed method is similar to that of the

oposed metho If the line impedance is correct, the mean of the samples $|U_j|$
the same as the mean of the population $|U_j|'$. However, if the
e impedance is incorrect, the means of the samples and
pulation differ. At *bus j*, the PDF is the same as the mean of the population $|U_j|'$. However, if the
line impedance is incorrect, the means of the samples and
population differ. At *bus j*, the PDF of the voltage magnitude
can be expressed using a GMM PDF is the same as the mean of the population $|U_j|$. However, if the
line impedance is incorrect, the means of the samples and
population differ. At *bus j*, the PDF of the voltage magnitude
can be expressed using a GMM PDF

$$
PPII = \sum_{k=1}^{K} 100 \times \frac{\left| \mu_k^j \right|^{r} - \mu_k^j}{\mu_k^j}
$$
 (2)

line impedance is incorrect, the means of the samples and
population differ. At *bus j*, the PDF of the voltage magnitude
can be expressed using a GMM PDF or a Gaussian PDF.
Comparing the mean of the samples $|U_j|$ with t population differ. At *bus j*, the PDF of the voltage magnitude
can be expressed using a GMM PDF or a Gaussian PDF.
Comparing the mean of the samples $|U_j|$ with the mean of the
population $|U_j|'$, we propose a PPII to re can be expressed using a GMM PDF or a Gaussian PDF.
Comparing the mean of the samples $|U_j|$ with the mean of the
population $|U_j|'$, we propose a PPII to realize incorrect line
parameter detection:
 $PPII = \sum_{k=1}^{K} 100 \times \$ Comparing the mean of the samples $|U_j|$ with the mean of the
population $|U_j|$, we propose a PPII to realize incorrect line
parameter detection:
 $PPII = \sum_{k=1}^{K} 100 \times \frac{||\mu_k^j||^2 - \mu_k^j||}{\mu_k^j}$ (2)
Here, *K* can be deter population $|U_j|'$, we propose a PPII to realize
parameter detection:
 $PPII = \sum_{k=1}^{K} 100 \times \frac{||\mu_k||' - \mu_k||}{|\mu_k|}$
Here, K can be determined by the voltage mag
is influenced by load fluctuation. When the PDF
magnitude is a etection:

PPII = $\sum_{k=1}^{K} 100 \times \frac{||\mu_k^j||^2 - \mu_k^j||}{\mu_k^j}$ (2)

an be determined by the voltage magnitude, which

d by load fluctuation. When the PDF of the voltage

is a Gaussian PDF, K is one. For a Gaussian

if the **PPII** = $\sum_{k=1}^{n} 100 \times \frac{P^2 + 2k}{\mu_k^2}$ (2)

Here, *K* can be determined by the voltage magnitude, which

is influenced by load fluctuation. When the PDF of the voltage

magnitude is a Gaussian PDF, *K* is one. For a Here, *K* can be determined by the voltage magnitude, which
influenced by load fluctuation. When the PDF of the voltage
ignitude is a Gaussian PDF, *K* is one. For a Gaussian
itribution, if the PPII is greater than one th Fractal single and the sample of the samples $|U_j|$ with the mean of the population $|U_j|'$, we propose a PPII to realize incorrect line
population $|U_j|'$, we propose a PPII to realize incorrect line
parameter detection: tribution, if the PPII is greater than one threshold in most
ses, this line parameter is incorrect. We determine this
reshold experimentally. For the GMM distribution, this
eshold of PPII is K multiplied by the threshold

$$
I_{ii}^{2}(R + jX) = \Delta P + \Delta Q = (P_{i} - P_{j}) + j(Q_{i} - Q_{j})
$$
 (3)

cases, this line parameter is incorrect. We determine this
threshold experimentally. For the GMM distribution, this
threshold of PPII is K multiplied by the threshold of the
Gaussian PDF.
V. LINE PARAMETER IDENTIFICATION
 threshold experimentally. For the GMM distribution, this
threshold of PPII is K multiplied by the threshold of the
Gaussian PDF.
V. LINE PARAMETER IDENTIFICATION
A. PDF Parameters of Active and Reactive Power Loss
In Fig. threshold of PPII is K multiplied by the threshold of the

Gaussian PDF.

V. LINE PARAMETER IDENTIFICATION

A. PDF Parameters of Active and Reactive Power Loss

In Fig. 2, the expression of the line parameter identificati Gaussian PDF.

V. LINE PARAMETER IDENTIFICATION

A. PDF Parameters of Active and Reactive Power Loss

In Fig. 2, the expression of the line parameter identification

can be given as
 $I_{ij}^2(R + jX) = \Delta P + \Delta Q = (P_i - P_j) + j(Q_i - Q_j)$ V. LINE PARAMETER IDENTIFICATION
 PDF Parameters of Active and Reactive Power Loss

In Fig. 2, the expression of the line parameter identification

n be given as
 $I_{ij}^2(R + jX) = \Delta P + \Delta Q = (P_i - P_j) + j(Q_i - Q_j)$ (3)

However, the

V. LINE PARAMETER IDENTIFICATION

A. PDF Parameters of Active and Reactive Power Loss

In Fig. 2, the expression of the line parameter identification

can be given as
 $I_{ij}^2(R + jX) = \Delta P + \Delta Q = (P_i - P_j) + j(Q_i - Q_j)$ (3)

However, t A. PDF Parameters of Active and Reactive P
In Fig. 2, the expression of the line parame
can be given as
 $I_{ij}^2(R + jX) = \Delta P + \Delta Q = (P_i - P_j) + j(Q$
However, the active and reactive power
precisely determined owing to the SCADA m
do *ij ^I* population, the GMM PDF parameters of the In Fig. 2, the expression of the line parameter identification
can be given as
 $I_{\theta}^{2}(R + jX) = \Delta P + \Delta Q = (P_{i} - P_{j}) + j(Q_{i} - Q_{j})$ (3)
However, the active and reactive power loss cannot be
precisely determined owing to the SCAD can be given as
 $I_{ij}^2(R + jX) = \Delta P + \Delta Q = (P_i - P_j) + j(Q_i - Q_j)$ (3)

However, the active and reactive power loss cannot be

precisely determined owing to the SCADA measurements that

do not match with the PMU measurements. First, $I_{ij}^2(R + jX) = \Delta P + \Delta Q = (P_i - P_j) + j(Q_i - Q_j)$ (3)
However, the active and reactive power loss cannot be
precisely determined owing to the SCADA measurements that
do not match with the PMU measurements. First, we analyze
the PDF p *is K* multiplied by the threshold of the
 E PARAMETER IDENTIFICATION
 is of Active and Reactive Power Loss

ression of the line parameter identification
 $= \Delta P + \Delta Q = (P_i - P_j) + j(Q_i - Q_j)$ (3)

tive and reactive power loss

$$
\omega_k^{\Delta P} = \omega_k^{I_{ij}^2} = \omega_k^{P_i} = \omega_k^{P_j} \tag{4}
$$

$$
\mu_k^{\Delta P} = \mu_k^{T_i} - \mu_k^{T_j}
$$
\n
$$
\tau^{\Delta P} \approx \tau^{\frac{T_g^2}{2}}
$$
\n(6)

j $\mu_k^{\Delta P} = \mu_k^{P_i} - \mu_k^{P_j}$ (5) time stamp and $\sigma_k^{\Delta P} \approx \sigma_k^{I_{ij}^2}$ (5) $\mu_k^{\Delta P} = \mu_k^{P_j} - \mu_k^{P_j}$ (5) time stamp and $\sigma_k^{\Delta P} \approx \sigma_k^{I_{ij}^2}$ (6) measurements.
viation $\sigma_k^{\Delta P}$ is equal to $\sqrt{R^2 \times (\sigma_k^{I_{ij}^2})^2$ **EXECUTE AND IDENTIFICATION OF LINE PARAM**
 V DISTRIBUTION GRIDS
 $P = \mu_k^p - \mu_k^{p_j}$ (5) time stamp a
 $\sigma_k^{\Delta P} \approx \sigma_k^{l_{\hat{B}}^2}$ (6) measurement

tion $\sigma_k^{\Delta P}$ is equal to $\sqrt{R^2 \times (\sigma_k^{l_{\hat{B}}^2})^2}$, and section, we JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARA

SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
 $\mu_k^{\Delta P} = \mu_i^P_i - \mu_k^{P_i}$ (5) time stamp
 $\sigma_k^{\Delta P} \approx \sigma_k^{I_{ij}^2}$ (6) measurement

Where the standard JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LIN

SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
 $\mu_k^{\Delta P} = \mu_k^P - \mu_k^P$ (5) time
 $\sigma_k^{\Delta P} \approx \sigma_k^{l_k^2}$ (6) mean

Where the standard deviation $\sigma_k^{\Delta P}$ is

JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION

SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
 $\mu_k^{\Delta P} = \mu_k^P - \mu_k^P$ (5)
 $\sigma_k^{\Delta P} \approx \sigma_k^{I_{\ell}^{\dagger}}$ (6)

Where the standard deviation $\sigma_k^{\Delta P}$ is equal to \sqrt *B.* $\mu_k^{N} = \mu_k^{p_i} - \mu_k^{p_j}$ (5) time standard deviation $\sigma_k^{N} \approx \sigma_k^{l_i^2}$ (6) measure phasor

Where the standard deviation σ_k^{N} is equal to $\sqrt{R^2 \times (\sigma_k^{l_i^2})^2}$, and section, the standard deviation σ_k^{N} is a

 $\sigma_k^{ab} \approx \sigma_k^{i\frac{1}{2}}$ (6) measurements. The PMUs pro-

Where the standard deviation σ_k^{ab} is equal to $\sqrt{R^2 \times (\sigma_k^{i_1})^2}$, and section, we obtain the PDF of ΔP

the standard deviation σ_k^{ab} is approximately eq Where the standard deviation σ_k^{AP} is equal to $\sqrt{R^2 \times (\sigma_k^{I_0^+})^2}$, and
the standard deviation σ_k^{AP} is approximately equal to $\sigma_k^{I_0^+}$ when PMU measurements. The current
the resistance value in per-unit (p. where the standard deviation σ_k^{α} is equal to $\sqrt{k} \times (\sigma_k^*)^*$, and section, we obtain the PDF of
the standard deviation σ_k^{α} is approximately equal to σ_k^{β} when PMU measurements. The curr
the resistance val the standard deviation σ_x^{AP} is approximately equal to $\sigma_x^{I_0}$ when PMU measurements. The current
the resistance value in per-unit (p.u.) is approximately one. with exact time stamps, and thus
 ΔP based on the PDF the resistance value in per-unit (p.u.) is approximately one. with exact time stamps, and

We can determine the GMM PDF of the active power loss
 ΔP based on the PDF parameters. Using the same method, the

GMM PDF and We can determine the GMM PDF of the active power loss
 ΔP based on the PDF parameters. Using the same method, the

GMM PDF and GMM PDF parameters of the reactive power

the PMU time stamps can

loss ΔQ can be determ ΔP based on the PDF parameters. Using the same method, the the exact time stamps. In economy

GMM PDF and GMM PDF parameters of the reactive power
 B . Nonparametric Kernel Density Estimation
 $P(\Delta P_i | I_i^2) = \frac{P(\Delta P_i)}{P$ GMM PDF and GMM PDF parameters of
loss ΔQ can be determined.
B. Nonparametric Kernel Density Estimation
The PDF of the measurements can be
nonparametric kernel density estimation (
data-driven method. In a univariate K *Nonparametric Kernel Density Estimation*

In the PDF of the measurements can be obtained from the

parametric kernel density estimation (KDE), which is a

dta-driven method. In a univariate KDE [56]-[58], the type of

in *B. Nonparametric Kernel Density Estimation* $P(\Delta P_r | I_r^2)$

The PDF of the measurements can be obtained from the

nonparametric kernel density estimation (KDE), which is a

data-driven method. In a univariate KDE [56]-[58 *B. Nonparametric Kernel Density Estimation* $P(\Delta t)$

The PDF of the measurements can be obtained from the

nonparametric kernel density estimation (KDE), which is a

data-driven method. In a univariate KDE [56]-[58], the The PDF of the measurements can be obtained from the
nonparametric kernel density estimation (KDE), which is a
data-driven method. In a univariate KDE [56]-[58], the type of
interval [1, tm], and $P(l$
kernel function has nonparametric kernel density estimation (KDE), which is a

data-driven method. In a univariate KDE [56]-[58], the type of interval [1, *tm*], and

kernel function has very little effect on the accuracy of the KDE.

Furthe data-tinven include. In a dinvariance KDE [50]-[50], the type of

kernel function has very little effect on the accuracy of the KDE.

Furthermore, the Gaussian kernel function has a wide range of

applications [57], [59]-[Furthermore, the Gaussian kernel function has a wide range of
 applications [57], [59]-[62]. In this study, a Gaussian kernel

function is selected as the kernel function. For a Gaussian

kernel, the optimal bandwidth c

The active power loss at time *^t*-1 affects the loss at time *^t*, and

Francian in Fright, 1971 (160), the active power loss at time *t* affects that at time *t*-1. In this section, the condition [58], [63].

In this study, a multivariate KDE with two-dimensional reflect the effects of the e where the optimal bandwidth can be determined as given in

[58], [63].

In this study, a multivariate KDE with two-dimensional

reflect the effects of the

In this study, a multivariate KDE with two-dimensional

with the **EXECT THE STATE CONSTRANGE THE STATE STATE AT A SET AND THE SET AND THE SET AND IT IS SERIOR, IT IS USED IT IS** power loss at time ϵ and at time stamp *t* and ϵ are time stamps and a chronological probability model in this study, a multivariate normal distribution kernel, From the mass of and the multivariate interaction of ΔP_i . The probability of ΔP_i can be expressed as

of ΔP_i can be expressed as
 ΔP_i of ΔP_i can be expressed as
 ΔP_i can be expressed as
 ΔP_i can be ex with the PMU time stamps and a chronological probability
model of the data. For a multivariate normal distribution kernel,
the optimal bandwidth can be determined as given in [64].
C. *Probability Model of Power Loss*
1) model of the data. For a multivariate normal distribution kernel,
the optimal bandwidth can be determined as given in [64].
C. Probability Model of Power Loss
1) Chronological Probability Model
The active power loss a *s*
 technique
 distributio
 *ffects the loss at time t, and

<i>s* that at time t+1. In other

eceding time stamp affects

(MCMC)

onsider the pair of active

d at time stamp t as an

n of ΔP_{t-1} has an impact on
 of Power Loss
 bability Model
 *t*s at time *t*-1 affects the loss at time *t*, and
 t time *t* affects that at time *t*+1. In other
 r loss at the preceding time stamp affects

ime stamp. Consider the pair of act *P*($\Delta Q_i | I_i^2$) **a** and words the kennel function. For a Gaussian $P(\Delta Q_i | I_i^2) = \frac{I(\Delta Q_i)}{P(\Delta Q_i | I_i^2)}$
 a multivariate KDE with two-dimensional reflect the effects of the exact [57] is used to develop a probability mode ussian kernel tunction has a wide range of

Similary, we can

bandwidth can be study, a Gaussian kernel

as the kernel function. For a Gaussian

bandwidth can be determined as given in

multivariate KDE with two-dimension SI, [63].

In this study, a multivariate KDE with two-dimensional

melhed the exhibition wratelest EST] is used to develop a probability model

measurement

the the NNU time stamps and a chronological probability model

o Probability Model

loss at time t-1 affects the loss at time t, and

sat time t-1 affects that at time t+1. In other

sat time t affects that at time t+1. In other

algorithm [67]-[69] is a

wer loss at the preceding time [58], [63], [63], [63], [63], [63], [63], [63], [63], [63], [63], [63], [63], [63], [63], [1, *tm*], and correct interval measurements. Therefore, pDF's (9) and (10) and interval for this study, a multivariate KDE with tw the active power loss at time *t* affects that at time *t*+1. In other
words, the active power loss at the preceding time stamp affects
what at the following time stamp consider the pair of active
power losses at time sta

$$
P(\Delta P_t | \Delta P_{t-1}) = \frac{P(\Delta P_t, \Delta P_{t-1})}{P(\Delta P_{t-1})}
$$
\n⁽⁷⁾

words, the active power loss at the preceding time stamp articets

that at the following time stamp. Consider the pair of active

hould generate random view losses at time stamp *t*-1 and at time stamp it as an

example. that at the following time stamp. Consider the parameter power losses at time stamp t -1 and at time stand example. The probability distribution of $_{\Delta P_t}$. The conditiona of $_{\Delta P_t}$ can be expressed as $P(\Delta P_t | \Delta P_{t-1})$ are data within the time interval [1, $t \rightarrow P(AP_{i-1})$] are calculated using the and the stamp of ΔP_{i-1} has an impact on $\int_{0}^{2\pi} \frac{P(\Delta P_{i} \Delta P_{i-1})}{P(\Delta P_{i-1})}$ (7) The expression of the power later *Parameter Identif* model of the data. For a multivariate normal distribution kernel, *D. Sampling Alg*

the optimal bandwidth can be determined as given in [64]. Acceptance-rej
 C. Probability Model of Power Loss
 D. Chronological Probab Acceptance-rejection sample the distribution, and then these termine as given in [0+j).
 Acceptance-rejection sample the distribution, and then these valid distribution, and then these valid at time *t*-1 affects the are time stamp t as an distribution as the proposal PE

e conditional PDF value

constant variance σ_q .

E. Line Parameter Identification

based on the univariate
 $\left[\begin{matrix}I_{ij}^2 & I_{ij}\end{matrix}\right] \left[\begin{matrix}R\end{matrix}\right]$

(7) The expr the probability distribution of ΔP_i . The conditional PDF value

of ΔP_i can be expressed as
 $P(\Delta P_i | \Delta P_{i-1}) = \frac{P(\Delta P_i, \Delta P_{i-1})}{P(\Delta P_{i-1})}$ (7) The expression of the 1

Where $P(\Delta P_{i-1})$ can be calculated based on the of ΔP_i can be expressed as
 $P(\Delta P_i | \Delta P_{i-1}) = \frac{P(\Delta P_i, \Delta P_{i-1})}{P(\Delta P_{i-1})}$

Where $P(\Delta P_{i-1})$ can be calculated based on the

KDE for the time interval [1, *tm*], and $P(\Delta P_i, \Delta P_{i-1})$

calculated based on the multivaria ΔP_i can be expressed as
 $P(\Delta P_i \mid \Delta P_{i-1}) = \frac{P(\Delta P_i, \Delta P_{i-1})}{P(\Delta P_{i-1})}$ (7) The expression of the p

matrix equation:

Where $P(\Delta P_{i-1})$ can be calculated based on the univariate

DE for the time interval [1, *tm*], an st at time t affects that time $t = 1$, nother

state preceding time stamp affects (MCMC) scheme. For MH sampling, the

state preceding time stamp affects the pair of active

should generate random variates conver

g time consider the pair of active

should generate random variates consider the pair of active

of a t time stamp t as an fixed distribution [70]. In this study

of ΔP_{r-1} has an impact on
 $\frac{1}{2}$. Line Parameter Identif matrix equa
based on the univariate

nd $P(\Delta P_r, \Delta P_{r-1})$ can be

DE for the time interval

e not time series samples, stamps and

within the time interval [1, PDFs of (

are calculated using the measuremer

e sample in th *t* be calculated based on the univariate
 *t*rval [1, *tm*], and $P(\Delta P_t, \Delta P_{t-1})$ can be
 t multivariate KDE for the time interval
 xer-loss data are not time series samples,
 ΔP_{t-1} are data within the time inte **EXECTE AS at the** *T* at the *F* at the *F* and the *F* and the *F* and the measurement radio and the mannous obver loss at the preceding time stamp a fifted showed generate radio in tracks consider the pair of active sh preceding time stamp attects

consider the pair of active

and at time stamp t as an invact on

time stamp t as an invact on
 P_{r_1} , $\Delta P_{r_{r-1}}$ has an impact on
 P_{r_2} , $\Delta P_{r_{r-1}}$ has an impact on
 P_{r_1} , $P_{$ loss at time *t*-1 affects the loss at time *t*, and
according to a crute
as at time *t*-1. In other
as the preceding time stamp affects that at time *t*-1. In other
wer loss at the preceding time stamp *t* as an fixed di Where $P(AP_{i-1})$ can be calculated based on the univariate

DE for the time interval [1, tm], and $P(\Delta P_i, \Delta P_{i-1})$ can be

culated based on the multivariate KDE for the time interval

By MH sampling, a lot

tm]. Because t KDE for the time interval [1, *tm*], and $P(\Delta P_i, \Delta P_{i-1})$ can be
calculated based on the multivariate KDE for the time interval
[1, *tm*]. Because the power-loss data are not time series samples, stam
the samples of ΔP_i calculated based on the multivariate KDE for the time interval

[1, *tm*]. Because the power-loss data are not time series samples, stamps and

the samples of ΔP_r and ΔP_{r-1} are data within the time interval [1, PD *tm*]. Because the power-loss data are not time series samples, stamps and chronological corresamples of ΔP_i and ΔP_{i-1} are data within the time interval [1, PDFs of (7), (8), (9), and
J when $P(\Delta P_i, \Delta P_{i-1})$ and the samples of ΔP_i and ΔP_{i-1} are data within the time interval [1, PDFs of (7), (8), (9)
 tm] when $P(\Delta P_i, \Delta P_{i-1})$ and $P(\Delta P_{i-1})$ are calculated using the sampshots, Equation (11)

measurement data.

Similarly

$$
P(\Delta Q_{t} | \Delta Q_{t-1}) = \frac{P(\Delta Q_{t}, \Delta Q_{t-1})}{P(\Delta Q_{t-1})}
$$
 (8) can be taken into

TECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PMU AND UNSYNCHRONIZ

UTION GRIDS

(5) time stamp and do not contain the time stamps c

(6) measurements. The PMUs provide accurate sy

is equal to $\sqrt{R^2 \times (\sigma_k^{l_s^2})^2}$ ATION OF LINE PARAMETERS WITH PMU A

(5) time stamp and do not contain

measurements. The PMUs p

phasor measurements and have

section, we obtain the PDF of

when PMU measurements. The currency

with exact time stamps, a VEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WI
 $= \mu_k^{p_i} - \mu_k^{p_j}$ (5) time stamp and do not
 $\sigma_k^{\Delta P} \approx \sigma_k^{l_0^2}$ (6) measurements. The l

phasor measurements

on $\sigma_k^{\Delta P}$ is equal to $\sqrt{R^2 \times (\sigma_k^{l_0^2})^2}$, the standard deviation $\sigma_k^{\Delta P}$ is approximately equal to $\sigma_k^{I_{ij}^2}$ when PMU measurements. The current I_{ij} is the PMU measurements JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH P

SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
 $\mu_k^{\Delta F} = \mu_k^{\mu} - \mu_k^{\mu}$ (5) time stamp and do not co
 $\sigma_k^{\Delta F} \approx \sigma_k^{\ell_k^1}$ (6) measu PING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PMU.

ADA MEASUREMENTS IN DISTRIBUTION GRIDS
 $\mu_k^{A^P} = \mu_k^{P_i} - \mu_k^{P_i}$ (5) time stamp and do not contain

there the standard deviation *^P* based on the PDF parameters. Using the same method, the JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PM

SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
 $\mu_k^{ab} = \mu_k^{r_i} - \mu_k^{r_i}$ (5) time stamp and do not cont
 $\sigma_k^{ab} \approx \sigma_k^{r_i}$ (6) measureme $\mu_k^{2\nu} = \mu_k^{i\ell} - \mu_k^{i\ell}$ (5) time stamp and do not contain
 $\sigma_k^{2\nu} \approx \sigma_k^{i\ell}$ (6) measurements. The PMUs pri

here the standard deviation $\sigma_k^{2\nu}$ is equal to $\sqrt{R^2 \times (\sigma_k^{i\ell})^2}$, and section, we obtain the PDF F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 5
time stamp and do not contain the time stamps of the PMU
measurements. The PMUs provide accurate synchronized
phasor measurements and have a high sampling rate. In this
sect F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 5
time stamp and do not contain the time stamps of the PMU
measurements. The PMUs provide accurate synchronized
phasor measurements and have a high sampling rate. In this
sect F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 5
time stamp and do not contain the time stamps of the PMU
measurements. The PMUs provide accurate synchronized
phasor measurements and have a high sampling rate. In this
sect F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 5
time stamp and do not contain the time stamps of the PMU
measurements. The PMUs provide accurate synchronized
phasor measurements and have a high sampling rate. In this
sect F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 5
time stamp and do not contain the time stamps of the PMU
measurements. The PMUs provide accurate synchronized
phasor measurements and have a high sampling rate. In this
sect *i* JUNSYNCHRONIZED 5
 i the time stamps of the PMU
 i vide accurate synchronized
 i high sampling rate. In this
 i with the time stamps of the
 *i*_{*i*} is the PMU measurements
 *i*_{*i*} is the measurements with
 F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 5
time stamp and do not contain the time stamps of the PMU
measurements. The PMUs provide accurate synchronized
phasor measurements and have a high sampling rate. In this
sect **i** UNSYNCHRONIZED 5
 i if the measurements of the PMU
 ide accurate synchronized

high sampling rate. In this

with the time stamps of the
 I_{ij} is the PMU measurements
 I_{ij}^2 is the measurements with

onal PDF F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 5
time stamp and do not contain the time stamps of the PMU
measurements. The PMUs provide accurate synchronized
phasor measurements and have a high sampling rate. In this
sect FLINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 5
time stamp and do not contain the time stamps of the PMU
measurements. The PMUs provide accurate synchronized
phasor measurements and have a high sampling rate. In this
secti the PMU time stamps can be obtained when the current I_{ii} is FLINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 5
time stamp and do not contain the time stamps of the PMU
measurements. The PMUs provide accurate synchronized
phasor measurements and have a high sampling rate. In this
secti EXECT: WITH PMU AND UNSYNCHRONIZED 5

2 (or to contain the time stamps of the PMU

2 (PMUs provide accurate synchronized

2 (or the PDF of ΔP_i with the time stamps of the

3. The current I_{ij} is the PMU measurements
 (a) UNSYNCHRONIZED 5

the time stamps of the PMU

ovide accurate synchronized

a high sampling rate. In this
 P_t with the time stamps of the
 I_y is the PMU measurements
 I_y^2 is the measurements with

tional PDF val The stamps of the PMU

ide accurate synchronized

high sampling rate. In this

with the time stamps of the
 I_{ij} is the PMU measurements
 I_{ij}^2 is the measurements with

ional PDF value of ΔP_i with

inned when the *t* contain the time stamps of the PMI

PMUs provide accurate synchronize

and have a high sampling rate. In this

PDF of ΔP_i with the time stamps of th

the current I_{ij} is the PMU measurements

is, and thus, $I_{ij}^$ *thereta in the time stamps of the PMU*
 the PMUs provide accurate synchronized
 the PMUs provide accurate synchronized
 ents and have a high sampling rate. In this the PDF of ΔP_i *with the time stamps of the ts. T* **Example 10**
 P I the time stamps of the PMU
 P rovide accurate synchronized
 P a high sampling rate. In this
 ΔP_i with the time stamps of the
 P I_{ij} is the PMU measurements
 S, I_{ij}^2 is the measurement NE PARAMETERS WITH PMU AND UNSYNCHRONIZED 5

e stamp and do not contain the time stamps of the PMU

asurements. The PMUs provide accurate synchronized

asor measurements and have a high sampling rate. In this

tion, we o FLINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 5
time stamp and do not contain the time stamps of the PMU
measurements. The PMUs provide accurate synchronized
phasor measurements and have a high sampling rate. In this
pecti section, we obtain the PDF of ΔP_i with the time stamps of the
PMU measurements. The current I_{ij} is the PMU measurements
with exact time stamps, and thus, I_{ij}^2 is the measurements with
the exact time stamps. The AU measurements. The current I_y is the PMU measurements
th exact time stamps, and thus, I_y^2 is the measurements with
exact time stamps. The conditional PDF value of ΔP_i with
PMU time stamps can be obtained when th If the model of the exact the stamps of the PMU

2 (PMUs provide accurate synchronized

2 (PMUs provide accurate synchronized

this and have a high sampling rate. In this

3. The current I_{ij} is the PMU measurements

mp he time stamps of the PMU
vide accurate synchronized
a high sampling rate. In this
; with the time stamps of the
 I_y is the PMU measurements
 I_y^2 is the measurements with
ional PDF value of ΔP_i with
ained when the c t_{ij} and PDF value of ΔP_i with

red when the current I_{ij} is

red at *bus i*.
 $\left(\frac{I_i^2}{2}\right)$ (9)

univariate KDE for the time

is calculated based on

val [1, *tm*].

ditional PDF value of ΔQ_i .
 $\frac{I_i^2}{I_i^2$ The conditional PDF value of ΔP_t with
can be obtained when the current I_y is
neter installed at *bus i*.
 $|I_t^2| = \frac{P(\Delta P_t, I_t^2)}{P(I_t^2)}$ (9
assed on the univariate KDE for the time
 $P(\Delta P_t, I_t^2)$ is calculated based on **thereoff The EXECT CONDUCTE THE CONDUCTE AND UNSYNCHRONIZED** 5
 to not contain the time stamps of the PMU

the PMUs provide accurate synchronized

the PDF of ΔP , with the time stamps of the

ths. The current I_{ij}

$$
P(\Delta P_t | I_t^2) = \frac{P(\Delta P_t, I_t^2)}{P(I_t^2)}
$$
\n(9)

.

$$
P(\Delta Q_t | I_t^2) = \frac{P(\Delta Q_t, I_t^2)}{P(I_t^2)}\tag{10}
$$

In this section, the conditional PDF values of ΔP , the PMU ime stamps can be obtained when the current I_{ij} is obtained from a PMU meter installed a *bus i*.
 $P(\Delta P_i | I_i^2) = \frac{P(\Delta P_i, I_i^2)}{P(I_i^2)}$ (9)
 $P(I_i^2)$ is calc obtained from a PMU meter installed at *ous t*.
 $P(\Delta P_r | I_r^2) = \frac{P(\Delta P_r, I_r^2)}{P(I_r^2)}$ (9)
 $P(I_r^2)$ is calculated based on the univariate KDE for the time

interval [1, *tm*], and $P(\Delta P_r, I_r^2)$ is calculated based on

mult $P(\Delta P_i | I_i^2) = \frac{P(\Delta P_i, I_i^2)}{P(I_i^2)}$ (
 $P(I_i^2)$ is calculated based on the univariate KDE for the tin

interval [1, *tm*], and $P(\Delta P_i, I_i^2)$ is calculated based (

multivariate KDE for the time interval [1, *tm*].

Simila *P*(I_i^2) is calculated based on the univariate KDE for the
interval [1, *tm*], and *P*($\Delta P_i, I_i^2$) is calculated based
multivariate KDE for the time interval [1, *tm*].
Similarly, we can obtain the conditional PDF val

a chronological probability

te normal distribution kernel,

te normal distribution kernel,

mined as given in [64]. Acceptance-rejection same

del distribution, and then these

affects the loss at time t, and

according 2) (3) and some solution of a criterion. For a Gaussian

at as the kernel function. For a Gaussian

this section, the conditional PDF

multivariate KDE with two-dimensional

reflect the effects of the exact tim

77] is u Francoin: To a Coalassian

DE with two-dimensional reflect the effects of the exact time

lobe determined as given in In this section, the conditional PIC,

chronological probability model measurements. Therefore, PDFs (9 e *t*, and

n other

algorithm [67]-[69] is a famous

affects

(MCMC) scheme. For MH samp

should generate random variates

as an

distribution as the proposal PD

constant variance σ_q .

E. Line Parameter Identificatio erval [1, *tm*], and $P(\Delta P_i, I_i^2)$ is calculated based on
ultivariate KDE for the time interval [1, *tm*].
Similarly, we can obtain the conditional PDF value of ΔQ_i .
 $P(\Delta Q_i | I_i^2) = \frac{P(\Delta Q_i, I_i^2)}{P(I_i^2)}$ (10)
In this sec the random variate KDE for the time interval [1, tm].

Similarly, we can obtain the conditional PDF value of ΔQ_i .
 $P(\Delta Q_i | I_i^2) = \frac{P(\Delta Q_i, I_i^2)}{P(I_i^2)}$ (10)

In this section, the conditional PDF values of ΔP_i and Δ multivariate KDE for the time interval [1, *m*].

Similarly, we can obtain the conditional PDF value of ΔQ_i .
 $P(\Delta Q_i | I_i^2) = \frac{P(\Delta Q_i, I_i^2)}{P(I_i^2)}$ (10)

In this section, the conditional PDF values of ΔP_i and ΔQ_i
 Similarly, we can obtain the conditional PDF value of ΔQ_i .
 $P(\Delta Q_i | I_i^2) = \frac{P(\Delta Q_i, I_i^2)}{P(I_i^2)}$ (10)

In this section, the conditional PDF values of ΔP_i and ΔQ_i

reflect the effects of the exact time stamps of th $P(\Delta Q_i | I_i^2) = \frac{P(\Delta Q_i, I_i^2)}{P(I_i^2)}$ (10)

In this section, the conditional PDF values of ΔP_i and ΔQ_i

reflect the effects of the exact time stamps of the PMU

measurements. Therefore, PDFs (9) and (10) are power-los In this section, the conditional PDF values of ΔP_i and ΔQ_i
reflect the effects of the exact time stamps of the PMU
measurements. Therefore, PDFs (9) and (10) are power-loss
PDFs with PMU time stamps.
D. *Sampling Al* In this section, the conditional PDF values of ΔP_i and ΔQ_i
reflect the effects of the exact time stamps of the PMU
measurements. Therefore, PDFs (9) and (10) are power-loss
PDFs with PMU time stamps.
D. Sampling Al reflect the effects of the exact time stamps of the PMU
measurements. Therefore, PDFs (9) and (10) are power-loss
PDFs with PMU time stamps.
D. Sampling Algorithm
Acceptance-rejection sampling (ARS) [65]-[66] is a
distrib interval [1, *tm*], and $P(\Delta P_r, I_r^2)$ is calculated based on
multivariate KDE for the time interval [1, *tm*].
Similarly, we can obtain the conditional PDF value of ΔQ_r .
 $P(\Delta Q_r | I_r^2) = \frac{P(\Delta Q_r, I_r^2)}{P(I_r^2)}$ (10)
In this PDFs with PMU time stamps.

D. *Sampling Algorithm*

Acceptance-rejection sampling (ARS) [65]-[66] is a

technique for generating random variates from an alternative

distribution, and then these variates are accepted or *D. Sampling Algorithm*

Acceptance-rejection sampling (ARS) [65]-[66] is a

technique for generating random variates from an alternative

distribution, and then these variates are accepted or rejected

according to a cri Acceptance-rejection sampling (ARS) [65]-[66] is a

shnique for generating random variates from an alternative

stribution, and then these variates are accepted or rejected

cording to a criterion. The Metropolis-Hastings technique for generating random variates frequencies distribution, and then these variates are according to a criterion. The Metropolis algorithm [67]-[69] is a famous Markov ch (MCMC) scheme. For MH sampling, the proposi of the exact time stamps of the PMU
erefore, PDFs (9) and (10) are power-loss
me stamps.
iihm
tion sampling (ARS) [65]-[66] is a
iihm
tion sampling (ARS) [65]-[66] is a
arating random variates from an alternative
enen the exact time stamps of the PMU
 I rec, PDFs (9) and (10) are power-loss

tamps.
 n
 I sampling (ARS) [65]-[66] is a
 I sampling (ARS) [65]-[66] is a
 I contractive these variates are accepted or rejected
 I $P(I_i^-)$

the conditional PDF values of ΔP_i and ΔQ_i

s of the exact time stamps of the PMU

enerefore, PDFs (9) and (10) are power-loss

ime stamps.

orithm

ection sampling (ARS) [65]-[66] is a

erating random varia the conditional PDF values of ΔP_i and ΔQ_i
s of the exact time stamps of the PMU
enerefore, PDFs (9) and (10) are power-loss
ime stamps.
orithm
ection sampling (ARS) [65]-[66] is a
erating random variates from an a litional PDF values of ΔP_i and ΔQ_i

exact time stamps of the PMU

PDFs (9) and (10) are power-loss

pps.

sampling (ARS) [65]-[66] is a

andom variates from an alternative

se variates are accepted or rejected

. Th the conditional PDF values of ΔP_i and ΔQ_i
s of the exact time stamps of the PMU
enerefore, PDFs (9) and (10) are power-loss
ime stamps.
orithm
erection sampling (ARS) [65]-[66] is a
ecrating random variates from an by MH sampling, the moreover than the proposal distribution

CIOC scheme. For MH sampling, the proposal distribution

ould generate random variates conveniently and can be any

ed distribution [70]. In this study, we choo **Example 12** and a method of rejected or rejected
 An. The Metropolis-Hastings (MH)

famous Markov chain Monte Carlo
 H sampling, the proposal distribution

variates conveniently and can be any
 In this study, we

matrix equation: The expression of the power loss in (3) can be written as a

$$
\begin{bmatrix} I_{ij}^2 & I_{ij}^2 \end{bmatrix} \begin{bmatrix} R \\ X \end{bmatrix} = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} \tag{11}
$$

should generate random variates conveniently and can be any
should generate random variates conveniently and can be any
fixed distribution [70]. In this study, we choose a normal
distribution as the proposal PDF $q(x|X)$ w show given a faither and the matrix subseminary and can be any
fixed distribution as the proposal PDF $q(x|X)$ with mean X and
distribution as the proposal PDF $q(x|X)$ with mean X and
constant variance σ_q .
E. Line Param measurements can be proposal PDF $q(x|X)$ with mean X and

constant variance σ_q .

E. Line Parameter Identification Algorithm

The expression of the power loss in (3) can be written as a

matrix equation:
 $\begin{bmatrix} I_q^2 \ I_q$ E. *Line Parameter Identification Algorithm*

The expression of the power loss in (3) can be written as a

matrix equation:
 $\begin{bmatrix} I_{ij}^2 & 0 \end{bmatrix} \begin{bmatrix} R \\ K \end{bmatrix} = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}$ (11)

By MH sampling, a lot of power-Line Parameter Identification Algorithm

The expression of the power loss in (3) can be written as a

tirix equation:
 $\begin{bmatrix} I_i^2 & I_i^2 \end{bmatrix} \begin{bmatrix} R \\ X \end{bmatrix} = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}$ (11)

By MH sampling, a lot of power-loss d

$$
x_{RX} = y_{PQ} \tag{12}
$$

Similarly, we can obtain the conditional PDF value of $_{\Delta Q_i}$. By using the total least squares (TLS) method, both the errors of the coefficient matrix A and observed data vector y_{pQ} The expression of the power loss in (3) can be written as a
matrix equation:
 $\begin{bmatrix} I_{\vartheta}^2 & I_{\vartheta}^2 \end{bmatrix} \begin{bmatrix} R \\ R \end{bmatrix} = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}$ (11)
By MH sampling, a lot of power-loss data with PMU time
stamps and chrono matrix equation:
 $\begin{bmatrix} I_y^2 \\ I_y^2 \end{bmatrix} \begin{bmatrix} R \\ X \end{bmatrix} = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}$ (11)

By MH sampling, a lot of power-loss data with PMU time

stamps and chronological correlations are generated from the

PDFs of (7), (8), (9 $\begin{bmatrix} I_{ij}^2 & 0 \ I_{ij}^2 & 0 \end{bmatrix} \begin{bmatrix} R \\ R \end{bmatrix} = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}$ (11)
By MH sampling, a lot of power-loss data with PMU time
stamps and chronological correlations are generated from the
PDFs of (7), (8), (9), and (10) By MH sampling, a lot of power-loss data with PMU time
stamps and chronological correlations are generated from the
PDFs of (7), (8), (9), and (10). Many current square
measurements can be obtained. In abundant measuremen *T_q* $\int_{a}^{T} \int_{a}^{T} F_{q}$.
 T Identification Algorithm

of the power loss in (3) can be written as a
 $I_{ij}^{2} \left[\begin{bmatrix} R \\ X \end{bmatrix} = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}$ (11)
 R_i a lot of power-loss data with PMU time

logical co

$$
x_{RX} = (A^T A - \sigma_{T+1}^2 I)^{-1} A^T y_{PQ}
$$
 (13)

CSEE JOURNAL OF POWER AND ENERGY SYSTEMS
where σ_{T+1} is the smallest singular value of the expanded time where σ_{T+1} is the smallest singular value of the expanded

CSEE JOURNAL OF POWER AND ENERGY SYSTEMS
where σ_{r+1} is the smallest singular value of the expanded time references, but d
sample matrix $[A, y_{PQ}]$.
To show the proposed algorithm, the line parameter that of bus 1. The

generate ΔP_i from $P(\Delta P_i | \Delta P_{i-1})$ and $P(\Delta P_i | P_i)$ by MH
output population of active power loss ΔP_i
generate population of reactive power loss ΔQ_i using the
same method in stage 1 and stage 2
identify line parame output population of active power loss ΔP_i

generate population of reactive power loss ΔQ_i using the

same method in stage 1 and stage 2

identify line parameter identification)

identify line parameter $x_{\kappa x}$ by generate population of reactive power loss ΔQ , using the

same method in stage 1 and stage 2
 Stage 3: (line parameter x_{ex} by TLS in (13)

(See dientify line parameter x_{ex} by TLS in (13)

VI. HARDWARE SIM shows the parameter identification in the hardware simulation in which the hardware simulation Settings

A. Hardware Simulation Settings

In this study, the PDF of the measurement data is assumed to

be the Gaussian PDF o Stage 3: (line parameter identification)

identify line parameter x_{xx} by TLS in (13)

VI. HARDWARE SIMULATION RESULTS

A. *Hardware Simulation Settings*

In this study, the PDF of the measurement data is assumed to

be identify line parameter x_{kX} by TLS in (13)

VI. HARDWARE SIMULATION RESULTS

A. *Hardware Simulation Settings*

In this study, the PDF of the measurement data is assumed to

be the Gaussian PDF or the GMM PDF; however Since II and the SIMULATION RESULTS

A. Hardware Simulation Settings

In this study, the PDF of the measurement data is assumed to

be the Gaussian PDF or the GMM PDF; however, the PDF of

the real measurements in the dist VI. HARDWARE SIMULATION RESULTS

A. *Hardware Simulation Settings*

In this study, the PDF of the measurement data is assumed to

be the Gaussian PDF or the GMM PDF; however, the PDF of

the real measurements in the distr A. Hardwide Simulation Settings

In this study, the PDF of the measurement data is assumed to

be the Gaussian PDF or the GMM PDF; however, the PDF of

the real measurements in the distribution system is unknown.

This se A. *Hardware Simulation Settings*

In this study, the PDF of the measurement data is assumed to

be the Gaussian PDF or the GMM PDF; however, the PDF of

the real measurements in the distribution system is unknown.

This In this study, the PDF of the measurement data is assumed to
be the Gaussian PDF or the GMM PDF; however, the PDF of
the real measurements in the distribution system is unknown.
This section discusses the performance of t be the Gaussian PDF or the GMM PDF; however, the PDF of
the real measurements in the distribution system is unknown.
This section discusses the performance of the proposed method
shows the hardware simulation in which two the real measurements in the distribution system is unknown.

This section discusses the performance of the proposed method

using the real measurements of the measuring equipment. Fig. 4. Hardway

shows the hardware simu This section discusses the performance of the pr
using the real measurements of the measuring eq
shows the hardware simulation in which two t
line are deployed by measuring equipment
accuracies. The specific network topol In the real measurements of the measuring equipment. Fig. 4

Transformer Current

e are deployed by measuring equipment with different

transformer Current

currencies. The position extends that is used for

the and Maxim shows the hardware simulation in which two terminals of the

line are deployed by measuring equipment with different

accuracies. The specific network topology of the hardware

simulation is lustrated in Tables I and II.
 From the are deployed by measuring equipment with different

accuracies. The specific network topology of the hardware

simulation is illustrated in Fig. 5. The equipment that is used for

the hardware simulation is prese

L OF POWER AND ENERGY SYSTEMS

is the smallest singular value of the expanded time references, but di

measurements of bus 2 h

the proposed algorithm, the line parameter

is shown in Algorithm 1 and in the flow chart in
 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

where σ_{T+1} is the smallest singular value of the expanded time references, but different

sample matrix $[A, y_{PQ}]$.

To show the proposed algorithm, the line parameter that of time references, but different measuring accuracies. The
measurements of bus 2 have a lower measuring accuracy than
that of bus 1. Therefore, we randomly select one measurement
per second as one SCADA measurement per secon time references, but different measuring accuracies. The
measurements of bus 2 have a lower measuring accuracy than
that of bus 1. Therefore, we randomly select one measurement
per second as one SCADA measurement per secon time references, but different measuring accuracies. The
measurements of bus 2 have a lower measuring accuracy than
that of bus 1. Therefore, we randomly select one measurement
per second as one SCADA measurement per secon time references, but different measuring accuracies. The
measurements of bus 2 have a lower measuring accuracy than
that of bus 1. Therefore, we randomly select one measurement
per second as one SCADA measurement per secon time references, but different measuring accuracies. The
measurements of bus 2 have a lower measuring accuracy than
that of bus 1. Therefore, we randomly select one measurement
per second as one SCADA measurement per secon time references, but different measuring accuracies. The
measurements of bus 2 have a lower measuring accuracy than
that of bus 1. Therefore, we randomly select one measurement
per second as one SCADA measurement per secon time references, but different measuring ac
measurements of bus 2 have a lower measuring
that of bus 1. Therefore, we randomly select one
per second as one SCADA measurement per second
measurements of bus 1 and the SCADA m

JINPING SUN et al.: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PMU A

SCADA MEASUREMENTS IN DISTRIBUTION GRIDS

THE MEASURENCE EQUIPMENT OF THE HARDWARE SIMULATION

Name (or name in Fig. 5) Equipment SCADA MEASUREMENTS IN DISTRIBUTION GRIDS

THE MEASURNG EQUIPMENT OF THE HARDWARE SIMULATION

Name (or name in Fig. 5) Equipment type

Memory recorder HIOKI MR6000 mod =0.1%

Current sensor 2 FLUKE 308

Current sensor THE MEASURING EQUIPMENT OF THE HARDWARE SIMULATION

Memory recorder

Memory recorder

Memory recorder

HOKI CT6862

Current sensor 1

HOKI CT6862

Current sensor 1

HOKI CT6862

CHIVE 1308 (amplitude); 0.2° (phasor angle) THE MEASURING EQUIPMENT OF THE HARDWARE SIMULATION

Memory recorder

Measuring accuracy

Measuring accuracy

Measuring accuracy

Current sensor 2

EL **From 1,001** to 15,000. The PDF of the measurement data is the measurement sensor by the measurement sensor 2 FLUKE i306000 to the measurement sensor 2 FLUKE i306 to $\frac{11\%}{40.9\%}$ (resistance): $\frac{11\%}{40.9\%}$ (resi Memory recorder

are the GMM PDF street assets in the constrained to be the GMM PDF when $\frac{+0.1\%}{2}$

Current sensor 2

Unity Collage sensor 2

FLUKE i30s

Current sensor 2

FLUKE i30s

Current sensor 2

CHNT IDG4

40.5 Current sensor 1

Current sensor 2

Current sensor 2

Unit (DKIC COSE)

Unit aloction of SCAL

In this section, we identify the line parameters using 1) The number of SCAL

Algorithm 1. The PDF of the measurement data is Collage sensor 2

CHNT JDG4

LEAT JDG4

Digital electric bridge

CCHNT JDG4

Leading the Directric bridge

CCHNT JDG4

Algorithm 1. The PDF of the measurement data is assumed to to Section III, an unbiased estitive

be a Digital electric bridge $V4092A$ $\pm 0.3\%$ (resistance); $\pm 0.3\%$ (induct
Algorithm 1. The PDF of the measurement data is assumed to to Section III, an unbiase
be a Gaussian PDF when $K=1$. In stage two of Algorithm 1, In this section, we identify the line parameters using 1) The number of Algorithm 1. The PDF of the measurement data is assumed to to Section III, an unk be a obtain 15,000 power-loss samples with PMU time stamps and samp gorithm 1. The PDF of the measurement data is assumed to to Section III, an unbiased
a Gaussian PDF when $K=1$. In stage two of Algorithm 1, we be given by the sample
tain 15,000 power-loss samples with PMU time stamps an be a Gaussian PDF when $K=1$. In stage two of Algorithm 1, we be given by the sample mean
obtain 15,000 power-loss samples with PMU time stamps and snapshots. When the number of
chronological correlations. However, the fi obtain 15,000 power-loss samples with PMU time stamps and

shaphots. When the number of s

follow the correct distribution and should be discarded [67]. original population. In this study

fillence the results of the measu chronological correlations. However, the first sample may not distribution of the samples w
follow the correct distribution and should be discarded [67]. corriginal population. In this stu
Therefore, in this study, we choo

follow the correct distribution and should be discarded [67]. original population. In thi
Therefore, in this study, we choose the power-loss samples
from 1,001 to 15,000. The PDF of the measurement data is measurements, w Therefore, in this study, we choose the power-loss samples
from 1,001 to 15,000. The PDF of the measurement data is measurements, which m
assumed to be the GMM PDF when K is not one. In this GMM, detection and identificat from 1,001 to 15,000. The PDF of the measurement data is measurements, which may lead
assumed to be the GMM PDF when K is not one. In this GMM, detection and identification of lit
the PDF of the measurements contains thre assumed to be the GMM PDF when *K* is not one. In this GMM, detection and identification
the PDF of the measurements contains three Gaussian 2) The error of PMU a
components, and the power-loss samples from 1 to 100 in ea the PDF of the measurements contains three components, and the power-loss samples from 1 to Gaussian component are discarded. Then, there were loss samples are used to identify the line parameter As the time skew of the S Comparative
 B. Comparative Experiment

B. Comparative Experiment
 $B = \frac{1}{2}$
 B. Comparative Experiment
 B. Comparative Experiment
 B. Comparative Experiment
 B. Comparative Experiment

B. Comparative Experime

Experiment

Samples

Samples

Number of the SCADA measurement value of the branch is the of VC4092A. The measuring accuracions

Publis the measurement value of this line. Because

Publis 11.2 150.051.62 1100

To make a co fiftieth time stamp of the PMU measurements in the Samples

PMU **comparation** $\frac{1}{12}$ is the measured value of WC4

Population $\frac{1}{12}$ is the same as $\frac{1}{15000}$
 $\frac{1}{15000$ At one end of the line, there are 300 PMU measurements (the Polydiation 11 (2 (50 (51152 (1100) (115000) real value of this line. Because the parameter is close to one.

For make a comparison, the tests are also performed under the parameter is close to one.

condition that the de Fig. 6. Measurements of the estable properties of the actual distribution in the actual distribution is

Fig. 6. Measurements of comparison, the tests are also performed under the parameter is close to one.

Condition tha Fig. 6. Measurements of comparative experiment

To make a comparation, the tests are also performed under the

condition that the delay of the SCADA measurement is III lists the impedance parameter

condition that the del Fig. 6. Measurements of comparative experiment
To make a comparison, the tests are also performed under the
condition that the delay of the SCADA measurement is
neglected, i.e., the SCADA measurements obtained match with
 Fo make a comparison, the tests are also performed under the condition that the delay of the SCADA measurement is neglected, i.e., the SCADA measurements obtained match with the closest PMU measurements. In Fig. 6, for ea glected, i.e., the SCADA measurements obtained match with

voltage. In this study,

closest PMU measurements. In Fig. 6, for each second, the

method proposed in this study,

be stamp of the SCADA measurements in the can the closest PMU measurements. In Fig. 6, for each second, the MATLAB 2018b install
time stamp of the SCADA measurement is the same as the 2.60 GHz and 2.59 GHz
fiftieth time stamp of the PMU measurements in the CPU. The r First the stamp of the SCADA measurement is the same as the 2.60 GHz and 2.59 GHz fiftieth time stamp of the PMU measurements in the CPU. The results of comparative experiment, i.e., the green txl is the same as t50. ide Fiftieth time stamp of the PMU measurements in the C1
fiftieth time stamp of the PMU measurements in the C1
comparative experiment, i.e., the green $tx1$ is the same as 150. id
At one end of the line, there are 300 PMU mea

INE PARAMETERS WITH PMU AND UNSYNCHRONIZED
 $\frac{1}{2}$
 $\frac{1}{2}$
 F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED

THE HARDWARE SIMULATION

Measuring accuracy
 $+1\%$
 $+6\%$ (amplitude); 0.2° (phasor angle)
 $+1\%$
 $+9\%$ (100mV/A
 $+0.5\%$

3% (resistance); $\pm 0.3\%$ (inductance)

1) F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED

FIE HARDWARE SIMULATION

Measuring accuracy
 $\frac{\pm 0.1\%}{\pm 0.5\%}$ (amplitude); 0.2° (phasor angle)
 $\frac{2\sqrt{50A}}{\pm 1000}$
 $\frac{3\%}{\pm 0.5\%}$ (resistance): $\pm 0.3\%$ (indu FLINE PARAMETERS WITH PMU AND UNSYNCHRONIZED

FIE HARDWARE SIMULATION

Measuring accuracy

Measuring accuracy

Measuring accuracy

196% (amplitude); 0.2° (phasor angle)

2V/50A

196% (resistance): ±0.3% (inductance)

380/0 ET

HE HARDWARE SIMULATION

Measuring accuracy
 $\frac{10.1\%}{2.00}$
 $\frac{100 \text{m}}{100}$
 $\frac{100 \text{m}}{100}$
 $\frac{100 \text{m}}{100}$
 $\frac{3\%}{1000}$
 $\frac{3\%}{1000}$
 $\frac{3\%}{1000}$
 $\frac{3\%}{1000}$
 $\frac{3\%}{1000}$
 $\frac{3\%}{1000}$ original population. In this study, 300 SCADA measurements EXECTED Manuform CHE EXABIVARE SIMULATION
 $\frac{100}{20}$ (amplittel); 0.2° (phasor angle)
 $\frac{100 \text{mV/A}}{100 \text{mV/A}}$
 $\frac{100 \text{mV/A}}{100 \text{mV/A}}$
 $\frac{3\% \text{(resistance)} \pm 0.3\% \text{(inductance)}}{380/100 \text{V}}$

1) The number of SCADA sample m Measuring accuracy
 $+0.1\%$
 $+0.1\%$
 $+0.5\%$
 $+1.6\%$
 $+0.5\%$
 $\frac{+0.1\%}{+0.1\%}$
 $\frac{+0.1\%}{+0.5\%}$
 $\frac{+0.5\%}{+0.5\%}$ (resistance): $\frac{+0.3\%}{+0.3\%}$ (inductance) $\frac{+0.3\%}{-0.3\%}$ (resistance): $\frac{+0.3\%}{-0.3\%}$ (inductance) $\frac{+0.3\%}{-0.3\%}$ (now the sample measureme 6 (amplitude); 0.2° (phasor angle) 2V/50A
 $\pm 1\%$ 100mV/A
 $\pm 0.5\%$ 100mV/A

(resistance); $\pm 0.3\%$ (inductance) 380/100V

1) The number of SCADA sample measurements: according

Section III, an unbiased estimato ^{21.7}

²⁰³⁶ (resistance): $\pm 0.3\%$ (inductance)

^{39%} (resistance): $\pm 0.3\%$ (inductance)

1) The number of SCADA sample measurements: according

to Section III, an unbiased estimator of the population mean can

b ^{3%} (resistance): $\pm 0.3\%$ (inductance) \rightarrow

1) The number of SCADA sample measurements: according

to Section III, an unbiased estimator of the population mean can

be given by the sample mean in the abundant measure 1) The number of SCADA sample measurements: according
to Section III, an unbiased estimator of the population mean can
be given by the sample mean in the abundant measurement
snapshots. When the number of samples is large to Section III, an unbiased estimator of the population mean can
be given by the sample mean in the abundant measurement
snapshots. When the number of samples is large, the probability
distribution of the samples will be v be given by the sample mean in the abundant measurement
snapshots. When the number of samples is large, the probability
distribution of the samples will be very close to that of the
original population. In this study, 300

apshots. When the number of samples is large, the probability
tribution of the samples will be very close to that of the
ginal population. In this study, 300 SCADA measurements
e used as the samples of the population of 15 distribution of the samples will be very close to that of the original population. In this study, 300 SCADA measurements are used as the samples of the population of 15,000 PMU measurements, which may lead to errors but ca

original population. In this study, 300 SCADA measurements
are used as the samples of the population of 15,000 PMU
measurements, which may lead to errors but can realize the
detection and identification of line parameters. are used as the samples of the population of 15,000 PMU
measurements, which may lead to errors but can realize the
detection and identification of line parameters.
2) The error of PMU and SCADA measurements: the PMU
and SC measurements, which may lead to errors but can realize the detection and identification of line parameters.

2) The error of PMU and SCADA measurements: the PMU and SCADA measurements are provided by measuring equipment th detection and identification of line parameters.

2) The error of PMU and SCADA measurements: the PMU

and SCADA measurements are provided by measuring

equipment that possesses inherent measuring accuracy. When

the measu 2) The error of PMU and SCADA measurements: the PMU
and SCADA measurements are provided by measuring
equipment that possesses inherent measuring accuracy. When
the measurements at both ends of the line have the same exact and SCADA measurements are provided
equipment that possesses inherent measuring a
the measurements at both ends of the line have
time stamps, the deviation of the estimated line
be brought about by the related measurement uipment that possesses inherent measuring accuracy. When

reasurements at both ends of the line have the same exact

ne stamps, the deviation of the estimated line parameter may

brought about by the related measurements.
 the measurements at both ends of the line have the same exact
time stamps, the deviation of the estimated line parameter may
be brought about by the related measurements.
3) The choice of the base power and base voltage: time stamps, the deviation of the estimated line parameter may
be brought about by the related measurements.
3) The choice of the base power and base voltage: when the
resistance value, in p.u., is approximately one, Equa be brought about by the related measurements.
3) The choice of the base power and base voltage: when the resistance value, in p.u., is approximately one, Equation (6) is used. However, the real value of the impedance is u

3) The choice of the base power and base voltage: when the resistance value, in p.u., is approximately one, Equation (6) is used. However, the real value of the impedance is unknown. The impedance value, in p.u., can be a resistance value, in p.u., is approximately one, Equation (6) is
used. However, the real value of the impedance is unknown.
The impedance value, in p.u., can be approximately one, rather
than exactly equal to one, using th used. However, the real value of the impedance is unknown.
The impedance value, in p.u., can be approximately one, rather
than exactly equal to one, using the appropriate choice of base
power and base voltage. Therefore, The impedance value, in p.u., can be approximately one, rather
than exactly equal to one, using the appropriate choice of base
power and base voltage. Therefore, the standard deviation of
the power loss in the proposed al than exactly equal to one, using the appropriate choice of base
power and base voltage. Therefore, the standard deviation of
the power loss in the proposed algorithm deviates from the true
standard deviation.
In this study power and base voltage. Therefore, the standard deviation of
the power loss in the proposed algorithm deviates from the true
standard deviation.
In this study, the real values of impedance are the measured
resistance and i the power loss in the proposed algorithm deviates from the true
standard deviation.
In this study, the real values of impedance are the measured
resistance and inductance based on a digital electric bridge, i.e.,
VC4092A. standard deviation.

In this study, the real values of impedance are the measured

resistance and inductance based on a digital electric bridge, i.e.,

VC4092A. The measuring accuracy of the VC4092A for the

resistance and In this study, the real values of impedance are the measured resistance and inductance based on a digital electric bridge, i.e., VC4092A. The measuring accuracy of the VC4092A for the resistance and inductance is $\pm 0.3\$ resistance and inductance based on a digital electric bridge, i.e.,
VC4092A. The measuring accuracy of the VC4092A for the
resistance and inductance is $\pm 0.3\%$ in Table I, which shows that
the measured value of VC4092A VC4092A. The measuring accuracy of the VC4092A for the resistance and inductance is $\pm 0.3\%$ in Table I, which shows that the measured value of VC4092A can be believed. The initial value of the branch is known, but may resistance and inductance is $\pm 0.3\%$ in Table I, which shows that
the measured value of VC4092A can be believed. The initial
value of the branch is known, but may have an error with the
real value of this line. Because the measured value of VC4092A can be believed. The initial value of the branch is known, but may have an error with the real value of this line. Because some real line parameters are unknown in the actual distribution netw value of the branch is known, but may have an error with the
real value of this line. Because some real line parameters are
unknown in the actual distribution network, we adjust the base
power and base voltage such that th real value of this line. Because some real line parameters are unknown in the actual distribution network, we adjust the base power and base voltage such that the p.u. value of the initial parameter is close to one. The in unknown in the actual distribution network, we adjust
power and base voltage such that the p.u. value of th
parameter is close to one. The initial values of 1
parameters are within a 20% error from their real value
III lis wer and base voltage such that the p.u. value of the initial
rameter is close to one. The initial values of the line
rameters are within a 20% error from their real values. Table
lists the impedance parameters, base power, parameter is close to one. The initial values of the line
parameters are within a 20% error from their real values. Table
III lists the impedance parameters, base power, and base
voltage. In this study, the proposed method parameters are within a 20% error from their real values. Table
III lists the impedance parameters, base power, and base
voltage. In this study, the proposed method is analyzed using
MATLAB 2018b installed on a computer wi III lists the impedance parameters, base power, and base
voltage. In this study, the proposed method is analyzed using
MATLAB 2018b installed on a computer with 8 GB of RAM,
2.60 GHz and 2.59 GHz processors, and an Intel C voltage. In this study, the proposed method is analyzed using MATLAB 2018b installed on a computer with 8 GB of RAM, 2.60 GHz and 2.59 GHz processors, and an Intel Core i7-9750H CPU. The results of the line parameter detec

MATLAB 2018b installed on a computer with 8 GB of RAM, 2.60 GHz and 2.59 GHz processors, and an Intel Core i7-9750H CPU. The results of the line parameter detection and identification for five consecutive times are shown 2.60 GHz and 2.59 GHz processors, and an Intel Core i7-9750H CPU. The results of the line parameter detection and identification for five consecutive times are shown in Tables IV, V, and VI. We determine this threshold (0.

7

CSEE JOURNAL OF POWER AND ENERGY SYSTEMS
measured impedance of VC4092A. The average errors of the chro CSEE JOURNAL OF POWER AND ENERGY SYSTEMS
measured impedance of VC4092A. The average errors of the chronological correlations from
line parameter identification of the hardware simulation by the time stamps and a power-lo
c CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

measured impedance of VC4092A. The average errors of the chronological correlations from

line parameter identification of the hardware simulation by the time stamps and a power-l csee JoURNAL OF POWER AND ENERGY SYSTEMS
measured impedance of VC4092A. The average errors of the
line parameter identification of the hardware simulation by the
comparative experiment are 25.3233% and 20.6801% in Table
v CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

measured impedance of VC4092A. The average errors of the

line parameter identification of the hardware simulation by the

time stamps and a power-

comparative experiment are 25.3 csee JOURNAL OF POWER AND ENERGY SYSTEMS

measured impedance of VC4092A. The average errors of the chronological correlations from line

parameter identification of the hardware simulation by the time stamps and a power-lo CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

measured impedance of VC4092A. The average errors of the

line parameter identification of the hardware simulation by the imme stamps and a power-

comparative experiment are $25.$ CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

measured impedance of VC4092A. The average errors of the chronological correlation

line parameter identification of the hardware simulation by the time stamps and a p

comparativ csee JOURNAL OF POWER AND ENERGY SYSTEMS

measured impedance of VC4092A. The average errors of the chronological correlatio

line parameter identification of the hardware simulation by the time stamps and a p

comparative CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

measured impedance of VC4092A. The average errors of the chronological correlations from

line parameter identification of the hardware simulation by the time stamps and a power-l CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

measured impedance of VC4092A. The average errors of the chronological correlations from

line parameter identification of the hardware simulation by the time stamps and a power-l measured impedance of VC4092A. The average errors of the chronological correlations f
line parameter identification of the hardware simulation by the time stamps and a power
comparative experiment are 25.3233% and 20.6801% measured impedance of VC4092A. The average errors of the chronological correlations from in
line parameter identification of the hardware simulation by the time stamps and a power-los
comparative experiment are 25.3233% an measured impedance of VC4092A. The average errors of the chronological correlations from
line parameter identification of the hardware simulation by the time stamps and a power-lc
comparative experiment are 25.3233% and 2 line parameter identification of the hardware simulation by the time stamps and a power-loomparative experiment are 25.3233% and 20.6801% in Table parameter identification is realized by the proposed method are -2.3084% a comparative experiment are 25.3233% and 20.6801% in Table parameter identification is real
V, and 21.9467% and 15.9152% in Table VI. However, those and PMU current measurement
by the proposed method are -2.3084% and -1.100 V, and 21.9467% and 15.9152% in Table VI. However, those and PMU current measure
by the proposed method are -2.3084% and -1.1009% in Table V, this study are as follows:
and -3.7267% and -0.5621% in Table VI. It is clear f by the proposed method are -2.3084% and -1.1009% in

and -3.7267% and -0.5621% in Table VI. It is clear fr

data that the maximal error of the proposed method (3.

is smaller than the minimal error of the comparative exp
 error of the comparative experiment

rence is more than 10%. The line the m

the proposed method is close to the role in

ed on a digital electric bridge. 2)

ian and GMM distributions, it is proposed

nethronized issue o impedance based on a digital electric bridge. 2) A

in both Gaussian and GMM distributions, it is propose

at for an unsynchronized issue of the PMU and magnitu

reasurements, the line parameter can be detected by paramet Initial values of impedance (p.u.) μ _{j×0.8} 1+j×0.8 1 assessing the power (VA) and the error of the line Therefore, in both Gaussian and GMM distributions, it is proposed PPII is the subseted that for an unsynchronized issue of the PMU and magnitude measurement
SCADA measurements, the line parameter can be detected by parame

distribution grids. Because the proposed method is a Base power (VA)

Base voltage (V) and a state of the measurements based on the condition

Distribution PPII-1 PPII-2 PPII-3 PPII-4 PPII-5 at the prior time stamp and

Caussian 2.1522 2.1907 2.2954 2.0197 1.5622 at to model Base voltage (V)

TABLE IV

DETECTION RESULTS OF HARDWARE SIMULATION

Distribution PPII-1 PPII-2 PPII-4 PPII-5 PPI-4 IS and the prior time stamp are

Gaussian 2.1522 2.1907 2.2954 2.0197 1.5622

(SMM 4.5543 6.5463 6.1470 **EXECTION RESULTS OF HARDWARE SIMULATION** is used to model the chronologica

This tribution PPII-1 PPIL-2 PPIL-3 PPII-4 PPIL-5

Caussian 2.1522 2.1907 2.954 2.0197 1.5622 EMM 4.5543 6.3463 6.1470 4.3911 6.6003 used to mode The samples and SCADA measurements as the population. This the proof GAUSSIAN DISTRIBUTION of the power-loss P

SMM 4.5543 6.5463 6.1470 4.3911 6.6003 used to model the correlation b

This paper presents a data-based metho $\begin{tabular}{c|c|c|c} \hline Gaussian & 2.1522 & 2.1907 & 2.2954 & 2.0197 & 1.5622 & Furthermore, the power-lo
\nGMM & 4.5543 & 6.5463 & 6.1470 & 4.3911 & 6.6003 & used to model the correlati
\nVII. CONCLUSION & time stamps. \\ \hline & VII. CONCLUSION & 4) The power loss sam
\ndetection and identification where PMU measurements have measurements and power-exact time stamps and SCADA measurements do not in
\ndata-driven method, the PDFs obtained from the data do not Gaussian and GMM district
\nread to be known previously. For the time skew of the PMU that when SCADA measurements
\nand SCADA$ **GMM** 4.5543 6.5463 6.1470 4.3911 6.6003 used to model the correlation be

VII. CONCLUSION time stamps.

This paper presents a data-based method for line parameter

the power-loss samples start time stamps and SCADA measu listribution grids. Because the propos-
lata-driven method, the PDFs obtained freed to be known previously. For the time
md SCADA measurements, we take SCAD
he samples and PMU measurements as tl
tudy derives a PPII to dete Is. Because the proposed method is a based of

od, the PDFs obtained from the data do not Gaussia

in previously. For the time skew of the PMU that wh

surements, we take SCADA measurements as measur

PMU measurements as

chronological correlations from a power-loss PDF with PMU
time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclu chronological correlations from a power-loss PDF with PMU
time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclu chronological correlations from a power-loss PDF with PMU
time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclu chronological correlations from a power-loss PDF with PMU
time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclu chronological correlations from a power-loss PDF with
time stamps and a power-loss chronological PDF
parameter identification is realized by the power-loss s
and PMU current measurements. The primary conclus
this study are ronological correlations from a power-loss PDF with PMU
ne stamps and a power-loss chronological PDF. Line
rameter identification is realized by the power-loss samples
d PMU current measurements. The primary conclusions of chronological correlations from a power-loss PDF with PMU
time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclu chronological correlations from a power-loss PDF with PMU
time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclu chronological correlations from a power-loss PDF with PMU
time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclu chronological correlations from a power-loss PDF with PMU
time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclu ronological correlations from a power-loss PDF with PMU
ne stamps and a power-loss chronological PDF. Line
rameter identification is realized by the power-loss samples
d PMU current measurements. The primary conclusions of

chronological correlations from a power-loss PDF with PMU
time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclu chronological correlations from a power-loss PDF with PMU
time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclu time stamps and a power-loss chronological PDF. Line
parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclusions of
this study are as follows:
1) The time skew of th parameter identification is realized by the power-loss samples
and PMU current measurements. The primary conclusions of
this study are as follows:
1) The time skew of the PMU and SCADA measurements for
the line parameter d and PMU current measurements. The primary conclusions of
this study are as follows:
1) The time skew of the PMU and SCADA measurements for
the line parameter detection and identification is solved using
probabilistic appro this study are as follows:

1) The time skew of the PMU and SCADA measurements for

the line parameter detection and identification is solved using

probabilistic approaches. Both the probability distribution of

the measu comparisons. 2) Example 1: Inne parameter detection and identification is solved using

2) babilistic approaches. Both the probability distribution of

2) eneasurements and the sampling algorithm play a crucial

2) A PPII is proposed t probabilistic approaches. Both the probability distribution of
the measurements and the sampling algorithm play a crucial
role in realizing the line parameter detection and identification.
2) A PPII is proposed to detect t the measurements and the sampling algorithm play a crucial
role in realizing the line parameter detection and identification.
2) A PPII is proposed to detect the line parameter. The
proposed PPII is the sum of the relative role in realizing the line parameter detection and identification.

2) A PPII is proposed to detect the line parameter. The

proposed PPII is the sum of the relative errors of the voltage

magnitude measurement means, deri

3) A power-loss chronological PDF and a power-loss PDF with PMU time stamps are derived based on the conditional Furthermore, the power-loss PDF with the PMU time stamps is used to model the correlation between the power loss and PMU 2) A PPII is proposed to detect the line parameter. The proposed PPII is the sum of the relative errors of the voltage magnitude measurement means, derived from the PDF parameters of the measurements and line parameters. proposed PPII is the sum of the relative errors of the voltage
magnitude measurement means, derived from the PDF
parameters of the measurements and line parameters. A PPII is
derived based on the measurement-based method (magnitude measurement means, derived from the PDF
parameters of the measurements and line parameters. A PPII is
derived based on the measurement-based method (i.e., the
data-driven method). The detection of the accuracy of parameters of the measurements and line parameters. A PPII is
derived based on the measurement-based method (i.e., the
data-driven method). The detection of the accuracy of the line
parameter depends on the PPII and thresh derived based on the measurement-based method (i.e., the
data-driven method). The detection of the accuracy of the line
parameter depends on the PPII and threshold over many
comparisons.
3) A power-loss chronological PDF a data-driven method). The detection of the a
parameter depends on the PPII and three
comparisons. 3) A power-loss chronological PDF and
with PMU time stamps are derived based
probability and nonparametric KDE, which
of the rameter depends on the PPII and threshold over many
mparisons.
3) A power-loss chronological PDF and a power-loss PDF
th PMU time stamps are derived based on the conditional
bability and nonparametric KDE, which provides t comparisons.

3) A power-loss chronological PDF and a power-loss PDF

with PMU time stamps are derived based on the conditional

probability and nonparametric KDE, which provides the PDF

of the measurements based on the m 3) A power-loss chronological PDF and a power-loss PDF
with PMU time stamps are derived based on the conditional
probability and nonparametric KDE, which provides the PDF
of the measurements based on the measurements-base with PMU time stamps are derived based on the conditional
probability and nonparametric KDE, which provides the PDF
of the measurements based on the measurements-based method,
i.e., the data-driven method. The power-loss c

probability and nonparametric KDE, which provides the PDF
of the measurements based on the measurements-based method,
i.e., the data-driven method. The power-loss chronological PDF
is used to model the chronological correl of the measurements based on the measurements-based method,
i.e., the data-driven method. The power-loss chronological PDF
is used to model the chronological correlation of the power loss
at the prior time stamp and the fo i.e., the data-driven method. The power-loss chronological PDF
is used to model the chronological correlation of the power loss
at the prior time stamp and the following time stamp.
Furthermore, the power-loss PDF with the is used to model the chronological correlation of the power loss
at the prior time stamp and the following time stamp.
Furthermore, the power-loss PDF with the PMU time stamps is
used to model the correlation between the p at the prior time stamp and the following time stamp.
Furthermore, the power-loss PDF with the PMU time stamps is
used to model the correlation between the power loss and PMU
time stamps.
4) The power-loss samples are samp Furthermore, the power-loss PDF with the PMU time
used to model the correlation between the power loss
time stamps.
4) The power-loss samples are sampled from two
the power loss by the MH algorithm. Using the PM
measuremen ter the power loss by the MH algo

ve measurements and power-loss s:

in and chronological correlations,

a based on the data-driven and n

ot Gaussian and GMM distribution

flul that when SCADA measurements

as measureme

	exact time stamps and SCADA measurements do not in						and chronological correlations, we identify line parameters
distribution grids. Because the proposed method is a				based on the data-driven and model-driven methods. For the			
	data-driven method, the PDFs obtained from the data do not						Gaussian and GMM distributions, hardware simulations show
	need to be known previously. For the time skew of the PMU						that when SCADA measurements do not match with PMU
	and SCADA measurements, we take SCADA measurements as						measurements, the incorrect line parameter can be detected and
	the samples and PMU measurements as the population. This						the identification errors of the line parameters are between
	study derives a PPII to detect the line parameters. We generate			-3.7267% and -0.5621% .			
	samples of the power loss with PMU time stamps and						
			TABLE V				
	IDENTIFICATION OF HARDWARE SIMULATION FOR GAUSSIAN DISTRIBUTION						
Method type	Estimated impedance	Test 1	Test 2	Test 3	Test 4	Test 5	Average value
		$1.0876 + j \times 0.$	$1.1018+j\times 0.$	$1.1532 + j \times 0$.	$1.0684+j\times 0.$	$1.0500 + j \times 0$.	$1.0922 + j \times 0.8881$
Identification of	Estimated values of impedance (p.u.)	8908	8883	8790	8756	9068	
proposed method	Relative errors of resistance $(\%)$	-2.7207	-1.4476	3.1473	-4.4373	-6.0836	-2.3084
	Relative errors of reactance (%)	-0.8031	-1.0776	-2.1137	-2.4894	0.9795	-1.1009
Identification of	Estimated values of impedance (p.u.)	$1.3801+j\times1$.	$1.4140+j\times1$.	$1.4132+j\times1$.	$1.4447 + j \times 1$.	$1.3536+j\times1$.	$1.4011+j \times 1.0837$
comparative	Relative errors of resistance $(\%)$	0871 23.4432	0781 26.4744	0660 26.4004	1052 29.2251	0821 21.0736	25.3233
experiment	Relative errors of reactance (%)	21.0630	20.0514	18.7069	23.0732	20.5060	20.6801
			TABLE VI				
			IDENTIFICATION OF HARDWARE SIMULATION FOR GMM DISTRIBUTION				
Method type	Estimated impedance	Test 1	Test 2	Test 3	Test 4	Test 5	Average value
Identification of proposed method		$1.1084 + j \times 0.$	$1.0277 + j \times 0$.	$1.0180+j\times 0.$	$1.1189 + j \times 0$.	$1.0654+j\times 0.$	$1.0677 + j \times 0.8949$
	Estimated values of impedance (p.u.)	8702	8855	8985	9210	8994	
	Relative errors of resistance $(\%)$	-0.0558	-7.3336	-8.2044	0.8926	-3.9323	-3.7267
	Relative errors of reactance $(\%)$	-3.3082	-1.6094	-0.1646	2.3335	-0.0620	-0.5621
Identification of comparative experiment	Estimated values of impedance (p.u.)	$1.3816+j\times1$.	$1.3252+j\times1$.	$1.3427+j\times1$.	$1.3762 + j \times 1$	$1.3363+j\times1$.	$1.3524+j \times 1.0432$
		0415	0508	0551	0249	0439	
	Relative errors of resistance (%) Relative errors of reactance (%)	24.5762	19.4949	21.0760	24.0893	20.4969	21.9467
		15.7204	16.7588	17.2283	13.8765	15.9920	15.9152

JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
The detection method presented here has its limitations: first, [13] J.
if the errors of the line parameters The detection method presented here has its limitations: first,
The detection method presented here has its limitations: first, [13] J. Zhu, and A. Abur, "Improvember the errors of the line parameters are too small, we ca JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PM
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS

The detection method presented here has its limitations: first, [13] J. Zhu, and A. Abur, JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PMU
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
The detection method presented here has its limitations: first, [13] J. Zhu, and A. Abur, JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PM
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS
The detection method presented here has its limitations: first, [13] J. Zhu, and A. Abur, JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PMU AN
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS

The detection method presented here has its limitations: first, [13] J. Zhu, and A. A JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PMU AN
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS

The detection method presented here has its limitations: first, [13] J. Zhu, and A. A JINPING SUN *et al*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS

The detection method presented here has its limitations: first, [13] J. Zhu, and A. Abur, if
 JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS

The detection method presented here has its limitations: first, [13] J. Zhu, and A. Abur, "
 JINPING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH
SCADA MEASUREMENTS IN DISTRIBUTION GRIDS

The detection method presented here has its limitations: first,

if the errors of the line p PING SUN *et al.*: DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH PMU A

ADA MEASUREMENTS IN DISTRIBUTION GRIDS

The detection method presented here has its limitations: first, [13] J. Zhu, and A. Abur, EXAMPLE SET CHINE CONTINUITY SURFAMPLE CONTINUITY CONTINUITY CONTINUITY CONTINUITY OF THE CONTINUITY OF THE CONTINUITY OF THE PARAMPLETING OF THE PARAMPLETING OF THE PARAMPLETING of the line parameters are too small, we c The detection method presented here has its limitations: first, [13] J. Zhu, and A. Abur, "Improvid if the errors of the line parameters are too small, we cannot deterification via Synchronized distinguish between the PPI The detection method presented here has its limitations: first, $[13]$ J. Zhu, and A. Abur, "If the errors of the line parameters are too small, we cannot destrificiation via Systems, vol. 25, no. 1, pp. 4

Mostlemguish b t detect the incorrect line parameters of the small errors.

Such decoted decetion method to

tect errors that result from the resistance and reactance, it

and correct errors that result from the resistance and reactance Second, despite the ability of the proposed detection method to

detect rems threshince and reactance, it and oceracine of branch part cannot detect whether the error is brought about by resistance

or reactance. Neverthe

detect errors that result from the resistance and reactance, 1
cannot detect whether the error is brought about by resistance
or reactance. Nevertheless, the results of the hardware
simulations are credible, and the detect

ACKNOWLEDGMENT

REFERENCES

- deployment in distribution systems and the model of the line
with a shunt capacitor to improve the scalability of the method.

[17] H. B. Zhang, Z. W. Diao, a

Harach Parameters Based

Minging Sun, Qifang Chen, and Mingch Accurate Transmission Line Impedance Parameter Estimation, THE B. Zhang, Z.W.

Accurate Transmission Line Impedance Parameter Estimation, and B. Potter, the Medianusculine Columbus Control of the Medianusculine Columbus Co **Transactions on Instrumentation and Measurement,** vol. 7, no. 3
 Transactions on Power Sused Propose (18) The Transactions on Power Particular Characters and Transactions on Power Systems. Vol. 7, Deg. Transactions on P NOWLEDGMENT

nping Sun, Qifang Chen, and Mingchao Xia

k Dahai Zhang and Pinghao Ni for providir

pment of hardware experiment.

REFERENCES

D. Ritzmann, P. S. Wright, W. Holderbaum, and B. Potte

Accurate Transmission Lin MCKNOWLEDGMENT

2017-10-1 Jinping Sun, Qifang Chen, and Mingchao Xia would like to

thank Dahai Zhang and Pinghao Ni for providing part of the

equipment of hardware experiment.

2011 J. F. Yu, Y. We

2011 P. Ritzmann, P. For United States Chen, and Mingchao Xia would like to

Its J. F. Yu, Y. Weng,

prime Sun, Qifang and Pinghao Ni for providing part of the

Transactions on Pc

prement of hardware experiment.

EXERENCES

D. Ritzmann, P. S. **Transactions on Power Systems**, vol. 34, no. 6, pp. 4910-4920, Nov. [122] O. A. Gashteroodkhani,

Transactions on Power Systems, and L. Tong, "Based Method for Transactions on Power Systems

Transactions on Power Systems, Example 11 A. M. Prosteines and Topology (19) J. F. Yu, Y. Weng, and

equipment of hardware experiment.

Transaction Gradient and B. Potter, "A Method for

System in Distribution Gris

Accurate Transmission Line Impedance Priment of nartaware expertment.

Bindner, "A Method for

B. Ritzmann, P. S. Wright, W. Holderbaum, and B. Potter, "A Method for

Accurate Transmission Line Impedance Parameter Estimation," IEEE

100 J. Peppanen, S

100 J. System in Distribut

D. Ritzmann, P. S. Wright, W. Holderbaum, and B. Potter, "A Method for

Accurate Transmission Line Impedance Parameter Estimation," IEEE data," 2016 IEEE/

Transactions on Instrumentation and Measureme **INGREERENCES**
 ID. Ritzmann, P. S. Wright, W. Holderbaum, and B. Potter, "A Method for
 INGREE Transmission Line Impedance Parameter Estimation," IEEE distinguions on Instrumentation and Measurement, vol. 65, no. 10, [1] D. Ritzmann, P. S. Wright, W. Holderbaum, and B. Potter, "A Method for
Accurate Transmission Line Impedance Parameter Estimation," IEEE data," 2016 IEEE/PES Transactions on Instrumentation and Measurement, vol. 65, no
- 2019.
-
- D. Ritzmann, P. S. Wright, W. Holderbaum, and B. Potter, "A Method for system low-

Acecurate Transmission Line Impedance Parameter Estimation," IEEE data," 2016

Transactions on Instrumentation and Measurement, vol. 65, n *ITHOMAGON CONTECTES*
 ICALCONG ON INSTETIMENT INTERNACTORS (DISCRET AND A Measurement, vol. 65, no. 10, pp. *Exposition (TeD.)*
 ICALCONG TS19
 ICALCONG TS19
 ICALCONG TS19
 ICALCONG TS19
 ICALCONG TS19
 ICAL 2017. 2204-2213, Oct. 2016.

[27] K. R. Mestav, J. Luengo-Rozas, and L. Tong, "Bayesian State Estimation [21] T. L. Williams, Y. Exp. of the Understand for Unobservable Distribution Systems via Deep Learning," *IEEE* parameters K. R. Mestav, J. Luengo-Rozas, and L. Tong, "Bayesian State Estimation [21] T. L. Williams, Y. N. Suiter, Fransactions on Power Systems, vol. 34, no. 6, pp. 4910-4920, Nov. Systems Research, vol. 12019.

Transactions on Po For Unobservable Distribution Systems via Deep Learning," *IEEE*
 IPARISCRESS Transactions on Power Systems, vol. 34, no. 6, pp. 4910-4920, Nov. Systems Research, vol. 134

2019. (22) 0. A. Gashteroodkhani, N

2019. (23) Transactions on Power Systems, vol. 34, no. 6, pp. 2019.

A. M. Prostejovsky, O. Gehrke, A. M. Kosek, T. Str.

Bindner, "Distribution Line Parameter Estimation Unio

of Measurement Tolerances," IEEE Transactions

Informati 2019.

2019. A. Gashteroodkham, N.

2019. A. Gashteroodkham, N.

Bindner, "Distribution Line Parameter Estimation Under Consideration Coupled Transmission L.

Bindner, "Distribution Line Parameter Estimation Under Conside A. M. Prostejovsky, O. Gehrke, A. M. Kosek, T. Strasser, and H. W. Based Method for

Briadher, "Distribution Line Parameter Estimation Under Consideration of Measurement Tolerances," *IEEE Transactions on Industrial* Sep. *Bindner*, "Distribution Line Parameter Estimation Under Consideration
 Jnformatics, vol. 12, no. 2, pp. 726-735, Apr. 2016.
 Jnformatics, vol. 12, no. 2, pp. 726-735, Apr. 2016.
 Jnformatics, vol. 12, no. 2, pp. 726 *Informatics*, vol. 12, no. 2, pp. 726-735, Apr. 2016.

[41] M. Asprong, and E. Kyriakides, "dentification and Estimation of Non-ietrative Estimation Immericum S. Channel Enter Erransactions on Power Delivery, vol. 32, no.
- M. Asprou, and E. Kyriakides, "Identification and Estimation of Non-iterative Estim
 IEEE Transactions on Power Delivery, vol. 32, no. 6, pp. 2510-2519, Dec. Nov. 2020. DOI: 10.

2017.
 IEEE Transactions on Power Deliv Erroneous Transmission Line Parameters Using PMU Measurements,"
 JEEE Transactions on Power Delivery, vol. 32, no. 6, pp. 2510-2519, Dec.

2017.

2. S. Mousavi-Seyedi, F. Aminifar, and S. Afsharnia, "Parameter

Estimatio EEE Transactions on Power Delivery, vol. 32, no. 6, pp. 2510-2519, Dec. Nov. 2020. DOI: 10.1

2017. B. S. Nousavi-Seyedi, F. Aminifar, and S. Afsharnia, "Parameter Leng, Z. Y. Yuan, and

Estimation of Multiterminal Transmi 2017.

S. S. Mousavi-Seyedi, F. Aminifar, and S. Afshamia, "Parameter

Estimation of Multiterminal Transmission Lines Using Joint PMU and for Transmission Line is

SCADA Data,"*IEEE Transactions on Power Delivery*, vol. 30
- 10.17775/CSEEJPES.2020.01180
[7] M. Asprou, S. Chakrabarti, and E. Kyriakides, "A Two-Stage State S. S. Mousavi-Seyedi, F. Aminifar, and S. Afsharna, "Parameter

Estimation of Multiterrimanal Transmission Lines Using Joint PMU and

For Transmission *Power Delivery*, vol. 30, no. 3, pp.

1077-1085, Jun. 2015.

J. S. Li, Estmanton of Multterminal Transmission Lines Using Joint PMU and

SCADA Data,"IEEE Transactions on Power Delivery, vol. 30, no. 3, pp.

1077-1085, Jun. 2015.

1077-1085, Jun. 2015.

1077-1085, Jun. 2015.

108. Li, S. D. Xu SCADA Data," *IEEE Transactions on Power Delivery*, vol. 30, no. 3, pp. Method," *IEEE Ac* 1077-1085, Jun. 2015. L. D. In, J. So. Lin, J. S. D. Xu, H. Liu, and T. S. Bi, "A high-accuracy and Transmission Line low-complexit 1077-1085, Jun. 2015.

I.S. Li, S. D. Xu, H. Liu, and T. S. Bi, "A high-accuracy and Transmission Line

Iow-complexity phasor estimation method for PMU calibration," CSEE Management," IEEE T

Journal of Power and Energy Sy
-
-
-
- [6] J. S. Lt, S. D. Xu, H. Ltu, and T. S. Bt, "A high-accuracy and Transmission Line Par

low-complexity phasor estimation method for PMU calibration," CSEE

Journal of Power and Energy Systems, Jul. 2020. DOI: Sep. 2019. Iow-complexity phasor estimation method for PMU calibration," CSEE

Journal of PMC Calibration," CSEE

Journal of Power and Energy Systems, Jul. 2020. DOI: Sep. 2019. DOI: IO.11

10.17775/CSEEJPES.2020.01180

M. Asprou, S. Unitral of Power and Energy Systems, Jul. 2020. DOI: Sep. 2019. DOI: 10.11

10.17775/CSEEJPES.2020.01180

M. Asprou, S. Chakrabarti, and E. Kyriakides, "A Two-Stage State Calibration and Rob

Estimator for Dynamic Monitori 10.17775/CSEEJPES.2020.01180 [26] H. Goklani, G. Gajjar
 Securemal, S. Chakrabati, and E. Kyriakides, "A Two-Stage State Calibration and Robus
 Securemal, vol. 11, no. 3, pp. 1767-1776, Sep. 2017. [2020. DOI: 10.1109/T 10.1109/PESGM.2015.7286333.
[11] B. A. Alcaide-Moreno, C. R. Fuerte-Esquivel, M. Glavic, and T. V. Estimator for Dynamic Monitoring of Power Systems," *IEEE Systems*

Journal, on 3, pp. 1767-1776, Sep. 2017. C. Wean, The Morel Payer and C.O. Nwankpa, "Experimental Validation of a Model [27] C. Wang, V. A. Centeno,

for Journal, vol. 11, no. 3, pp. 1767-1776, Sep. 2017. 2020. DOI: 10.1109

S. P. Carullo, and C. O. Nwankpa, "Experimental Validation of a Model [27] C. Wang, V. A. Ce

for an Information-Embedded Power System," *IEEE Transact* S. P. Carullo, and C. O. Nwankpa, "Experimental Validation of a Model [27] C. Wang, V. A. Centenctor and Information-Embeddel Power System," *IEEE Transactions on* Instants on Power Delivery, vol. 20, no. 3, pp. 1853-1863, For an Information-Embedded Power System," IEEE Transactions on
 Power Delivery, vol. 20, no. 3, pp. 1853-1863, Jul. 2005.
 M. Escudero, J. Luque, and A. Carrasco, "Experimental Study on the
 M. Escudero, J. Luque, a Fower Delivery, vol. 20, no. 3, pp. 1853-1863, Jul. 2005.

[13] J. L. Escudeo, J. Luque, and A. Carrasco, "Experimental Study on the

Transmission of Measurements by Tolerance in SCADA Systems," IEEE 128] M. Asprou, E. Kyr J. L. Escudero, J. Luque, and A. Carrasco, "Experimental Study on the *IEEE Access*, vol. 7

Transmission of Neasurements by Tolerance in SCADA Systems," *IEEE* [28] M. Asprou, E. Kystem, Thybrid processing of SCADA and sy Transmission of Measurements by Tolerance in SCADA Systems," IEEE [28] M. Asprou, E. Kyriaki
 Transmission on Power Delivery, vol. 19, no. 2, pp. 590-594, Apr. 2004.
 Transmission Line
 B. A. Alcaide-Moreno, C. R. Fue
-
- 2014.

F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 9

[13] J. Zhu, and A. Abur, "Improvements in Network Parameter Error

Identification via Synchronized Phasors," IEEE Transactions on Power

Systems, vol. 25, no. 1, pp. 44-50, E PARAMETERS WITH PMU AND UNSYNCHRONIZED 9

J. Zhu, and A. Abur, "Improvements in Network Parameter Error

Identification via Synchronized Phasors," *IEEE Transactions on Power*
 Systems, vol. 25, no. 1, pp. 44-50, Feb.

9

- *E PARAMETERS WITH PMU AND UNSYNCHRONIZED* 9
J. Zhu, and A. Abur, "Improvements in Network Parameter Error Identification via Synchronized Phasors," <i>IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 44-50, Feb. 20 F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 9

[13] J. Zhu, and A. Abur, "Improvements in Network Parameter Error

Identification via Synchronized Phasors," *IEEE Transactions on Power*
 Systems, vol. 25, no. 1, pp. 44 E PARAMETERS WITH PMU AND UNSYNCHRONIZED 9

J. Zhu, and A. Abur, "Improvements in Network Parameter Error

Identification via Synchronized Phasors," *IEEE Transactions on Power*
 Systems, vol. 25, no. 1, pp. 44-50, Feb.
- *Transactions on A. Abur,* "Improvements in Network Parameter Error Identification via Synchronized Phasors," *IEEE Transactions on Power* Systems, vol. 25, no. 1, pp. 44-50, Feb. 2010.
Y. Z. Lin, and A. Abur, "Strategic F LINE PARAMETERS WITH PMU AND UNSYNCHRONIZED 9

[13] J. Zhu, and A. Abur, "Improvements in Network Parameter Error

Identification via Synchronized Phasors," *IEEE Transactions on Power*
 Systems, vol. 25, no. 1, pp. 4 E PARAMETERS WITH PMU AND UNSYNCHRONIZED 9

3. Zhu, and A. Abur, "Improvements in Network Parameter Error

Identification via Synchronized Phasors," IEEE Transactions on Power

Systems, vol. 25, no. 1, pp. 44-50, Feb. 2010 E PARAMETERS WITH PMU AND UNSYNCHRONIZED 9

J. Zhu, and A. Abur, "Improvements in Network Parameter Error

Identification via Synchronized Phasors," *IEEE Transactions on Power*
 Systems, vol. 25, no. 1, pp. 44-50, Feb. *B* PARAMETERS WITH PMU AND UNSYNCHRONIZED 9
 D. Zhu, and A. Abur, "Improvements in Network Parameter Error

Identification via Synchronized Phasors," *IEEE Transactions on Power*
 Systems, vol. 25, no. 1, pp. 44-50, F *Herena Herseless WITH PMO AND UNSTRICHKONIZED*
 Medellinosition via Synchronized Phasors," *IEEE Transactions on Power*
 Meterification via Synchronized Phasors," IEEE Transactions on Power
 Meterification via A. Abu [13] J. Zhu, and A. Abur, "Improvements in Network Parameter Error

Identification via Synchronized Phasors," *IEEE Transactions on Power*
 Systems, vol. 25, no. 1, pp. 44-50, Feb. 2010.

[14] Y. Z. Lin, and A. Abur, "S
- J. Zhu, and A. Abur, "Improvements in Network Parameter Error
Identification via Synchronized Phasors," *IEEE Transactions on Power*
Systems, vol. 25, no. 1, pp. 44-50, Feb. 2010.
Y. Z. Lin, and A. Abur, "Strategic Use of J. Zhu, and A. Abur, "Improvements in Network Parameter Error
Identification via Synchronized Phasors," IEEE Transactions on Power
Systems, vol. 25, no. 1, pp. 44-50, Feb. 2010.
Y. Z. Lin, and A. Abur, "Strategic Use of Sy Identification via Synchronized Phasors," IEEE Transactions on Power
ISystems, vol. 25, no. 1, pp. 44-50, Feb. 2010.
Y. Z. Lin, and A. Abur, "Strategic Use of Synchronized Phasor
Measurements to Improve Network Paramet 2011. [14] Y. Z. Lin, and A. Abur, "Strategic Use of Synchronized Phasor

Measurements to Improve Network Parameter Error Detection, *ilEEE*
 Transactions of Smart Grid, vol. 9, no. 5, pp. 5281 - 5290, Sep. 2018.

[15] M. R. Measurements to Improve Network Parameter Error Detection," *IEEE*
 Iransactions on Smart Grid, vol. 9, no. 5, pp. 5281 - 5290, Sep. 2018.

M. R. M. Castillo, and J. B. A. London, "Off-line detection, identification

and [15] M. R. M. Castillo, and J. B. A. London, "Oft-line detection, identification
and orrection of branch parameter errors using SCADA and
synchronized phasor measurements," 2014 IEEE PES Transmission &
Distribution Confere and correction of branch parameter errors using SCADA and

synchronized phasor measurements," 2014 IEEE PES Transmission &

Distribution Conference and Exposition - Latin America (PES T&D-LA),

Medellin, Colombia, 2014, DO *Power Conference and Exposition - Latin America (PES Transmission & Distribution Conference and Exposition - Latin America (PES T&D-LA), Medellin, Colombia, 2014, DOI: 10.1109/TDC-LA.2014.6955189.
M. R. M. Castillo, J. B.* Distribution Conference and Exposition - Latin America (PES T&D-LA),

Medellin, Colombia, 2014, DOI: 10.1109/TDC-LA.2014.6955189.

[16] M. R. M. Castillo, J. B. A. London, N. G. Bretas, S. Lefebvre, J. Prévost,

and B. Lam *Medellin*, Colombia, 2014, DOI: 10.1109/TDC-LA.2014.6955189.

M. R. M. Castillo, J. B. A. London, N. G. Bretas, S. Lefebve, J. Prévost, Man B. Lambert, "Offline Detection, Identification, and Correction of

Branch Paramet M. R. M. Castillo, J. B. A. London, N. G. Bretas, S. Lefebvre, J. Prevost,
and B. Lambert, "Offline Detection, Identification, and Correction of
Branch Parameter Errors Based on Several Measurement Snapshots,"
IEEE Transa
-
-
- and B. Lambert, "Offline Detection, Identification, and Correction

Branch Parameter Errors Based on Several Measurement Snapshot

IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 870 877, Ma

2011.

2011.

2011.

- Branch Parameter Errors Based on Several Measurement Snapshots,"

IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 870 877, May.

2011.

117 H. B. Zhang, Z. W. Diao, and Y. F. Cui, "Identification of Power Network IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 870 - 877, May.
2011.
H. B. Zhang, Z. W. Diao, and Y. F. Cui, "Identification of Power Network
Branch Parameters Based on State Space Transformation," IEEE Access,
vo 2011.
H. B. Zhang, Z. W. Diao, and Y. F. Cui, "Identification of Power Network
Hranch Parameters Based on State Space Transformation," *IEEE Access*,
vol. 7, pp. 91720-91730, Jul. 2019.
J. F. Yu, Y. Weng, and R. Rajagopal, *H. B. Zhang, Z. W. Diao, and Y. F. Cui, "Identification of Power Network Branch Parameters Based on State Space Transformation," IEEE Access, Bron. 7, pp. 91720-91730, Jul. 2019.

J. F. Yu, Y. Weng, and R. Rajagopal, "PaT* 10.1109/TDC.2016.7519985.
[21] T. L. Williams, Y. N. Sun, and K. Schneider, "Off-line tracking of series vol. 7, pp. 91720-91730, Jul. 2019.

[18] J. F. Yu, Y. Weng, and R. Rajagopal, "PaToPa: A Data-Driven Parameter

and Topology Joint Estimation Framework in Distribution Grids," IEEE

Transactions on Power Systems, vol. 33, J. F. Yu, Y. Weng, and R. Rajagopal, "PaToPa: A Data-Driven Parameter
and Topology Joint Estimation Framework in Distribution Grids," *IEEE*
Transactions on Power Systems, yol. 33, no. 4, pp. 4335 - 4347, Jul. 2018.
J. F and Topology Joint Estimation Framework in Distribution Grids," *IEEE*
Transactions on Power Systems, vol. 33, no. 4, pp. 4355 - 4347, Jul. 2018.

J. F. Yu, Y. Weng, and R. Rajagopal, "PaToPaEM: A Data-Driven

Parameter Transactions on Power Systems, vol. 33, no. 4, pp. 4335 - 4347, Jul. 2018.

[19] J. F. Yu, Y. Weng, and R. Rajagopal, "PaToPaEWM: A Data-Driven

Parameter and Topology Joint Estimations framework for Time-Varying

System J. F. Yu, Y. Weng, and R. Rajagopal, "PaToPaEM: A Data-Driven
Paraneter and Topology Joint Estimation Framework for Time-Varying
System in Distribution Grids," IEEE Transactions on Power Systems, vol.
34, no. 3, pp. 1682-1 Parameter and Topology Joint Estimation Framework for Time-Varying
System in Distribution Grids," *IEEE Transactions on Power Systems*, vol.
34, no. 3, pp. 1682-1692, May. 2019.
J. Peppanen, S. Grijalva, M. J. Reno, and R. 34, no. 3, pp. 1682-1692, May. 2019.

[20] J. Peppanen, S. Grijalva, M. J. Reno, and R. J. Broderick, "Distribution

system low-voltage circuit topology estimation using smart metering

data," 2016 IEEE/PES Transmission a J. Peppanen, S. Grijalva, M. J. Reno, and R. J. Broderick, "Distribution
system low-voltage circuit topology estimation using smart metering
data," 2016 IEEE/PES Transmission and Distribution Conference and
Exposition (T&D
-
-
- system low-voltage circuit topology estimation using smart metering
data," 2016 IEEE/PES Transmission and Distribution Conference and
Exposition (T&D), Dallas, TX, USA, 2016, DOI:
T. L. Williams, Y. N. Sun, and K. Schneide
- Exposition (T&D), Dallas, TX, USA, 2016, DOI:

10.1109/TDC.2016.7519985.

[21] T. L. Williams, Y. N. Sun, and K. Schneider, "Off-line tracking of series

parameters in distribution systems using AMI data," *Electric Power* 10.1109/TDC.2016.7519985.

T. L. Williams, Y. N. Sun, and K. Schneider, "Off-line tracking of series

parameters in distribution systems using AMI data," *Electric Power*
 Systems Research, vol. 134, pp. 205-212, May. 20 T. L. Williams, Y. N. Sun, and K. Schneider, "Off-line tracking of series
parameters in distribution systems using AMI data," *Electric Power*
Systems Research, vol. 134, pp. 205-212, May. 2016.
O. A. Gashteroodkhani, M. M parameters in distribution systems using AMI data," *Electric Power*
Systems Research, vol. 134, pp. 205-212, May. 2016.
O. A. Gashteroodkhani, M. Majjdi, and M. Etezadi-Amoli, "A Fault Data
Based Method for Zero-Sequence Systems Research, vol. 134, pp. 205-212, May. 2016.

[22] O. A. Gashteroodkhani, M. Majidi, and M. Etezati-Amoli, "A Fault Data

Based Method for Zero-Sequence Impedance Estimation of Mutually

Coupled Transmission Lines," O. A. Gashteroodkhanı, M. Majıdı, and M. Etezadı-Amolı, "A Fault Data
Based Method for Zero-Sequence Impedance Estimation of Mutually
Coupled Transmission Lines," IEEE Transactions on Power Delivery,
Sep. 2020. DOI: 10.110 Based Method for Zero-Sequence Impedance Estimation of Mutually
Coupled Transmission Lines," *IEEE Transactions on Power Delivery*,
Sep. 2020. DOI: 10.1109/TPWRD.2020.3026672
A. S. Dobakhshari, M. Abdolmaleki, V. Terzija, Coupled Transmission Lines," *IEEE Transactions on Power Delive*
Sep. 2020. DOI: 10.1109/TPWRD.2020.3026672
A. S. Dobakhshari, M. Abdolmaleki, V. Terzija, and S. Azizi, "Onl
Non-iterative Estimation of Transmission Line an Sep. 2020. DOI: 10.1109/TPWRD.2020.3026672

[23] A. S. Dobakhshari, M. Abdolmakki, V. Terzija, and S. Azizi, "Online

Non-iterative Estimation of Transmission Line and Transformer

Parameters Using SCADA Data," *IEEE Tran* A. S. Dobakhshari, M. Abdolmaleki, V. Terzija, and S. Azizi, "Online
Non-iterative Estimation of Transmission Line and Transformer
Parameters Using SCADA Data," IEEE Transactions on Power Systems,
Nov. 2020. DOI: 10.1109/T Non-iterative Estimation of Transmission Line and Transformer

Parameters Using SCADA Data," *IEEE Transactions on Power Systems*,

Nov. 2020. DOI: 10.1109/TPWRS.2020.3037997

A. C. Xue, H. Kong, Y. Z. Lao, Q. Xu, Y. H. Li Parameters Using SCADA Data," *IEEE Transactions on Power Sys*.
Nov. 2020. DOI: 10.1109/TPWRS.2020.3037997
A. C. Xue, H. Kong, Y. Z. Lao, Q. Xu, Y. H. Lin, L. Wang, F. Y. X
Leng, Z. Y. Yuan, and G. E. Wei, "A New Robust Id Nov. 2020. DOI: 10.1109/TPWRS.2020.3037997

[24] A. C. Xue, H. Kong, Y. Z. Lao, Q. Xu, Y. H. Lin, L. Wang, F. Y. Xu, S.

Leng, Z. Y. Yuan, and G. E. Wei, "A New Robust Identification Method

for Transmission Line Paramete
-
- A. C. Xue, H. Kong, Y. Z. Lao, Q. Xu, Y. H. Lin, L. Wang, F. Y. Xu, S.
Leng, Z. Y. Yuan, and G. E. Wei, "A New Robust Identification Method
for Transmission Line Parameters Based on ADALINE and IGG
Method," IEEE Access, vo Leng, Z. Y. Yuan, and G. E. Wei, "A New Robust Identification Method
for Transmission Line Parameters Based on ADALINE and IGG
Method," IEEE Access, vol. 8, pp. 132960-132969, Jul. 2020.
J. J. Lin, J. Song, and C. Lu, "Syn for Transmission Line Parameters Based on ADALINE and IGG

Method," *IEEE Access*, vol. 8, pp. 132960-132969, Jul. 2020.

J. J. Lin, J. Song, and C. Lu, "Synchrophasor Data Analytics:

Transmission Line Parameters Online E
-
- Method," IEEE Access, vol. 8, pp. 132960-132969, Jul. 2020.

[25] J. J. Lin, J. Song, and C. Lu, "Synchrophasor Data Analytics:

Transmission Line Parameters Online Estimation for Energy

Management," IEEE Transactions on J. J. Lin, J. Song, and C. Lu, "Synchrophasor Data Analytics:
Transmission Line Parameters Online Estimation for Energy
Management,"*IEEE Transactions on Engineering Management*, pp.1–11,
Sep. 2019. DOI: 10.1109/TEM.2019.2 Iransmission Line Parameters Online Estimation for Energy
Management, *IEEE Transactions on Engineering Management*, pp.1–11,
Sep. 2019. DOI: 10.1109/TEM.2019.2939173
H. Goklani, G. Gajjar, and S. A. Soman, "Instrument Tra *Management," IEEE Transactions on Engineering Management, pp.1–11,*
Sep. 2019. DOI: 10.1109/TEM.2019.2939173
H. Goklani, G. Gajjar, and S. A. Soman, "Instrument Transformer
Calibration and Robust Estimation of Transmissio Sep. 2019. DOI: 10.1109/TEM.2019.2939173

[26] H. Goklani, G. Gajjar, and S. A. Soman, "Instrument Transformer

Calibration and Robust Estimation of Transmission Line Parameters

using PMU Measurements," IEEE Transactions H. Goklani, G. Gajjar, and S. A. Soman, "Instrument Transformer
Calibration and Robust Estimation of Transmission Line Parameters
using PMU Measurements," IEEE Transactions on Power Systems, Nov.
2020. DOI: 10.1109/TPWRS.2 Calibration and Robust Estimation of Transmission Line Parameters
2020. DOI: 10.1109/TPWRS.2020.3036605
2.020. DOI: 10.1109/TPWRS.2020.3036605
C. Wang, V. A. Centeno, K. D. Jones, and D. T. Yang, "Transmission
Lines Positi using PMU Measurements," *IEEE Transactions on Power*
2020. DOI: 10.1109/TPWRS.2020.3036605
C. Wang, V. A. Centeno, K. D. Jones, and D. T. Yang, '
Irness Positive Sequence Parameters Estimation an
Transformers Calibration 2020. DOI: 10.1109/TPWRS.2020.3036605

[27] C. Wang, V. A. Centeno, K. D. Jones, and D. T. Yang, "Transmission

Lines Positive Sequence Parameters Estimation and Instrument

Transformers Calibration Based on PMU Measuremen C. Wang, V. A. Centeno, K. D. Jones, and D. T. Yang, "Transmission
Lines Positive Sequence Parameters Estimation and Instrument
Transformers Calibration Based on PMU Measurement Error Model,"
IEEE Access, vol. 7, pp. 145 Lines Positive Sequence Parameters Estimation and Instrument
 Trensformers Calibration Based on PMU Measurement Error Model,"
 IEEE Access, vol. 7, pp. 145104-145117, Oct. 2019.

M. Asprou, E. Kyriakides, and M. M. Alb *IEEE Access,* vol. 7, pp. 145104-145117, Oct. 2019.

[28] M. Asprou, E. Kyriakides, and M. M. Albu, "Uncertainty Bounds of

Transmission Line Parameters Estimated From Synchronized

Measurement, vol. 68, no. 8, pp. 2808-2
-
- 2019.
- M. Asprou, E. Kyriakides, and M. M. Albu, "Uncertainty Bounds of Transmission Line Parameters Estimated From Synchronized Measurement, vol. 68, no. 8, pp. 2808-2818, Aug. 2019.
A. C. Xue, F. Y. Xu, K. E. Martin, H. Y. You, Transmission Line Parameters Estimated From Synchronized
Measurement,," *IEEE Transactions on Instrumentation and*
Measurement, vol. 68, no. 8, pp. 2808-2818, Aug. 2019.
A. C. Xue, F. Y. Xu, K. E. Martin, H. Y. You, J. S. *Measurements," IEEE Transactions on Instrumentation and Measurement, vol.* 68, no. 8, pp. 2808-2818, Aug. 2019.
A. C. Xue, F. Y. Xu, K. E. Martin, H. Y. You, J. S. Xu, L. Wang, and G. E. Wei, "Robust Identification Method
- CSEE JOURNAL OF POWER AND ENERGY SYSTEMS
[32] J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement
Uncertainty on Parameter, Estimation and Eault Location, for CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

[32] J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement

Uncertainty on Parameter Estimation and Fault Location for Aug. 2015.

Transmission Lines," IEEE Transacti E JOURNAL OF POWER AND ENERGY SYSTEMS

J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement

Uncertainty on Parameter Estimation and Fault Location for Aug. 2015.

Transmission Lines," *IEEE Transactions on* Transmission Lines, and B. D. Schutter, "Influence of Measurement

J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement

Uncertainty on Parameter Estimation and Fault Location for Aug. 2015.

Transmission Li *ENDURNAL OF POWER AND ENERGY SYSTEMS*
 J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement
 Engineering, vol. 18, no. 1, pp. 337-345, Jan. 2021.
 Engineering, vol. 18, no. 1, pp. 337-345, Jan. 2021.
 EXEE JOURNAL OF POWER AND ENERGY SYSTEMS

[32] J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement

Uncertainty on Parameter Estimation and Fault Location for Aug. 2015.

Transmission Lines," *IEEE Transact* E JOURNAL OF POWER AND ENERGY SYSTEMS

J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement

Uncertainty on Parameter Estimation and Fault Location for Aug. 2015.

Transmission Lines," *IEEE Transactions on Journal of Power and B. D.* Schutter, "Influence of Measurement
 J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement Transactions on Indus
 Journal of Pramenter Estimation and Fault Location for Aug.
-
- CSEE JOURNAL OF POWER AND ENERGY SYSTEMS

[32] J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement

Uncertainty on Parameter Estimation and Fault Location for Aug. 2015.

Transmission Lines," *LEE Transacti* E JOURNAL OF POWER AND ENERGY SYSTEMS

J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement

Uncertainty on Parameter Estimation and Fault Location for

Transmission Lines," *IEEE Transactions on Automation* EJOURNAL OF POWER AND ENERGY SYSTEMS

J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement

Uncertainty on Parameter Estimation and Fault Location for

Transmission Lines," *IEEE Transactions on Automation S I. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement Transactions on Industrantiny on Parameter Estimation and Fault Location for* Aug. 2015.
 Instrumenting on Denmeter Estimation and Fault Location for 2020. [32] J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement

Uncertainty on Parameter Estimation and Fault Location for Aug. 2015.

Transmission Lines," *IEEE Transactions on Automation Science and* [51] L. T J. F. Fu, G. b. Song, and B. D. Schutter, "Influence of Measurement

Uncertainty on Parameter Estimation and Fault Location for

Transmission Lines," IEEE Transactions on Automation Science and [51] L. Trailović, a

Engine Uncertanty on Parameter Estimation and Fault Location for Aug. 2015.

Transmission Lines," *IEEE Transactions on Automation Science and* [51] L. Trailović, and L. Y. P. *Engineering*, vol. 18, no. 1, pp. 337-345, Jan. 2021 Transmission Lines," *IEEE Transactions on Automa*
 Engineering, vol. 18, no. 1, pp. 337-345, Jan. 2021.

X. Y. Zhao, H. f. Zhou, D. Shi, H. S. Zhao, C. Y. Ji

"On-line PMU-based transmission line parameter identify

Cou Engineering, vol. 18, no. 1, pp. 337-345, Jan. 2021.

[33] X. Y. Zhao, G. Li, H. S. Zhao, C. V. Jing, and C. Jones,

"On-line PMU-based transmission line parameter identification," CSEE [52] M. Niknejad, H. Ra

Journal of X. Y. Zhao, H. f. Zhou, D. Shi, H. S. Zhao, C. Y. Jing, and C. Jones, *Automatica*, vol. 41, no.

"On-line PMU-based transmission line parameter identification," CSEE [52] M. Niknejad, H. Rabb

A. Wehenkel, A. Mukhopadhyay "On-line PMU-based transmission line parameter identification," *CSEE* [52] M. Niknejad, H. Rabbar

Journal of Power and Energy Systems, vol. 1, no. 2, pp. 68-74, Jun. 2015. Using Gaussian Mixture

"Parameter Estimation of Journal of Power and Energy Systems, vol. 1, no. 2, pp. 68-74, Jun. 20
A. Wehenkel, A. Mukhopadhyay, J. L. Boudec, and M. Paole

"Parameter Estimation of Three-Phase Untransposed Short Transmiss

Lines From Synchrophasor M [34] A. Wehenkel, A. Mukhopadhyay, J. L. Boudec, and M. Paolone,

"Parameter Estimation of Three-Phase Untansposed Short Transmission

Lines From Synchrophasor Measurements," IEEE Transactions on [53] R. Singh, B. C. Pal,
- "Parameter Estimation of Three-Phase Untransposed Short Transmission 3624-3636, Nov. 2015

Lines From Synchrophasor Measurements," IEEE Transcactions on Power

P. X. Ren, H. Lev-Ari, and A. Abur, "Tracking Three-Phase [54] Lines From Synchrophasor Measurements," *IEEE Transactions on* [53] R. Singh, B. C. Pa

2020.

2 *Instrumentation and Measurement,* vol. 69, no. 9, pp. 6143-6154, Sep.
 P. X. Ren, H. Lev-Ari, and A. Abur, "Tracking Three-Phase [54] J. J. Qi, J.

Untransposed Transmission Line Parameters Using Synchronized Interactio 2020.

[38] P. X. Ren, H. Lev-Ari, and A. Abur, "Tracking Three-Phase [54] J. Uqi, J. Ori, J. H. Wa Untransposed Transmission Line Parameters Using Synchronized Interactions for C

Measurements,"*IEEE Transactions on Powe*
-
-
- P. X. Ren, H. Lev-Arn, and A. Abur, "Tracking Three-Phase [54] J. J. Qi, J. H. Wan

Untansposed Transmission Line Parameters Using Synchronized

Measurements,"IEEE Transactions on Power-Systems, vol. 33, no. 4, pp. Transac Untransposed Transmission Line Parameters Using Synchronized Interactions for Cascada

4155-4163, Jul. 2018.

C. G. Li, Y. P. Zhang, H. X. Zhang, Q. W. Wu, and V. Terzija, [55] P. Zeephongsekul, C. I

⁴¹Maximum-Likelihoo 2020. 4155-4163, Jul. 2018.

[36] C. G. Li, Y. Chang, H. X. Zhang, Q. W. Wu, and V. Terzija, [55] P. Zeephongsek

"Measurement-Based Transmission Line Parameter Estimation With

9, no. 6, pp. 5764-5773, Nov. 2018.

9, no. 6, pp C. G. L., Y. P. Zhang, H. X. Zhang, Q. W. Wu, and V. Terzija, [55] P. Zeephongsekul, "Measurement-Based Transmission Line Parameter Estimation With "Maximum-Likeliho Adaptive Data Selection Schene, "*IEEE Transactions on* "Measurement-Bassed Transmission Line Parameter Estimation With "Maximum-Likelihood

9, no. 6, pp. 5764-5773, Nov. 2018.

4. D. Liu, Y. Li, W. Xie, C. G. Yang, S. R. Wang, and Z. X. Shi, 1571-1583, Sep. 2016.

"Estimation 9, no. 6, pp. 5764-5773, Nov. 2018.

[37] A. D. Liu, Y. E.G. C. G. Yang, S. R. Wang, and Z. X. Shi, 1571-1583, Sep. 2016.

1581. IS. W. N. Y. E., W. Xie, C. G. Yang, S. R. Wang, and Z. X. Shi, 1571-1583, Sep. 2016.

2. D. A. D. Liu, Y. Li, W. Xie, C. G. Yang, S. R. Wang, and Z. X. Shi, 1571-1583, Sep.

"Estimation Method of Line Parameters in Distribution Network Based [56] G. E. Constanter

on Multi-source Data and Multi-time Sections," *A* **IEEE Transactions on Active Amelies on Amelies Active Constant (156) G. E. Constante-Flores, a Power Systems, vol. 45, no. 2, pp. 46–54, Jan. 2021(in Chinese). The Sources Using Monte Care and Multi-time Sections, Vol. 20** on Multi-source Data and Multi-time Sections," Autom

Power Systems, vol. 45, no. 2, pp. 46–54, Jan. 2021(in C

W. Jiang, and H. B. Tang, "Distribution line parar

considering dynamic operating states with a probal

model, Power Systems, vol. 45, no. 2, pp. 46–54, Jan. 2021 (in Chinese).

[38] W. Jiang, and H. B. Tang, "Distribution line parameter estimation considering dynamic operating states with a probabilistic graphical [57] Z. Y. Ren,
- W. Jiang, and H. B. Tang, "Distribution line parameter estimation *Applications*, vol. 55, no. 1

considering denting states with a probability graphical [57] Z. Y. Ren, W. Yan, X. 2

model," *Electrical Power and Energy S* considering dynamic operating states with a probabilistic graphical [57] Z. Y. Ren, W. Yan, X.

2020.

2020.

2020.

2020.

2020.

2020.

2020.

C. C. Cunha, W. Freitas, F. C. L. Trindade, and S. Santoso, "Automated [58] H model," *Electrical Power and Energy Systems*, vol. 12

2020.

V. C. Cunha, W. Freitas, F. C. L. Trindade, and S. Sant

Determination of Topology and Line Parameters in Low

Using Smart Meters Measurements," *IEEE Transact* 2020.

2020.

2020.

2020. V. C. Cunha, W. Freitas, F. C. L. Trindade, and S. Santoso, "Automated [58] H. Nosratabati, M. Moha

2020. Determination of Topology and Line Parameters in Low Voltage Systems

2020. Determinatio
- Using Smart Meters Measurements," *IEEE Transactions on Smart*
vol. 11, no. 6, pp. 5028-5038, Nov. 2020.
S. Park, D. Deka, S. Backhaus, and M. Chertkov, "Learning
End-Users in Distribution Grids: Topology and Parameter Est
-
- V. C. Cunha, W. Freitas, F. C. L. Trindade, and S. Santoso, "Automated [58] H. Nosratabadi, M. Mexing Smart Meters in Determination of Topology and Line Parameters in Low Voltage Systems (Probabilistic Unbalance Unit, no. Determination of Topology and Line Parameters in Low Voltage Systems

Using Smart Grid, Examplements, *IEEE Transactions on Smart Grid*, Examplement Style Transaction

S. Park, D. Deka, S. Backhaus, and M. Chertkov, "Learn vol. 11, no. 6, pp. 5028-5038, Nov. 2020.

[40] S. Park, D. Deka, S. Backhaus, and M. Chertkov, "Learning With [59] B. Khorrandel, C. Y.

End-Users in Distribution Grids: Topology and Parameter Estimation,"

EEE Transactio S. Park, D. Deka, S. Backhaus, and M. Cherkkov, "Learning With [59] B. Khorramdel, C. Y.

End-Users in Distribution Grids: Topology and Parameter Estimation,"

Interactions on Control of Network Systems, vol. 7, no. 3, pp. End-Users in Distribution Grids: Topology and Parameter Estimation,"
 IEET Transactions on Control of Network Systems, vol. 7, no. 3, pp.
 IFRission Kern, Systems, vol. 33, no. 6, pp.
 IFRission Kern Detect Control of IEEE Transactions on Control of Network Systems, vol. 7, no. 3, pp.

1428-1440, Sep. 2020.

J. W. Zhang, Y. Wang, N. Veng, and N. Zhang, "Topology Identification [60] Z. Y. 1

and Line Parameter Estimation for Non-PMU Di 1428-1440, Sep. 2020.

[41] J. W. Zhang, Y. Weng, and N. Zhang, "Topology Identification [60] Z. Y. Ren, K. Wang, Y. Weng, and N. Zhang, "Topology Identification [60] Z. Y. Ren, K. W. S. Parket, S. Parket, S. Parket, S. C J. W. Zhang, Y. Weng, and N. Zhang, "Topology Identification [60] Z. Y. Ren, K. Wang

and Line Parameter Estimation for Non-PMU Distribution Network: A Flow Analysis on Numerical Method,"*IEEE Transactions on Smart Grid*, and Line Parameter Estimation for Non-PMU Distribution Network: A

Numerical Method,"*IEEE Transactions on Smart Grid*, vol. 11, no. 5, pp. Generation,"*IEEE*

R. Dutta, V. S. Patel, S. Chakrabarti, A. Sharma, R. K. Das, a Numerical Method," *IEEE Transactions on Smart Grid*, vol. 11, no. 5, pp.
4440-4453, Sep. 2020.
R. Dutta, V. S. Patel, S. Chakrabarti, A. Sharma, R. K. Das, and S.
Mondal, "Parameter Estimation of Distribution Lines Usin 4440-4453, Sep. 2020.

[42] R. Dutta, V. S. Patel, S. Chakrabarti, A. Sharma, R. K. Das, and S. [61] N. Soleinappour, and

Mondal, "Parameter Estimation of Distribution Lines Using SCADA Using Nonparametric D

Measurement
- R. Dutta, V. S. Patel, S. Chakrabartı, A. Sharma, R. K. Das, and S. [61] N. Soleimanpour, and Mondal, "Parameter Estimation of Distribution Lines Using Nongarameter Describes (For P. A. Pegoraro, K. Brady, P. Castello, C. Mondal, "Parameter Estimation of Distribution Lines Using SCAL
Measurements," *IEEE Transactions on Instrumentation a*
Measurement, vol. 70, Sep. 2020.
P. A. Pegoraro, K. Brady, P. Castello, C. Muscas, and A. V. Meier, "Li
- Impedance Estimation Based on Synchropha

Distribution Systems," *IEEE Transactio.*
 Measurement, vol. 68, no. 4, pp. 1002-1013

J. P. Sun, M. C. Xia, and Q. F. Chen, "A

Method Based on Phasor Measurement for

Identific
-
- Measurements," *IEEE Transactions* on *Instrumentation* and *Systems*, vol. 28, no. 4, pp.
 Measurement, vol. 70, Sep. 2020.

143] P. A. Pegoraro, K. Brady, P. Castello, C. Muscas, and A. V. Meier, "Line [S2] M. L. Lit Measurement, vol. 70, Sep. 2020.

P. A. Pegoraro, K. Brady, P. Castello, C. Muscas, and A. V. Meier, "Line

Impedance Estimation Based on Synchrophasor Measurements for Power

Distribution Systems," *IEEE Transactions on I P. A. Pegoraro, K. Brady, P. Castello, C. Muscas, and A. V. Meier, "Line Probabilistic Model Impedance Estimation Based on Synchrophasor Measurements for Down Frequency Regulation Measurement, vol. 68, no. 4, pp. 1002-101* Distribution Systems," *IEEE* Transactions on Instrumentation and Industry Applications, vol.

149 I. P. Singh, M. G. Xia, and Q. F. Chen, "A Classification Identification London, New York, Chapm

Method Based on Phasor Me *Measurement,* vol. 68, no. 4, pp. 1002-1013, Apr. 2019.

I. P. Sun, Mc C. Xia, and Q. F. Chen, "A Classification Identification Mew York, C. Then, Mc Cassification Under Insufficient Measurements Conditions," IEEE Semipar *Congress on Computer Science and Engineering*, Nedi, Figine 2014, Engine Method Based on Phasor Measurement for Distribution Line Parametering Medical Mecess, vol. 7, pp. 158732-158743, Oct. 2019.

Identification Under In
- 10.1109/APWCCSE.2014.7053875.
[48] R. Singh, B. C. Pal, and R. A. Jabr, "Distribution system state estimation
- Lentification Under Insufficient Measurements Conditions," *IEEE* Semiparametric M

148] R. Goil, and A. Abur, "A Hybrid State Estimator For Systems With [65] Cristiane, Lemine

2148] Limited Number of PMUs," *IEEE Transa* Access, vol. 7, pp. 158732-158743, Oct. 2019.

M. Göl, and A. Abur, "A Hybrid State Estimator For Systems With Eumited Number of PMUs," *IEEE Transactions on Power Systems*, vol. [66] L. Cheng, 30, no. 3, pp. 1511-1517, Ma *II.* Göl, and A. Abur, "A Hybrid State Estimator For Systems With
 II.mited Number of PMUs," IEEE Transactions on Power Systems, vol. [66] L. Cheng, Z. Z. Lu, and
 IS, no. 3, pp. 1511-1517, May. 2015.
 C. S. Ding, Q Limited Number of PMUs," *IEEE Transac*
30, no. 3, pp. 1511-1517, May. 2015.
C. S. Ding, Q. Wu, C. T. Hsieh, and M.
Sampling for power estimation," *IEEE Tran*
Design of Integrated Circuits and Systems.
Jun. 1998.
G. K. Si Design of Integrated Circuits and Systems, vol. 17, no. 6, Jun. 1998.
G. K. Singh, D. K. Rao, and M. G. M. Khan, "Calibratio population mean in stratified random sampling," Asia-iomorpher Science and Engineering, Nadi, Fi
- 30, no. 3, pp. 1511-1517, May. 2015.

[46] C. S. Ding, Q. Wu, C. T. Histo, and M. Pedram, "Stratified random Reliability Emparamon computer-Aided [67] W. Hörmann, Design of Integrated Circuits and Systems, vol. 17, no. 6, C. S. Ding, Q. Wu, C. T. Histeh, and M. Pedram, "Stratified random Reliability Enginees

Sampling for power estimation," IEEE Transactions on Computer-Aided [67] W. Hörmann, J. Learning Instiffed random sampling," Asia-Pac sampling for power estimation," *IEEE Transactions on Computer-Aided* [67] W. Hörmann, J. Leydold, a
 Dun. 1998.
 The 1988.
 The 1988.
 The Integrated Circuits and Systems, vol. 17, no. 6, pp. 465-471, Automatic No Jun. 1998.

[47] G. K. Singh, D. K. Rao, and M. G. M. Khan, "Calibration estimator of [68] W. R. Gilks, Gilks, Gilks, Gilks, Gilks, Gilks, Fiji, 2014, DOI:

IO.1109/APWCCSE.2014.7053875.

169] Z. Wang, is the Carlo tongres G. K. Singh, D. K. Rao, and M. G. M. Khan, "Calibration estimator of [68] W. R. Gilks, S. Rio population mean in stratified random sampling," *Asia-Pacific World* Monte Carlo in Pranchillon, Congress on Computer Science an population mean in stratified random sampling," Asia-Pacific World Monte Carlo in P

Congress on Computer Science and Engineering, Nadi, Fiji, 2014, DOI:

10.1109/APWCCSE.2014.7053875. [69] Z. Wang, and

R. Singh, B. C. Pa
-

- *Transactions on Industrial Electronics*, vol. 62, no. 8, pp. 4994-5005, Aug. 2015.
L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target tracking position errors modeled using Gaussian mixture distribu Transactions on Industrial Electronics, vol
Aug. 2015.
L. Trailović, and L. Y. Pao, "Variance estint
tracking position errors modeled using Gau.
Automatica, vol. 41, no. 8, pp. 1433-1438, A
M. Nikneiad. H. Rabbani. and M. Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4994-5005,
Aug. 2015.
[51] L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target
tracking position errors modeled using Gaussian mixture distrib
- Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4994-5005,
Aug. 2015.
L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target
tracking position errors modeled using Gaussian mixture distribution *Transactions on Industrial Electronics*, vol. 62, no. 8, pp. 4994-5005, Aug. 2015.
L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target tracking position errors modeled using Gaussian mixture distribu Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4994-5005,
Aug. 2015.
[51] L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target
tracking position errors modeled using Gaussian mixture distrib Transactions on *Industrial Electronics*, vol. 62, no. 8, pp. 4994-5005, Aug. 2015.
L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target tracking position errors modeled using Gaussian mixture distributi Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4994-5005,
Aug. 2015.
L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target
tracking position errors modeled using Gaussian mixture distribution Transactions on Industrial Electronics, vol. 62, no. 8,
Aug. 2015.
L. Trailović, and L. Y. Pao, "Variance estimation and r
tracking position errors modeled using Gaussian mixtur
Automatica, vol. 41, no. 8, pp. 1433-1438, A Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4994-5005,

Aug. 2015.

[51] L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target

tracking position errors modeled using Gaussian mixture dist Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4994-5005, Aug. 2015.

L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target tracking position errors modeled using Gaussian mixture Models
 Au Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4994-5005, Aug. 2015.
 L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target tracking position errors modeled using Gaussian mixture distrib
-
- Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4994-5005,

Aug. 2015.

[51] L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target

tracking position errors modeled using Gaussian mixture dist Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4994-5005,
Aug. 2015.
L. Trailović, and L. Y. Pao, "Variance estimation and ranking of target
tracking position errors modeled using Gaussian mixture distribution Aug. 2015.
 Trailović, and L. Y. Pao, "Variance estimation and ranking of target

Lracking position errors modeled using Gaussian mixture distributions,"
 Automatica, vol. 41, no. 8, pp. 1433-1438, Aug. 2005.

M. Nikne 2018.
- tracking position errors modeled using Gaussian mixture distributions,"
 Altomatica, vol. 41, no. 8, pp. 1433-1438, Aug. 2005.

[52] M. Niknejad, H. Rabbani, and M. Babaie-Zadeh, "Image Restoration Using Gaussian Mixture Automatica, vol. 41, no. 8, pp. 1433-1438, Aug. 2005.

M. Niknejad, H. Rabbani, and M. Babaie-Zadch, "Image Restoration

Using Gaussian Mixture Models With Spatially Constrained Patch

Clustering," IEEE Transactions on Ima M. Niknejad, H. Rabbani, and M. Babaie-Zadeh, "Image Restoration Using Gaussian Mixture Models With Spatially Constrained Patch Clustering," IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3624-3636, Nov. 2015. Using Gaussian Mixture Models With Spatially Constrained Patch

Clustering," *IEEE Transactions on Image Processing*, vol. 24, no. 11, pp.

3624-3636, Nov. 2015.

R. Singh, B. C. Pal, and R. A. Jabr, "Statistical Represent Clustering," IEEE Transactions on Image Processing, va

3624-3636, Nov. 2015.

R. Singh, B. C. Pal, and R. A. Jabr, "Statistical R

Distribution System Loads Using Gaussian Mixture

Transactions on Power Systems, vol. 25, 3624-3636, Nov. 2015.

[53] R. Singh, B. C. Pal, and R. A. Jabr, "Statistical Representation of

Distribution System Loads Using Gaussian Mixture Model," IEEE

Transactions on Power Systems, vol. 25, no. 1, pp. 29-37, Feb. R. Singh, B. C. Pal, and R. A. Jabr, "Statistical Representation of
Distribution System Loads Using Gaussian Mixture Model," IEEE
Transactions on Power Systems, vol. 25, no. 1, pp. 29-37, Feb. 2010.
J. J. Qi, J. H. Wang, a Distribution System Loads Using Gaussian Mixture Model," *IEEE*
 I. 1. Qi, J. H. Wang, and K. Sun, "Efficient Estimation of Component

Interactions for Cascading Failure Analysis by EM Algorithm," *IEEE*
 Iransactions o Transactions on Power Systems, vol. 25, no. 1, pp. 29-37, Feb. 2010.
 J. J. Qi, J. H. Wang, and K. Sun, "Efficient Estimation of Component

Interactions for Cascading Failure Analysis by EM Algorithm," *IEEE*

Interact [54] J. J. Qi, J. H. Wang, and K. Sun, "Efficient Estimation of Component
Interactions for Cascading Failure Analysis by EM Algorithm," IEEE
Transactions on Power Systems, vol. 33, no. 3, pp. 3153-3161, May.
2018.

[55] P. Interactions for Cascading Failure Analysis by EM Algorithm," *IEEE*
 Prancactions on Power Systems, vol. 33, no. 3, pp. 3153-3161, May.

2018.

P. Zeephongsekul, C. L. Jayasinghe, L. Fiondella, and V. Nagaraju,

"Maximu *Transactions on Power Systems*, vol. 33, no. 3, pp. 3153-3161, May.

2018.
 P. Zeephongsekul, C. L. Jayasinghe, L. Fiondella, and V. Nagaraju,

"Maximum-Likelihood Estimation of Parameters of NHPP Software

Reliability 2018.

[55] P. Zeephongsekul, C. L. Jayasinghe, L. Fiondella, and V. Nagaraju,

"Maximum-Likelihood Estimation of Parameters of NHPP Software

Reliability Models Using Expectation Conditional Maximization

Algorithm," *IEE* P. Zeephongsekul, C. L. Jayasınghe, L. Fiondella, and V. Nagaraju,

"Maximum-Likelihood Estimation of Parameters of NHPP Software

Reliability Models Using Expectation Conditional Maximization

Algorithm," *IEEE Transactio*
- "Maximum-Likelihood Estimation of Parameters of NHPP Sottware
Reliability Models Using Expectation Conditional Maximization
Religiorithm," *IEEE Transactions on Reliability*, vol. 65, no. 3, pp.
1571-1583, Sep. 2016.
G. E. Reliability Models Using Expectation Conditional
Algorithm," *IEEE Transactions on Reliability*, vol.
1571-1583, Sep. 2016.
G. E. Constante-Flores, and M. S. Illindala, "Data-Driv
Power Flow Analysis for a Distribution Sys Algorithm," IEEE Transactions on Reliability, vol. 65, no. 3, pp.

1571–1583, Sep. 2016.

169 G. E. Constante-Flores, and M. S. Illindala, "Data-Driven Probabilistic

Power Flow Analysis for a Distribution System With Rene 1571-1583, Sep. 2016.

G. E. Constante-Flores, and M. S. Illindala, "Data-Driven Probabilistic G. E. Constante-Flores, and M. S. Illindala, "Data-Driven Probabilistic Power Flow Analysis for a Distribution," *IEEE Transact*
-
- Probability Model of Photovoltaic Generation," IEEE

Power Systems, vol. 29, no. 3, pp. 1077-1088, May. 20

H. Nosratabadi, M. Mohammadi, and A. Kargarian

Probabilistic Unbalanced Power Flow With Adaptive

Estimator, "IEE
- G. E. Constante-Flores, and M. S. Illindala, "Data-Driven Probabilistic
Power Flow Analysis for a Distribution System With Renewable Energy
Sources Using Monte Carlo Simulation," *IEEE Transactions on Industry*
Application Power Flow Analysis for a Distribution System With Renewable Energy

Sources Using Monte Carlo Simulation," IEEE Transactions on Industry

Applications, vol. 55, no. 1, pp. 174-181, 2019.

Z. Y. Ren, W. Yan, X. Zhao, W. Y. Sources Using Monte Carlo Simulation," IEEE Transactions on Industry

Applications, vol. 55, no. 1, pp. 174-181, 2019.

[57] Z. Y. Ren, W. Yan, X. Zhao, W. Y. Li, and J. Yu, "Chronological

Probability Model of Photovoltai Applications, vol. 55, no. 1, pp. 174-181, 2019.

Z. Y. Ren, W. Yan, X. Zhao, W. Y. Li, and J. Yu, "Chronological

Probability Model of Photovoltaic Generation," IEEE Transactions on

Power Systems, vol. 29, no. 3, pp. 107 Z. Y. Ren, W. Yan, X. Zhao, W. Y. Li, and J. Yu, "Chronological

Prover Systems, vol. 29, no. 3, pp. 1077-1088, May. 2014.

H. Nosratabadi, M. Mohammadi, and A. Kargarian, "Nonparametric

Probabilistic Unbalanced Power Flo Power Systems, vol. 29, no. 3, pp. 1077-1088, May. 2014.

[58] H. Nosratabadi, M. Mohammadi, and A. Kargarian, "Nonparametric Probabilistic Unbalanced Power Flow With Adaptive Kernel Density Estimator," *IEEE Transactions* H. Nosratabadı, M. Mohammadı, and A. Kargarıan, "Nonparametric Probabilistic Unbalanced Power Flow With Adaptive Kernel Density Estimator," *IEEE Transactions on Smart Grid*, vol. 10, no. 3, pp. 3292-3300, May. 2019.
B. Kh Probabilistic Unbalanced Power Flow With Adaptive Kernel Density
Estimator," *IEEE Transactions on Smart Grid*, vol. 10, no. 3, pp.
3292-3300, May. 2019.
B. Khorramdel, C. Y. Chung, N. Safari, and G. C. D. Price, "A Fuzzy

-
-
- Estimator," IEEE Transactions on Smart Grid, vol. 10, no. 3, pp.

1929 B. Khorramdel, C. Y. Chung, N. Safari, and G. C. D. Price, "A Fuzzy

Adaptive Probabilistic Wind Power Prediction Framework Using

Diffusion Kernel Den 3292-3300, May. 2019.

A Khorramedel, C. Y. Chung, N. Safari, and G. C. D. Price, "A Fuzzy

Adaptive Probabilistic Wind Power Prediction Framework Using

Diffusion Kernel Density Estimators," IEEE Transactions on Power

Sy B. Khorramdel, C. Y. Chung, N. Safarı, and G. C. D. Price, "A Fuzzy
Adaptive Probabilistic Wind Power Prediction Framework Using
Diffusion Kernel Density Estimators," *IEEE Transactions on Power*
Systems, vol. 33, no. 6, p Adaptive Probabilistic Wind Power Prediction Framework Using
Diffusion Kernel Density Estimators," *IEEE Transactions* on Power
Systems, vol. 33, no. 6, pp. 7109-7121, Nov. 2018.
Z. Y. Ren, K. Wang, W. Y. Li, L. M. Jin, Diftusion Kernel Density Estimators," *IEEE Transactions on Power*

[60] Z. Y. Ren, K. Wang, W. Y. Li, L. M. Jin, and Y. Dai, "Probabilistic Power

Flow Analysis of Power Systems Incorporating Tidal Current

Generation," Systems, vol. 33, no. 6, pp. 7109-7121, Nov. 2018.
Z. Y. Ren, K. Wang, W. Y. Li, L. M. Jin, and Y. Dai, "Probabilistic Power
Flow Analysis of Power Systems Incorporating Tidal Current
Generation," *IEEE Transactions on Sus* [60] Z. Y. Ren, K. Wang, W. Y. Li, L. M. Jin, and Y. Dai, "Probabilistic Power

Flow Analysis of Power Systems Incorporating Tidal Current

Generation," *IEEE Transactions on Sustainable Energy*, vol. 8, no. 3, pp.

1195-1 Flow Analysis of Power Systems Incorporating Tidal Current

Generation," IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp.

1195-1203, Jul. 2017.

N. Soleimanpour, and M. Mohammadi, "Probabilistic Load Flow by

U Generation," IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp.

1917 N. Soleimanpour, and M. Mohammadi, "Probabilistic Load Flow by

Using Nonparametric Density Estimators," IEEE Transactions on Power

Systems, v 1195-1203, Jul. 2017.

N. Soleimanpour, and M. Mohammadi, "Probabilistic Load Flow b

Using Nonparametric Density Estimators," IEEE Transactions on Powe

Systems, vol. 28, no. 4, pp. 3747-3755, Nov. 2013.

M. L. Little, S. [61] N. Solemanpour, and M. Mohammadı, "Probabilistic Load Flow by

Using Nonarametric Density Estimators," IEEE Transactions on Power

Systems, vol. 28, no. 4, pp. 3747-3755, Nov. 2013.

[62] M. L. Little, S. F. Rabbi, K. Using Nonparametric Density Estimators," IEEE Transactions on Power
Systems, vol. 28, no. 4, pp. 3747-3755, Nov. 2013.
M. L. Little, S. F. Rabbi, K. Pope, and J. E. Quaicoe, "Unified
Probabilistic Modeling of Wind Reserves *Systems, vol. 28, no. 4, pp. 3747-3755, Nov. 2013.*
M. L. Little, S. F. Rabbi, K. Pope, and J. E. Quaicoe, "Unified
Probabilistic Modeling of Wind Reserves for Demand Response and
Frequency Regulation in Islanded Mic [62] M. L. Little, S. F. Rabbi, K. Pope, and J. E. Quarcoe, "Unitied Probabilistic Modeling of Wind Reserves for Demand Response and Frequency Regulation in Islanded Microgrids," *IEEE Transactions on Industry Applications*
-
-
-
-
- Probabilistic Modeling of Wind Reserves for Demand Response and

Frequency Regulation in Islanded Microgrids," IEEE Transactions on

Industry Applications, vol. 54, no. 6, pp. 5671-5681, Nov. 2018.

B. W. Silverman, "Densi Frequency Regulation in Islanded Microgrids,"
 Industry Applications, vol. 54, no. 6, pp. 5671-56

B. W. Silverman, "Density Estimation for Statis

London, New York, Chapman and Hall, 1986.

W. Härdle, M. Müller, S. Sper Industry Applications, vol. 54, no. 6, pp. 5671-5681, Nov. 2018.

[63] B. W. Silverman, "Density Estimation for Statistics and Data Analysis,"

London, New York, Chapman and Hall, 1986.

[64] W. Härdle, M. Müller, S. Sperl B. W. Silverman, "Density Estimation for Statistics and Data Analysis,"

London, New York, Chapman and Hall, 1986.

W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, "Nonparametric and

Semiparametric Models," New York, N
-
- London, New York, Chapman and Hall, 1986.

W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, "Nonparametric and

Semiparametric Models," New York, NY, USA: Springer, 2004.

Christiane, Lemieux, "Monte Carlo and Quasi-mont [64] W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, "Nonparametric and

[65] Christiane, Lemieux, "Monte Carlo and Quasi-monte carlo sampling,"

New York, NY, USA: Springer, 2009.

[66] L. Cheng, Z. Z. Lu, and L. G. Zh Semiparametric Models," New York, NY, USA: Springer, 2004.
Christiane, Lemieux, "Monte Carlo and Quasi-monte carlo sampling,"
New York, NY, USA: Springer, 2009.
L. Cheng, Z. Z. Lu, and L. G. Zhang, "Application of Rejectio Christiane, Lemieux, "Monte Carlo and Quasi-monte carlo sampling,"
Techny York, NY, USA: Springer, 2009.
L. Cheng, Z. Z. Lu, and L. G. Zhang, "Application of Rejection Sampling
based methodology to variance based paramet 2018.
- [66] L. Cheng, Z. Z. Lu, and L. G. Zhang, "Application of Rejection Sampling
based methodology to variance based parametric sensitivity analysis,"
Reliability Engineering & System Safety, vol. 142, pp. 9-18, Oct. 2015.
[67 based methodology to variance based parametric sensitivity analysis,"

Reliability Engineering & System Safety, vol. 142, pp. 9-18, Oct. 2015.

W. Hörmann, J. Leydold, and G. Derflinger, "Statistics and Computing:

Automat *Reliability Engineering & System Safety*, vol. 142, pp. 9-18, Oct. 2015.

W. Hörmann, J. Leydold, and G. Derflinger, "Statistics and Computing:

Automatic Nonuniform Random Variate Generation," Berlin, Germany:

Springer, W. Hörmann, J. Leydold, and G. Derflinge
Automatic Nonuniform Random Variate G.
Springer, 2004.
W. R. Gilks, S. Richardson, and D. J. S₁
Monte Carlo in Practice," London, Glasg
Tokyo, Melbourne, Madras: Chapman and I
Z.

JINPING SUN (S⁻¹*T*) received the B.S. degree in
Agricultural Electrification and Automation from
Shenyang Agricultural University, Liaoning, China, in
Shenyang Agricultural University, Liaoning, China, in
2012, and th DATA-DRIVEN DETECTION AND IDENTIFICATION OF LINE PARAMETERS WITH
MENTS IN DISTRIBUTION GRIDS
Agricultural Electrification and Automation from
Shenyang Agricultural University, Liaoning, China, in
2012, and the M.S. degree **JINPING SUN** (S'17) received the B.S. degree in
Agricultural Electrification and Automation from
Shenyang Agricultural University, Liaoning, China, in
Shenyang Agricultural University, Liaoning, China, in
2012, and the M. **JINPING SUN** (S'17) received the B.S. degree in
Agricultural Electrification and Automation from
Shenyang Agricultural University, Liaoning, China, in
2012, and the M.S. degree in Agricultural Engineering
from Shenyang Ag **JINPING SUN** (S'17) received the B.S. degree in Agricultural Electrification and Automation from Shenyang Agricultural University, Liaoning, China, in 2012, and the M.S. degree in Agricultural Engineering from Shenyang Ag **JINPING SUN** (S'17) received the B.S. degree in Agricultural Electrification and Automation from Shenyang Agricultural University, Liaoning, China, in 2012, and the M.S. degree in Agricultural Engineering from Shenyang Ag **JINPING SUN** (S⁻¹7) received the B.S. degree in Agricultural Electrification and Automation from Shenyang Agricultural University, Liaoning, China, in 2012, and the M.S. degree in Agricultural Engineering from Shenyang **JINPING SUN** (S'17) received the B.S. degree in Agricultural Electrification and Automation from Shenyang Agricultural University, Liaoning, China, in from Shenyang Agricultural University, Liaoning, China, in 2014. She i **JINPING SUN** (S'17) received the B.S. degree in Agricultural Electrification and Automation from Shenyang Agricultural University, Liaoning, China, in 2012, and the M.S. degree in Agricultural Engineering from Shenyang Ag

CHEN (S⁻¹³-M⁻¹*T*) received the B.S. and

beginne, China. Her research interest includes distribution

System line parameter identification.

M.S. degrees in communication engineering and electric

engineering from X **QIFANG CHEN** (S'13-M'17) received the B.S. and
M.S. degrees in communication engineering and electric
engineering from Xiangtan University, Hunan, in 2010
and 2013, respectively, and the Ph.D. degree in
electrical enginee **QIFANG CHEN** (S'13-M'17) received the B.S. and
M.S. degrees in communication engineering and electric
engineering from Xiangtan University, Hunan, in 2010
and 2013, respectively, and the Ph.D. degree in
electrical enginee **QIFANG CHEN** (S'13-M'17) received the B.S. and
M.S. degrees in communication engineering and electric
engineering from Xiangtan University, Hunan, in 2010
and 2013, respectively, and the Ph.D. degree in
electrical engine **QIFANG CHEN** (S'13-M'17) received the B.S. and
M.S. degrees in communication engineering and electric
engineering from Xiangtan University, Hunan, in 2010
and 2013, respectively, and the Ph.D. degree in
electrical enginee **QIFANG CHEN** (S'13-M'17) received the B.S. and
M.S. degrees in communication engineering and electric
engineering from Xiangtan University, Hunan, in 2010
electrical engineering from North China Electric Power
University, **QIFANG CHEN** (S'13-M'17) received the B.S. and
M.S. degrees in communication engineering and electric
engineering from Xiangtan University, Hunan, in 2010
and 2013, respectively, and the Ph.D. degree in
electrical enginee QIFANG CHEN (S'13-M'17) received the B.S. and
M.S. degrees in communication engineering and electric
engineering from Xiangtan University, Hunan, in 2010
and 2013, respectively, and the Ph.D. degree in
electrical engineeri **QIFANG CHEN** (S'13-M'17) received the B.S. and
M.S. degrees in communication engineering and electric
engineering from Xiangtan University, Hunan, in 2010
and 2013, respectively, and the Ph.D. degree in
electrical enginee **QIFANG CHEN** (S'13-M'17) received the B.S. and
M.S. degrees in communication engineering and electric
engineering from Xiangtan University, Hunan, in 2010
electrical engineering from North China Electric Power
University,

University, Beijing, China, in 2017. Currently, he is an associate professor with the School of Electrical
Engineering, Beijing Jiaotong University, Beijing,
China. His research interests include micro-grid,
cles and integ associate professor with the School of Electrical
Engineering, Beijing Jiaothon University, Beijing,
China. His research interests include micro-grid,
cles and integrated energy system.
MINGCHAO XIA (M'03-SM'17) received t Engineering, Beijing Jiaotong University, Beijing,
China. His research interests include micro-grid,
cles and integrated energy system.
MINGCHAO XIA (M'03-SM'17) received the B.S. and
Ph.D. degrees in electrical engineerin China. His research interests include micro-grid,
cles and integrated energy system.

MINGCHAO XIA (M'03-SM'17) received the B.S. and

Ph.D. degrees in electrical engineering from Tsinghua

University, Beijing, China, in 1 **MINGCHAO XIA** (M'03-SM'17) received the B.S. and
Ph.D. degrees in electrical engineering from Tsinghua
University, Beijing, China, in 1998 and in 2003,
respectively. He is currently a professor with the School
of Electr **MINGCHAO XIA** (M'03-SM'17) received the B.S. and
Ph.D. degrees in electrical engineering from Tsinghua
University, Beijing, China, in1998 and in 2003,
respectively. He is currently a professor with the School
of Electrica **MINGCHAO XIA** (M'03-SM'17) received the B.S. and
Ph.D. degrees in electrical engineering from Tsinghua
University, Beijing, China, in 1998 and in 2003,
respectively. He is currently a professor with the School
of Electric **MINGCHAO XIA** (M'03-SM'17) received the B.S. and Ph.D. degrees in electrical engineering from Tsinghua University, Beijing, China, in 1998 and in 2003, respectively. He is currently a professor with the School of Electric **MINGCHAO XIA** (M'03-SM'17

Ph.D. degrees in electrical engin

University, Beijing, China, in

respectively. He is currently a pro

of Electrical Engineering, Beijing

His current research interests in

smart power distrib