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A Residue Based Open-loop Modal Analysis
Method for Detecting LFMR of PMSG-WFs
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Abstract—This paper proposes a residue based open-loop
modal analysis method to detect the low frequency modal
resonance(LFMR), including asymmetric low frequency modal
attraction(ALFMA) and asymmetric low frequency modal re-
pulsion(ALFMR), of permanent magnetic synchronous genera-
tor based wind farms(PMSG-WFs) penetrated power systems.
The formation of ALFMA and ALFMR caused by two open-
loop low frequency oscillation(LFO) modes moving close and
apart is analyzed in detail. And, via predicting the trajectories
of closed-loop LFO modes based on calculation of residue of
open-loop LFO modes, both ALFMA and ALFMR can be
detected. The proposed method can select LFO modes which
move to the right half complex plane as control parameters
vary. Simulation studies are carried out on a three-machine
power system and the 4-machine 11-bus power system to verify
the properties of the proposed method.

Index Terms—Low frequency modal resonance, residue
based open-loop modal analysis method, asymmetric low fre-
quency modal attraction, asymmetric low frequency modal
repulsion

I. Introduction
In recent years, large-scale wind power plants have

been increasingly integrated into power systems. But due
to their basic operation principle and control strategies,
they may cause low frequency oscillations(LFO), e.g.,
low frequency modal resonance(LFMR) in power systems.
LFMR is worthy of being analyzed for it greatly affects
the stable operation and power quality of power system
[1].

The phenomenon of LFMR caused by near strong modal
resonance, which is a mathematical concept in the theory
of eigenvalue sensitivity [2], has been studied in [3]. In
[3], Dobson used 3-bus system and 9-bus system to verify
the existence of LFMR in power system. Besides, low
frequency modal repulsion, a type of LFMR, was studied
in [4] in detial. According to [4], low frequency modal
repulsion can be caused by the interaction between open-
loop converter oscillation mode (COM) of PMSG and
open-loop electromechanical oscillation mode(EOM) of
power system. Simulation studies in [4] indicated that
low frequency modal repulsion may excite significant
oscillation in power angle of synchronous generator.

So far, methods for investigation of LFMR between

This work was supported in part by the State Key Program
of National Natural Science Foundation of China under Grant
No. U1866210, the National Natural Science Foundation of China
under Grant No. 51807067 (Corresponding author: Yang Liu email:
epyangliu@scut.edu.cn).

The authors are with the School of Electric Power Engineering,
South China University of Technology, Guangzhou, 510640, China.

PMSG and the rest of power system include modal
analysis, damping torque analysis, open-loop analysis
method.Modal analysis is a widely applied method of
studying LFMR of power system [5], [6]. The method
consists of two steps. Firstly, the state equation of power
system is linearized at the operating point to get the
state matrix [7]. Secondly, by calculating the eigenvalues
and eigenvectors of the state matrix, relevant information
about LFMR can be obtained [8]. However, modal analysis
can only judge the stability of power system near the
operating point. Further information, such as the location
of oscillation source, cannot be obtained. Moreover, due
to the high dimension of the state matrix, it may take a
long time for the method to perform stability analysis.

In addition, damping torque analysis(DTA) can also
be used to study LFMR of power system. DTA was
originally proposed in [9] for single-machine infinite-
bus(SMIB) power system. In that paper, the influence of
excitation controller on small-signal stability of the SMIB
system is studied based on the Phillips-Herffron model.
According to the Phillips-Herffron model, the disturbance
of electromagnetic torque of synchronous generator, influ-
enced by excitation controller, can be decomposed into
synchronous torque proportional to the disturbance of
rotor angle, and damping torque proportional to the
difference between rotor speed and synchronous speed.
The sign and magnitude of damping torque directly affect
the LFO. As for the SMIB system, by calculating the
part of damping torque associated with excitation control
loop, the influence of excitation controller on small-signal
stability can be directly judged [10]. When applied to
analyze the stability of SMIB system, DTA method has
a clear physical meaning and is easy to be understood.
However, its physical meaning becomes obscure if it is used
for judging the stability of multi-machine power system.
And, it cannot find the exact location of LFO modes on
the complex plane.
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Fig. 1 A multi-machine power system with p PMSG wind farms

Recently, other methods of studying LFMR have been put
forward, including the open-loop modal analysis method
stated in [11]. The open-loop modal analysis method
identifies any pair of open-loop LFO modes close to each
other from two open-loop subsystems. And, an index, the
indicator of the strength of symmetric modal repulsion
of the identified open-loop modes, is calculated without
the information of closed-loop eigenvalues. However, the
method is only suitable for analyzing symmetric modal
resonance. In particular, the location of closed-loop LFO
modes and small-signal stability margin it gives are correct
only when the identified pair of open-loop modes are equal.
Besides, the mechanism of LFMR, especially ALFMA and
ALFMR, has not been intensively analyzed in [4], [11], [12]
or other papers.

Fig. 2 Closed-loop model for calculation of
residue of open-loop modes of PMSG subsystem

In this paper, first of all, a model for analyzing LFMR
of PMSG-WFs integrated power system has been derived.
The model consists of PMSG subsystem and the-rest-of-
power-system(ROPS) subsystem. Then, the mechanism of
ALFMA and ALFMR in PMSG-WFs integrated power
system resulted from the interaction of open-loop LFO
modes in PMSG subsystem and ROPS subsystem is
analyzed. Furthermore, a residue based open-loop modal
analysis method is proposed to detect ALFMA and
ALFMR by estimating the trajectories of selected closed-
loop LFO modes of the entire power system.

Compared with the open-loop modal analysis method
proposed in [11], the method proposed in this paper has
the following advantages

1) The proposed method can estimate the locations of
closed-loop LFO modes more accurately no matter
how close the interacting open-loop LFO modes are.

2) The proposed method can give more accurate small-
signal stability margin, especially when ALFMA is
encountered.

Besides, the error of estimation of the location of closed-
loop LFO modes given by the proposed method is ana-
lyzed.

Two example PMSG-WFs integrated power systems are
used to demonstrate the performances of the proposed
method. The first example is a modified three-machine
power system used for studying ALFMA, while the second
example is a 4-machine 11-bus power system used for
analyzing ALFMR.

II. ALFMA and ALFMR Caused By PMSG
A. A Closed-Loop Model of PMSG-WFs Integrated Power
System for Analyzing LFMR

Fig. 3 Closed-loop model for calculation of
residue of open-loop modes of ROPS subsystem

Fig. 1 shows a multi-machine power system with p
PMSG-WFs, where Ixk + jIyk(k = 1, 2, . . . , p) represents
the output current of the kth PMSG-WFs and Vxk +
jVyk(k = 1, 2, . . . , p) represents the voltage at the point of
common coupling(PCC) of the kth PMSG-WF, expressed
in the common x-y coordinate of the power system. The
system can be partitioned into PMSG subsystem and
ROPS subsystem. As for PMSG subsystem, its linearized
state-space model is

d
dt∆Xw = Aw∆Xw + Bw∆Vxy

∆Ixy = Cw∆Xw
(1)

where

Aw =



Aw1 0 · · · · · · · · · 0

0 Aw2 0
...

... 0
. . . ...

... Awk

...
... . . . 0
0 · · · · · · · · · 0 Awp


Awk is the state matrix of the kth PMSG-WF, Xw is
the vector of all the state variables of p PMSG-WFs,
and prefix ∆ indicates the small variation of variable(s).
Note that each wind farm is modelled as an aggregated
PMSG-based wind turbine(PMSG-WT) connected with a
transformer. Based on (1), the transfer function matrix of
PMSG subsystem can be written as

∆Ixy = H(s)∆Vxy (2)
where

∆Ixy = [∆Ix1 ∆Iy1 . . . ∆Ixp ∆Iyp]
T

∆Vxy = [∆Vx1 ∆Vy1 . . . ∆Vxp ∆Vyp]
T

H(s) = Cw(sI −Aw)
−1Bw (3)
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and I is the identity matrix of proper dimension. As
for ROPS subsystem, its linearized state equation can be
written as 

d
dt∆XG = AG∆XG +BG∆Ixy

∆Vxy = CG∆XG +DG∆Ixy
(4)

where XG is the vector of all the state variables of ROPS
subsystem, and AG is the state matrix of ROPS subsytem.
And, the transfer function matrix of ROPS subsystem is

∆Vxy = M(s)∆Ixy (5)

where

M(s) = CG(sI −AG)
−1BG +DG (6)

For calculation of the residue of open-loop modes of
PMSG subsystem, the mutimachine power system should
be regarded as the feedback connection of PMSG subsys-
tem and ROPS subsystem, as shown in Fig. 2. However, in
order to calculate the residue of open-loop modes of ROPS
subsystem, virtual transfer functions H ′(s) and M ′(s)
should be introduced, because DG ̸= O, according to the
hybrid formulation for the sensitivity [13]. At the same
time, the multimachine power system need to be treated
as the feedback connection of a modified ROPS subsystem
and a modified PMSG subsystem, as demonstrated in Fig.
3. H ′(s), M ′(s) in Fig. 3 are derived as follow

H ′(s) = Cw(sI −Aw)
−1Bw[I −DGH(s)]−1

M ′(s) = M(s)−DG

∆V ′
xy = [I −DGH(s)]∆Vxy (7)

Besides, the linearized closed-loop model of the entire
power system can be expressed as

d
dt∆X = A∆X (8)

where

∆X = [∆XT
G ∆XT

w ]T

A =

[
Aw +BwDGCw BwCG

BGCw AG

]
(9)

B. Formation of ALFMA and ALFMR
Under normal operating conditions, the dynamic in-

teractions between PMSG subsystem and ROPS subsys-
tem are weak such that PMSG subsystem and ROPS
subsystem can be recognized as almost decoupled. This
recognition has been explained in [4]. Therefore, within
the range of the frequency of LFO, both ∆Vxy in Fig. 2
and ∆V ′

xy in Fig. 3 are usually very small, i.e., ∆Vxy ≈ 0
and ∆V ′

xy ≈ 0. And, based on this recognition, a small
positive number ξ, 0 < ξ << 1, can be introduced and

the transfer function matrix of the ROPS subsystem can
be rewritten as M(s) = ξR(s), where

M(s) = ξR(s) =
ξr(s)

s− λgi
(10)

H(s) =
h(s)

s− λwh,i

ξr(s) = Rgi + (s− λgi)

 ng∑
j=1,j ̸=i

Rgj
s− λgj

+DG


h(s) = Rwh,i + (s− λwh,i)

 nwh∑
j=1,j ̸=i

Rwh,j

s− λwh,j

 (11)

+ (s− λwh,i)

 p∑
l=1,l ̸=h

nwl∑
j=1

Rwl,j

s− λwl,j


λgi is the ith eigenvalue of AG, λwh,i(h = 1, ..., p, i =
1, ..., nwh) is the ith eigenvalue of Awh, ng is the dimension
of AG, nwh is the dimension of Awh, Rgi = CGvgiw

T
giBG,

Rwh,i = Cwvwh,iw
T
wh,iBw, vgi is the right eigenvector cor-

responding to λgi, wgi is the left eigenvector corresponding
to λgi, vwh,i is the right eigenvector of Aw corresponding to
λwh,i, and wwh,i is the left eigenvector of Aw corresponding
to λwh,i.

In most cases, all elements of A in (9) are continuously
differentiable with respect to ξ. Also, lim

ξ→0
∥DG∥ = 0, and

either lim
ξ→0

∥CG∥ = 0 or lim
ξ→0

∥BG∥ = 0, where ∥P∥ denotes
the maximum singular value of matrix P . As a result,
all eigenvalues of A are continuously differentiable with
respect ξ [14]. Moreover, when ξ = 0, the eigenvalues of A
are composed of eigenvalues of AG and eigenvalues of Aw.
To be more specific, for λgi, also an eigenvalue of A when
ξ = 0, it moves to λ̂gi, as ξ becomes positive. And, ∆λgi,
the difference between λ̂gi and λgi, can be approximately
expressed as(see proof in the Appendix)

∆λgi ≈ ξ
tr[h(λgi)r(λgi)]

λgi − λwh,i
, (12)

where tr(A) denotes the trace of matrix A. Similarly, for
λwh,i and the corresponding λ̂wh,i, it can be derived that

∆λwh,i ≈ ξ
tr[h(λwh,i)r(λwh,i)]

λwh,i − λgi
(13)

When λgi is not close to λwh,i, equations (12) and
(13) show that ∆λgi and ∆λwh,i are small under the
condition of 0 < ξ << 1. However, as system parameters
or operating condition change, λgi may become close to
λwh,i, causing ∆λgi and ∆λwh,i to become significant.
Such phenomenon is called LFMR. And, λgi and λwh,i

are defined as the pair of open-loop LFO modes par-
ticipating in the LFMR. λ̂gi and λ̂wh,i are said to be
the corresponding pair of closed-loop LFO modes. For a
specified parameter set in parameter space, if the following
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requirements on the pair of open-loop LFO modes can be
met as system parameters vary within the set,

λgi = λwh,i

∆λgi = ∆λwh,i (14)
then the LFMR occurred in the system is considered to be
symmetric. Otherwise, the LFMR occurred in the system
is regarded as asymmetric. As for asymmetric LFMR,
within the parameter set, there is a group of parameters,
under which |λgi−λwh,i| reaches the minimum. That group
of parameters correspond to a parameter vector in the
parameter space, and the endpoint of the vector is defined
as near open-loop modal resonance(NOLMR) point. Once
the endpoint of the parameter vector of the system reaches
the NOLMR point, if

Re(λwh,i) < Re(λgi), Re(∆λgi) < 0

or
Re(λwh,i) > Re(λgi), Re(∆λgi) > 0

then ALFMA happens in the system. On the other hand,
if

Re(λwh,i) < Re(λgi), Re(∆λgi) > 0

or
Re(λwh,i) > Re(λgi), Re(∆λgi) < 0

then ALFMR occurs in the system. In comparison to
symmetric LFMR, it is much easier for asymmetric LFMR
to occur in power system.

C. Detection of ALFMA and ALFMR
In order to detect ALFMA and ALFMR, a residue

based open-loop modal analysis method is proposed for
estimating the trajectories of closed-loop LFO modes as
system parameters vary. The method is derived as follows.

Assume that λgi and λwh,i are the identified pair of
open-loop modes participating in the LFMR. Then, for
M(s) and H(s) in Fig. 2, they can be expressed as

M(s) =
Rgi

s− λgi
+

ng∑
j=1,j ̸=i

Rgj
s− λgj

+DG

H(s) =
Rwh,i

s− λwh,i
+

nwh∑
j=1,j ̸=i

Rwh,j

s− λwh,j
(15)

+

p∑
l=1,l ̸=h

nwl∑
j=1

Rwl,j

s− λwl,j

Also, for M ′(s) and H ′(s) in Fig. 3, they can be written
as

M ′(s) = (
Rgi

s− λgi
+

ng∑
j=1,j ̸=i

Rgj
s− λgj

)

H ′(s) =

(
Rwh,i

s− λwh,i
+

nwh∑
j=1,j ̸=i

Rwh,j

s− λwh,j
(16)

+

p∑
l=1,l ̸=h

nwl∑
j=1

Rwl,j

s− λwl,j

)
[I −DGH(s)]−1

According to Fig. 2 and Fig. 3, the characteristic
equation of the entire power system can be written as

Det[I −H(s)M(s)] = 0 (17)

or

Det[I −H ′(s)M ′(s)] = 0 (18)

where Det(A) denotes the determinant of matrix A.
Substituting (15) and (16) into (17) and (18), we have

Det
(
I −

(
Rgi

s− λgi
+

ng∑
j=1,j ̸=i

Rgj
s− λgj

)(
Rwh,i

s− λwh,i

+

nwh∑
j=1,j ̸=i

Rwh,j

s− λwh,j
+

p∑
l=1,l ̸=h

nwl∑
j=1

Rwl,j

s− λwl,j

)

[I −DGH(s)]−1

)
= 0 (19)

and

Det
(
I −

(
Rwh,i

s− λwh,i
+

nwh∑
j=1,j ̸=i

Rwh,j

s− λwh,j
+

p∑
l=1,l ̸=h

nwl∑
j=1

(20)
Rwl,j

s− λwl,j

)(
Rgi

s− λgi
+

ng∑
j=1,j ̸=i

Rgj
s− λgj

+DG

))
= 0

Multiplying both sides of (19) by s− λgi

Det
(
(s− λgi)I −

(
Rgi +

ng∑
j=1,j ̸=i

Rgj(s− λgi)

s− λgj

)
(

p∑
l=1

nwl∑
j=1

Rwl,j

s− λwl,j

)
[I −DGH(s)]−1

)
= 0 (21)

Similarly, via multiplying both side of (20) multiply by
s− λwh,i

Det
(
(s− λwh,i)I −

(
Rwh,i +

nwh∑
j=1,j ̸=i

Rwh,j(s− λwh,i)

s− λwh,j

+

p∑
l=1,l ̸=h

nwl∑
j=1

Rwl,j(s− λwh,i)

s− λwl,j

)
(

Rgi
s− λgi

+

ng∑
j=1,j ̸=i

Rgj
s− λgj

+DG

))
= 0 (22)

Replacing s with λ̂gi in (21), we can obtain that

Det
(
(λ̂gi − λgi)I −

(
Rgi +

ng∑
j=1,j ̸=i

Rgj(λ̂gi − λgi)

λ̂gi − λgj

)
(

p∑
l=1

nwl∑
j=1

Rwl,j

λ̂gi − λwl,j

)
[I −DGH(λ̂gi)]

−1

)
= 0 (23)
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When s = λ̂whi in (22)

Det
(
(λ̂wh,i − λwh,i)I −

(
Rwh,i+

nwh∑
j=1,j ̸=i

Rwh,j(λ̂wh,i − λwh,i)

λ̂wh,i − λwh,j

+

p∑
l=1,l ̸=h

nwl∑
j=1

Rwl,j(λ̂wh,i − λwh,i)

λ̂wh,i − λwl,j

)
(

Rgi

λ̂wh,i − λgi
+

ng∑
j=1,j ̸=i

Rgj

λ̂wh,i − λgj
+DG

))
= 0 (24)

Once |λ̂gi−λgi| is small, (23) is approximately equivalent
to

Det((λ̂gi − λgi)I − Ω) = 0

Ω = RgiH
′(λgi) (25)

At the same time, as long as |λ̂wh,i − λwh,i| is small, (24)
can be approximated by

Det((λ̂wh,i − λwh,i)I −Υ) = 0

Υ = Rwh,iM(λwh,i) (26)

Because vgi and vwh,i are column vectors, and wT
gi and

wT
wh,i are row vectors, rank(Rgi) ≤ 1 and rank(Rwh,i) ≤ 1.

As a result, rank(Ω) ≤ 1 and rank(Υ) ≤ 1. So Ω and Υ
have at most one nonzero eigenvalue respectively. Note
that λ̂gi − λgi, the solution of (25), equals one of the
eigenvalues of Ω. If rank(Ω) = 1, the nonzero eigenvalue
of Ω can be expressed as

λ̂gi − λgi = tr(RgiH
′(λgi)) = wT

giBGH
′(λgi)CGvgi

(27)

Also, if rank(Υ) = 1, then the nonzero eigenvalue of Υ is

λ̂wh,i − λwh,i =

tr(Rwh,iM(λwh,i)) = wT
wh,iBwM(λwh,i)Cwvwh,i

(28)

Besides, if rank(Ω) = 0, then tr(RgiH
′(λgi)) = 0. Simi-

larly, tr(Rwh,iM(λwh,i)) = 0 when rank(Υ) = 0.
Based on the above discussions, an estimate of λ̂gi and

λ̂wh,i can be obtained as follow

˜̂
λgi = λgi + wT

giBGH
′(λgi)CGvgi

˜̂
λwh,i = λwh,i + wT

wh,iBwM(λwh,i)Cwvwh,i (29)

The estimation asserts that ˜̂
λgi − λgi is the nonzero

eigenvalue of Ω if rank(Ω) = 1. The accuracy of the
estimation will be analyzed in the next subsection.

D. Analysis of Estimation Error of the Location of Closed-
loop LFO Modes

In the first place, denote

Γ(∆λgi) =

Rgi +

ng∑
j=1,j ̸=i

Rgj∆λgi
∆λgi + λgi − λgj


 p∑

l=1

nwl∑
j=1

Rwl,j

∆λgi + λgi − λwl,j

 [I −DGH(∆λgi + λgi)]
−1

(30)

Obviously, equation Det((s − λgi)I − Γ(∆λgi)) = 0 is
equivalent to

2p∏
k=1

(s− λgi − eigk(Γ(∆λgi))) = 0 (31)

where eigk(Γ) is the kth eigenvalue of Γ. And, via the
expansion of left-hand side of (31), it can be obtained
that
(s− λgi)

2p − (s− λgi)
2p−1tr(Γ(0))

− (s− λgi)
2p−1(eig1(Γ(∆λgi))

− tr(Γ(0))) + (s− λgi)
2p−1(−eig2(Γ(∆λgi))) + · · ·

+ (s− λgi)
2p−1(−eig2p(Γ(∆λgi))) + (s− λgi)

2p−2×∑
µk ∈ {0, 1}

k = 1, 2, · · · , 2p
µ1 + . . . + µ2p = 2

(
2p∏
k=1

(−eigk(Γ(∆λgi)))
µk

)
+ · · ·

+ Det(∆λgi) = 0 (32)
Furthermore, denote

Ψ(∆λgi) = −(s− λgi)
2p−1(eig1(Γ(∆λgi))− tr(Γ(0)))

+ (s− λgi)
2p−1(−eig2(Γ(∆λgi))) + · · ·

+ (s− λgi)
2p−1(−eig2p(Γ(∆λgi))) + (s− λgi)

2p−2×∑
µk ∈ {0, 1}

k = 1, 2, · · · , 2p
µ1 + . . . + µ2p = 2

(
2p∏
k=1

(−eigk(Γ(∆λgi)))
µk

)
+ · · ·

+ Det(∆λgi) (33)
Then, (32) can be transformed into
(s− λgi)

2p − (s− λgi)
2p−1tr(Γ(0)) + Ψ(∆λgi) = 0 (34)

As can be seen, the exact closed-loop LFO mode, λ̂gi,
is the solution of (31). However, its estimate, ˜̂

λgi is the

solution of
2p∏
k=1

(s − λgi − eigk(Γ(0))) = 0. For analyzing

the difference between λ̂gi and ˜̂
λgi, denote ∆λgi = α+ jβ

and s = ν + jκ in order to rewrite (34) as
F1(α, β, ν, κ) =Re((s− λgi)

2p − (s− λgi)
2p−1tr(Γ(0))

+ Ψ(∆λgi)) (35)
F2(α, β, ν, κ) =Im((s− λgi)

2p − (s− λgi)
2p−1tr(Γ(0))

+ Ψ(∆λgi))
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Since F1+jF2 = Det((ν+jκ−λgi)I−Γ(α+jβ)), when
|∆λgi| is small, both F1 and F2 are continuously differ-
entiable with respect to ν and κ. The partial derivatives
of F1 and F2 with respect to ν and κ are presented as
follows.

∂F1(α, β, ν, κ)

∂ν
=Re

(
∂

∂ν
((s− λgi)

2p − (s− λgi)
2p−1tr(Γ(0))

+ Ψ(∆λgi))

)
∂F1(α, β, ν, κ)

∂κ
=Re

(
∂

∂κ
((s− λgi)

2p − (s− λgi)
2p−1tr(Γ(0))

(36)

+Ψ(∆λgi))

)
∂F2(α, β, ν, κ)

∂ν
=Im

(
∂

∂ν
((s− λgi)

2p − (s− λgi)
2p−1tr(Γ(0))

+ Ψ(∆λgi))

)
∂F2(α, β, ν, κ)

∂κ
=Im

(
∂

∂κ
((s− λgi)

2p − (s− λgi)
2p−1tr(Γ(0))

+ Ψ(∆λgi))

)

Via some algebraic manlpulates, it can be proved that

∂F1(α, β, ν, κ)

∂ν

∣∣∣∣∣ α + jβ = 0
ν + jκ = s0

= Re(2p(s0 − λgi)
2p−1−

(2p− 1)(s0−λgi)
2p−2tr(Γ(0)))

∂F2(α, β, ν, κ)

∂ν

∣∣∣∣∣ α + jβ = 0
ν + jκ = s0

= Im(2p(s0 − λgi)
2p−1−

(2p− 1)(s0−λgi)
2p−2tr(Γ(0)))

∂F1(α, β, ν, κ)

∂κ

∣∣∣∣∣ α + jβ = 0
ν + jκ = s0

= Re(j2p(s0 − λgi)
2p−1−

j(2p− 1)(s0−λgi)
2p−2tr(Γ(0)))

∂F2(α, β, ν, κ)

∂κ

∣∣∣∣∣ α + jβ = 0
ν + jκ = s0

= Im(j2p(s0 − λgi)
2p−1−

j(2p− 1)(s0−λgi)
2p−2tr(Γ(0)))

(37)

where s0 =
˜̂
λgi, and

Det

 ∂F1(α, β, ν, κ)

∂ν

∂F2(α, β, ν, κ)

∂ν
∂F1(α, β, ν, κ)

∂κ

∂F2(α, β, ν, κ)

∂κ

∣∣∣∣∣ α + jβ = 0
ν + jκ = s0

= |tr(Γ(0))2p−1|2
(38)

As long as rank(Γ(0)) = rank(Ω) = 1, which is more likely
to be encountered, the inverse function theorem [15] can
be applied to show that

∃N{(0, 0)}, N{(Re(˜̂λgi), Im(
˜̂
λgi))}

and a continuous function T : N{(0, 0)} → N{(Re(˜̂λgi),

Im(
˜̂
λgi))} satisfying F1(α, β, T (α, β)) = 0 and F2(α, β,

T (α, β)) = 0 for all (α, β) ∈ N{(0, 0)}, where N{(α, β)}
is the small neighbourhood of point (α, β). Because
of the continuity of T , we can conclude that when
|∆λgi| =

√
α2 + β2 is small, (Re(λ̂gi), Im(λ̂gi)) ∈

N{(Re(˜̂λgi), Im(
˜̂
λgi))} so |λ̂gi − ˜̂

λgi| is small. Similar
analysis can show that |λ̂wh,i− ˜̂

λwh,i| is small once ∆λwh,i

is small.

III. Case studies
In this section, two study cases are presented to

demonstrate the mechanism of asymmetric LFMR and
the features of the proposed method. One case study is
performed in a modified three-machine power system to
show the existence of ALFMA influenced by the variation
of kdci, where kdci is the integral gain of the PI controller
in DC-link voltage control loop. The other case study is
carried out on the 4-machine 11-bus power system with
PMSG-WF integrated to demonstrate the existence of
ALFMR affected by the variation of kdcp and kdci, where
kdcp is the proportional gain of the PI controller in DC-
link voltage control loop.

A. The Study Case on the Modified Three-machine Power
System

Fig. 4 Configuration of the three-machine power system

Fig. 4 shows the structure of the modified three-machine
power system comprised of a PMSG-WF and two syn-
chronous generators(SGs). The PMSG-WF is connected
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at bus 31, while the 1st SG(SG1) is connected at bus 2
and the 2nd SG(SG2) is connected at bus 10. The wind
farm consists of 70 PMSG-WTs. The detailed 13th-order
model of the PMSG-WT, including its control systems,
is given in [16]. Models and parameters of the two SGs,
as well as transmission lines, transformers and loads are
obtained from [14]. Note that bus 1 is an infinite bus.

As for ROPS subsystem, the eigenvalue of AG corre-
sponding to the open-loop power-angle mode(PAM) of
SG is of great concern as it is sufficiently close to the
imaginary axis on the complex plane, under a wide range
of operating conditions and system parameters. To be
worse, it is possible for the eigenvalue to interact with one
or more eigenvalues of PMSG subsystem, causing ALFMR
or ALFMA. If ALFMR happens, the small-signal stability
of the entire power system may be lost. In this study
case, the eigenvalue corresponding to the open-loop PAM
of SG1, denoted as λg1, is −0.1068 + j14.2821, while the
eigenvalue corresponding to the open-loop PAM of SG2,
denoted as λg2, is −0.0418+j6.3817. Both λg1 and λg2 are
forced to interact with the eigenvalue of Aw corresponding
to the open-loop DC-link voltage mode(DCLVM) of the
PMSG-WF, denoted as λdc, so as to study ALFMA.
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Real

10

12

14

16

18

(a)

-1.5 -1 -0.5

4

6

8

10

(b)

Fig. 5 Trajectories of eigenvalues and their estimates
as kdci increase from 1 to 30

In order to illustrate the existence of ALFMA originated
from the interaction between λg1, λg2 and λdc, kdci is
varied from kdci = 1 to kdci = 30. Note that the variation
of kdci exerts no influence on the operating condition of
ROPS subsystem. Also, the proposed method is utilized
to estimate the location of λ̂g1,λ̂g2 and λ̂dc for different
values of kdci ranging from 1 to 30. Note that λ̂gi(i = 1, 2)
is the eigenvalue of A in (9) corresponding to the closed-
loop PAM of SGi(i = 1, 2), and λ̂dc is the eigenvalue of A
corresponding to the closed-loop DCLVM of the PMSG-
WF.

Table I: The actal and estimated locations of λ̂g1 and λ̂dc

kdci = 7.95 kdci = 18.54 kdci = 30

λ̂g1 -0.2179 + j14.325 -0.6688 + j14.1794 -0.2174+j14.0494
˜̂
λg1 -0.2192+j14.3235 -0.5261+j14.1837 -0.2285+j14.0443
λ̂dc -1.9937+j9.0041 -1.5688+j14.1588 -1.9987+j18.2542
˜̂
λdc -1.943+j18.2542 -1.6884+j13.9987 -1.9714+j18.2658

Fig. 5(a) shows the location of λg1 and the trajectories

of λ̂g1, λdc and λ̂dc as kdci increases from 7.95 to 30. As
is presented, Re(λg1) > Re(λdc) for all kdci ∈ [7.95, 30].
In addition, as kdci increases from 7.95 to 18.54, the
distance between λdc and λg1 becomes smaller. But as
kdci increases further from 18.54 to 30, λdc begins to move
away from λg1. When kdci = 18.54 , |λg1 − λdc| reaches a
local minimum. Moreover, as can be inferred from Table
I, Re(∆λg1) = −0.41925 < 0 for kdci = 18.54. As a result,
as kdci varies between 7.95 and 30, ALFMA occurs in
the modified three-machine system, resulted from the
interaction between λg1 and λdc. Besides, the estimates
of λ̂g1 and λ̂dc given by the proposed method, denoted as
˜̂
λg1 and ˜̂

λdc respectively, are also demonstrated in Fig.
5(a). In particular, the values of λ̂g1, λ̂dc, ˜̂λg1 and ˜̂

λdc for
kdci = 7.95, 18.54 and 30 are provided in Table I.

Table II: The actal and estimated locations of λ̂g2 and λ̂dc

kdci = 1 kdci = 3.9 kdci = 8.24

λ̂g2 -0.1370+j6.3811 -0.3426+j6.3338 -0.1409+j6.2808
˜̂
λg2 -0.1386+j6.3781 -0.2695+j6.3236 -0.1347+j6.2810
λ̂dc -1.0661+j3.1161 -0.8615+j6.3433 -1.0497+j9.3265
˜̂
λdc -0.9844+j3.1187 -0.8811+j6.0456 -0.9939+j9.3496

Fig. 5(b) presents the location of λg2 and the trajectories
of λ̂g2, λdc and λ̂dc as kdci increases from 1 to 8.24. In Fig.
5(b), Re(λg2) > Re(λdc) for all kdci ∈ [1, 8.24]. Similar to
Fig. 5(a), as kdci increases from 1 to 3.9, λdc moves close
to λg2. However, as kdci increases further from 3.9 to 8.24,
the difference between λdc and λg2 becomes bigger. When
kdci = 3.9, |λg2−λdc| reaches a local minimum. Moreover,
Table II indicates that Re(∆λg2) = −0.2276851 < 0 for
kdci = 3.9. Therefore, as kdci varies from 1 to 8.24, ALFMA
occurs in the modified three-machine system, resulted
from the interaction between λg2 and λdc. In addition,
the estimates of λ̂g2 and λ̂dc provided by the proposed
method, denoted as ˜̂

λg2 and ˜̂
λdc, are also shown in Fig.

5(b). Especially, the values of λ̂g2, λ̂dc, ˜̂
λg2 and ˜̂

λdc for
kdci = 1, 3.9 and 8.24 are provided in Table II. As can be
seen from Fig. 5 ,Table I and Table II, the accuracy of
estimation of the locations of λ̂dc, λ̂sg1 and λ̂sg2 provided
by the proposed method is higher.

To confirm the existence of ALFMA from different
aspects, time domain simulation is carried out on the
three-machine power system. In the simulation, during the
interval between 0.2s and 0.3s, the load at bus 6 is reduced
to 90% of its initial value. Simulation results are presented
in Fig. 6. According to Fig. 6(a) and (b), the oscillation of
the power angle of SG1(δSG1) and DC-link voltage of the
PMSG-WF(Udc) decays faster as kdci increases from 7.95
to 18.54. Moreover, the decay time constant and frequency
of the oscillation of δSG1 and Udc are matched with those
indicated by the real and imaginary part of λ̂g1 and λ̂dc for
kdci = 7.95 and 18.54. Similarly, as can be inferred from
Fig. 6(c) and (d), the decay time constant and frequency
of the oscillation of δSG2 and Udc are matched with those
indicated by the real and imaginary part of λ̂g2 and λ̂dc
for kdci = 1 and 3.9.
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Fig. 6 Results of time domain simulation
on the three-machine power system

B. The Study case on the 4-machine 11-bus Power System

Fig. 7 Configuration of the 4-machine
11-bus power system

Fig.7 shows the configuration of 4-machine 11-bus power
system comprised of a PMSG-WF and three SGs. The
PMSG-WF is connected at bus 41, while the 1st SG(SG1),
2nd SG(SG2) and 3rd SG(SG3) are connected at bus
1, bus 2 and bus 3 respectively. There are 70 PMSG-
WTs in the PMSG-WF. The model and parameters of
the PMSG-WF are given in [16]. Models and parameters
of transmission lines, transformers and loads are obtained
from [14]. Models and parameters of the three SGs are
given in [17].

As for ROPS subsystem, the eigenvalue of AG cor-
responding to the open-loop speed mode(SM) of SG is
also of great concern for its imaginary part is small,
under a wide range of operating conditions and system
parameters. Moreover, it is possible for the SM of ROPS
subsystem to interact with one or more modes of PMSG
subsystem, causing LFMR. In this case, the eigenvalue
corresponding to the open-loop SM of SG2, denoted as
λr2, is −0.6592 + j18.0267, and the eigenvalue corre-
sponding to the open-loop SM of SG3, denoted as λr3,

is −0.3257 + j9.1205. Both λr2 and λr3 tend to interact
with the eigenvalue of Aw corresponding to the open-loop
DCLVM of the PMSG-WF, so as to study ALFMR.
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Fig. 8 Trajectories of eigenvalues and their estimates as kdcp

and kdci increase from kdcp = 0.1472, kdci = 4.16

to kdcp = 0.2621, kdci = 38.63

In order to demonstrate the existence of ALFMR
resulted from the interaction between λr2, λr3 and λdc,
kdcp and kdci are varied from kdcp = 0.1472, kdci = 4.16
to kdcp = 0.2621, kdci = 38.63. It is worth noting that
the variation of kdcp and kdci brings no impact on the
operating condition of ROPS subsystem. In addition,
the locations of λ̂r2, λ̂r3 and λ̂dc are estimated by the
proposed method with kdcp and kdci increasing from
kdcp = 0.1472, kdci = 4.16 to kdcp = 0.2621, kdci = 38.63.
Note that λ̂ri(i = 2, 3) is the eigenvalue of the state
matrix of the entire power system, corresponding to the
closed-loop SM of SGi(i = 2, 3).

Fig. 8(a) displays the trajectories of λr2, λ̂r2,
λdc and λ̂dc as kdcp and kdci are tunned from
kdcp = 0.1992, kdci = 19.76 to kdcp = 0.2621, kdci = 38.63.
the figure indicates that Re(λr2) > Re(λdc) for all
kdcp ∈ [0.1992, 0.2621] and kdci ∈ [19.76, 38.63]. In
addition, with kdci increasing from 19.76 to 28.55 and
kdcp increasing from 0.1992 to 0.2285, the distance
between λdc and λr2 becomes smaller. But as kdcp and
kdci increases further from kdcp = 0.2285, kdci = 28.55
to kdcp = 0.2621, kdci = 38.63, the distance between λdc
and λr2 becomes bigger. |λr2 − λdc| arrives at a local
minimum when kdcp = 0.2285, kdci = 28.55. Furthermore,
Table III indicates that Re(∆λr2) = 0.2784 > 0
when kdcp = 0.2285, kdci = 28.55. Therefore, ALFMR
happens in the 4-machine 11-bus power system as
kdcp and kdci vary from kdcp = 0.1992, kdci = 19.76
to kdcp = 0.2621, kdci = 38.63, due to the interaction
between λr2 and λdc. Besides, the estimates of λ̂dc and
λ̂r2 given by the proposed method, denoted as ˜̂

λr2 and ˜̂
λdc

respectively, as well as the estimates of λ̂dc and λ̂r2 given
by the method proposed in [11], denoted as

˜̃
λ̂r2 and

˜̃
λ̂dc

only for kdcp = 0.2285, kdci = 28.55, are demonstrated in
Fig. 8(a). In particular, the values of ˜̂λr2, ˜̂λdc,

˜̃
λ̂r2 and

˜̃
λ̂dc

for kdcp = 0.1992, kdci = 19.76, kdcp = 0.2285, kdci = 28.55
and kdcp = 0.2621, kdci = 38.63 are listed in Table III.
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Table III: The actal and estimated locations of λ̂r2 and λ̂dc

kdcp = 0.1992 kdcp = 0.2285 kdcp = 0.2621
kdci = 19.76 kdci = 28.55 kdci = 38.63

λ̂r2 -0.6467+j17.9698 -0.3808+j18.0416 -0.6326+j18.1301
˜̂
λr2 -0.6466+j17.9695 -0.2673+j18.0358 -0.6366+j18.1233
˜̃
λ̂r2 \ -0.1504+j18.0253 \
λ̂dc -1.1637+j15.0058 -1.5679+j18.1729 -1.4568+j20.9997
˜̂
λdc -1.1570+j14.9839 -1.7586+j18.4065 -1.4574+20.9770
˜̃
λ̂dc \ -1.7333+18.0311 \

Fig. 8(b) demonstrates the trajectaries of λ̂r3, λdc
and λ̂dc, as well as the location of λr3 with both kdcp
and kdci increase from kdcp = 0.1472, kdci = 4.16 to
kdcp = 0.1739, kdci = 12.17 respectively. As is presented,
Re(λr3) > Re(λdc) for all kdcp ∈ [0.1472, 0.1739] and all
kdci ∈ [4.16, 12.17]. In addition, the trend of |λr3−λdc|, as
kdcp and kdci increase from kdcp = 0.1472 ,kdci = 4.16
to kdcp = 0.1739,kdci = 12.17, is similar to that of
|λr2 − λdc| with kdcp and kdci tunned from kdcp = 0.1992,
kdci = 19.76 to kdcp = 0.2621, kdci = 38.63. When
kdcp = 0.1580, kdci = 7.4, |λr3 − λdc| reaches a local
minimum. Moreover, as can be deduced from Table IV,
Re(∆λr3) = 0.3672 > 0 for kdcp = 0.1580, kdci = 7.4.
Wherefore as kdcp and kdci tuning from 0.1472 ,4.16
to 0.1739,12.17, ALFMR arises in the 4-machine 11-bus
power system, resulted from the interaction between λr3
and λdc. Besides, the estimates of λ̂r3 and λ̂dc given by
the proposed method, denoted as ˜̂

λr3 and ˜̂
λdc respectively,

and the estimates of λ̂r3 and λ̂dc given by the method
proposed in [11], denoted as

˜̃
λ̂r3 and

˜̃
λ̂dc respectively,

are also displayed in Fig. 8(b). In particular, the values
of ˜̂

λr3, ˜̂
λdc,

˜̃
λ̂r3 and

˜̃
λ̂dc for kdcp = 0.1472, kdci = 4.16,

kdcp = 0.1580, kdci = 7.4 and kdcp = 0.1739, kdci = 12.17
are listed in Table IV. It can be confirmed from Fig. 8,
Table III and Table IV that compared to

˜̃
λ̂ri, ˜̂λri is closer

to λ̂ri.

Table IV: The actal and estimated locations of λ̂r3 and λ̂dc

kdcp = 0.1472 kdcp = 0.1580 kdcp = 0.1739
kdci = 4.16 kdci = 7.4 kdci = 12.17

λ̂r3 -0.2702+j9.0363 0.0415+j9.1970 -0.2974+j9.3309
˜̂
λr3 -0.2743+j9.0386 0.2120+j9.1953 -0.3071+j9.3015
˜̃
λ̂r3 \ 0.2631+j9.1585 \
λ̂dc -0.9378+j7.0096 -1.3086+9.1954 -1.0516+j11.5989
˜̂
λdc -0.9063+j6.9709 -1.5699+9.2224 -1.0454+11.5768
˜̃
λ̂dc \ -1.4622+9.074 \

To confirm the existence of ALFMR in different ways,
time domain simulation is carried out on the 4-machine
11-bus power system. Simulation results are shown in
Fig. 9. According to Fig. 9(a) and (b), the decay time
constant and frequency of oscillation of the speed of SG2
and Udc are matched with those indicated by the real
and imaginary part of λ̂r2 and λ̂dc for kdcp = 0.1992,
kdcp = 19.76 and kdcp = 0.2285, kdcp = 28.55. Similarly,
Fig. 9(c) and (d) reflect that the decay time constant and
frequency of oscillation of the speed of SG3 and Udc are
matched with those indicated by the real and imaginary
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Fig. 9 Results of time domain simulation on the
4-machine 11-bus power system

part of λ̂g3 and λ̂dc for kdcp = 0.1472, kdcp = 4, 16 and
kdcp = 0.1580, kdcp = 7.4. What’s worse, the small-
signal stability of the entire power system is lost when
kdcp = 0.1580, kdcp = 7.4.

IV. CONCLUSIONS

This paper has analyzed the mechanism of ALFMA and
ALFMR in PMSG-WFs integrated power system. And, a
residue based open-loop modal analysis method has been
proposed for detecting ALFMA and ALFMR. As has been
discussed, ALFMA and ALFMR are caused by the inter-
action between open-loop LFO modes of PMSG subsystem
and ROPS subsystem as system parameters or operating
conditions change. When ALFMR is encountered, the
small-signal stability of the entire power system may be
lost. On the other hand, if ALFMA occurs, the small-signal
stability of the entire power system can be improved.
According to the proposed method, both ALFMA and
ALFMR are detected via estimating the trajectories of
selected closed-loop LFO modes based on the residue of
identified open-loop LFO modes. Simulation studies have
confirmed that the estimates of the location of closed-loop
LFO modes provided by the proposed method have higher
accuracy than those given by the method proposed in [11].

The proposed method can be used for tunning the
parameters of the controllers of PMSG-WF in order to
prevent ALFMR from being excited in the entire power
system. Besides, since the proposed method does not rely
on the information of the eigenvalues of the state matrix
of the entire power system, it may takes a shorter time
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for the proposed method to perform small-signal stability
analysis when the power system is complex.

Appendix
Derivation of formula (12) and (13):
Since M(s) = ξR(s), the characteristic equation of the

entire power system shown in Fig.1 can be written as

Det[I −H(s)ξR(s)] = 0 (A1)

Substituting (11) into (A1), we have

Det[ (s− λgi)(s− λwh,i)

ξ
I − h(s)r(s)] = 0 (A2)

(A2) can be rewritten as

[
(s− λgi)(s− λwh,i)

ξ
]2p+

a2p−1(s)[
(s− λgi)(s− λwh,i)

ξ
]2p−1 + · · ·+

a1(s)
(s− λgi)(s− λwh,i)

ξ
+ a0(s) = 0 (A3)

where a2p−1(s), · · · , a1(s), a0(s) are all polynomials in s.
Multiplying both sides of (A3) by ξ2p

[(s−λgi)(s−λwh,i)]2p−1

(s− λgi)(s− λwh,i) + a2p−1(s)ξ +
a2p−2(s)

(s− λgi)(s− λwh,i)
ξ2

+ · · ·+ a1(s)ξ
2p−1

[(s− λgi)(s− λwh,i)]2p−2

+
a0(s)ξ

2p

[(s− λgi)(s− λwh,i)]2p−1
= 0 (A4)

Denote

f0(s) = (s− λgi)(s− λwh,i), f1(s) = a2p−1(s)

f2(s) =
a2p−2(s)

(s− λgi)(s− λwh,i)
+ · · ·+

a1(s)ξ
2p−3

[(s− λgi)(s− λwh,i)]2p−2
+

a0(s)ξ
2p−2

[(s− λgi)(s− λwh,i)]2p−1

(A5)

With (A5), equation (A4) becomes

f0(s) + ξf1(s) + ξ2f2(s) = 0 (A6)

Since λ̂gi = λgi + ∆λgi, an eigenvalue of A(see (9)), is a
solution of (A6),

f0(λgi +∆λgi) + ξf1(λgi +∆λgi) + ξ2f2(λgi +∆λgi) = 0
(A7)

Replacing f0, f1 and f2 with their Taylor series expansion
at λgi is

f0(λgi) + f ′
0(λgi)∆λgi +

f ′′
0 (λgi)

2!
∆λ2

gi + · · ·+

ξ[f1(λgi) + f ′
1(λgi)∆λgi +

f ′′
1 (λgi)

2!
∆λ2

gi + · · · ]

+ ξ2[f2(λgi) + f ′
2(λgi)∆λgi +

f ′′
2 (λgi)

2!
∆λ2

gi + · · · ] = 0

(A8)

According to [2] ∆λgi can also be expressed as

∆λgi = β1ξ + β2ξ
2 + β3ξ

3 + · · · (A9)

where βk(k = 1, 2, 3, · · · ) is complex coefficient to be
determined. Substitute (A9) into (A8),

f0(λgi) + f ′
0(λgi)(β1ξ + β2ξ

2 + β3ξ
3 + · · ·+)

f ′′
0 (λgi)

2!
(β1ξ + β2ξ

2 + β3ξ
3 + · · · )2 + · · ·+

ξ[f1(λgi) + f ′
1(λgi)(β1ξ + β2ξ

2 + β3ξ
3 + · · · )+

f ′′
1 (λgi)

2!
(β1ξ + β2ξ

2 + β3ξ
3 + · · · )2 + · · · ] (A10)

+ ξ2[f2(λgi) + f ′
2(λgi)(β1ξ + β2ξ

2 + β3ξ
3 + · · · )+

f ′′
2 (λgi)

2!
(β1ξ + β2ξ

2 + β3ξ
3 + · · · )2 + · · · ] = 0

Both sides of (A10) are polynomial of ξ. By equating the
coefficients of the first-order term of ξ on the both sides
of (A10), it can have that

β1 =
−f1(λgi)

f ′
0(λgi)

(A11)

From (A5)

f ′
0(s)|s=λgi = (λgi − λwhi)

f1(λgi) = a2p−1(λgi) = −tr[h(λgi)r(λgi)] (A12)

Hence, the first-order approximation of ∆λgi, for 0 < ξ ≪
1, is obtained as

∆λgi ≈ ξ
tr[h(λgi)r(λgi)]

λgi − λwhi
(A13)

Besides, λ̂wh,i = λwh,i +∆λwh,i, another eigenvalue of A,
is also a solution of (A6). Hence, taking the derivation
similar to that from (A2) to (A13), it can have that

∆λwh,i ≈ ξ
tr[h(λwh,i)r(λwh,i)]

λwh,i − λgi
(A14)
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