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Abstract—This paper focuses on the finite element method in
the complex frequency domain (CFD-FEM) for the transient
electric field. Firstly, the initial value- boundary value problem of
the transient electric field under the electroquasistatic field in the
complex frequency domain is given. Besides, the finite element
equation and the constrained electric field equation on the
boundary are derived. Secondly, the indirect algorithm of the
numerical inverse Laplace transform is introduced. Based on it,
the calculation procedures of the CFD-FEM are illustrated in
detail. Thirdly, the step response, zero-state response under the
positive periodic square waveform (PPSW) voltage, and the
zero-input response by the CFD-FEM with direct algorithm and
indirect algorithm are compared. Lastly, the reason for the
numerical oscillations of the zero-state response under the PPSW
voltage is analyzed, and the method to reduce oscillations is
proposed. The results show that the numerical accuracy of the
indirect algorithm of the CFD-FEM is more than an order of
magnitude higher than that of the direct algorithm when
calculating the step response of the transient electric field. The
proposed method can significantly reduce the numerical
oscillations of the zero-state response under the PPSW voltage.
The proposed method is helpful for the calculation of the transient
electric field, especially in the case of frequency-dependent
parameters.

Index Terms—electroquasistatic field, transient electric field,
finite element method, complex frequency domain, numerical
Laplace transform.

I. INTRODUCTION
HE electrical insulation problem is often a critical
challenge in the manufacturing process of power apparatus

[1, 2]. The key to solving the insulation problem is to accurately
calculate the electric field distribution of the insulation
structure under actual working conditions. With the widespread
application of power electronic devices in the power grid, the
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working voltage of high-voltage power electronic devices or
equipment is no longer the traditional AC or DC voltage, but a
positive periodic square waveform (PPSW) voltage [3, 4].
Besides, the insulation structure of the device or equipment is
often a combined insulation structure composed of multiple
materials [5]. Under the electroquasistatic (EQS) field, charge
relaxation phenomena occur in the composite insulating
structure, which leads to the transition process of the transient
electric field, and finally reaches a steady state after a duration
of time [6]. Therefore, it is essential to calculate the transient
electric field distribution of the insulating structure under the
EQS field.
The finite element method (FEM) is a useful numerical

method for solving partial differential equations for the electric
field, which is suitable for both regular and irregular structures
[7]. For the calculation of the transient electric field, it is
essential to deal with the partial derivative of time in the
governing equation. In general, there are two kinds of methods
to handle the partial derivatives of time. The first one is the
time-domain method based on the time difference. Combined
with FEM, many methods are produced, including time-domain
FEM (FD-FEM) [8, 9], time-periodic FEM [10], and so on. The
other one is the transformation method based on the integral
transformation combined with FEM, including
frequency-domain FEM (FD-FEM) [11, 12], and complex
frequency domain FEM (CFD-FEM) [13, 14].
The transient response of the electric field can be easily

obtained by TD-FEM through time iteration. But for composite
insulation structures with a large time constant up to hundreds
of seconds or even thousands of seconds. It will take a very
long time to get the steady-state solution of the transient electric
field, which needs tremendous calculation costs [6]. While the
FD-FEM is based on the fast Fourier transform, by which the
steady-state solution of the transient electric field can be
obtained quickly. However, FD-FEM cannot obtain the
transition process of the transient electric field, nor the
zero-input response of the transient electric field originated by
the initial state [15]. The CFD-FEM based on Laplace
transform can make up for the drawbacks of the FD-FEM.
The CFD-FEM is based on the numerical Laplace inverse

transform. The algorithms for the numerical inverse Laplace
transform are mainly divided into two categories. The first one
is the direct algorithm through the direct discretization of the
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Bromwich contour integral [16-18]. The other one is the
indirect algorithm through functional expansion using
analytically invertible basis functions [19], including the
Gaver-Stehfest method [20], Week method [21], Talbot method
[22], Valsa method [23], and so on. The computational
complexity of the direct algorithm is lower than the indirect
algorithm. However, the numerical accuracy is greatly
dependent on the attenuation coefficient. Besides, the
numerical oscillations will be produced when calculating the
zero-input response. Thus, it is essential to research the indirect
algorithm. Among the indirect algorithms, the Valsa method is
approximate the kernel of the inverse Laplace transform by the
reciprocal hyperbolic functions, which is easy to control the
absolute errors [24]. Thus, the Valsa method is widely used in
groundwater flow [25] and solute transport [26].
This paper is devoted to the CFD-FEM through the indirect

algorithm of the numerical inverse Laplace transform. Firstly,
the finite element equation and the constrained electric field
equation in the complex frequency domain are given. Secondly,
the calculation procedures for the transient electric field by the
CFD-FEM are proposed. Thirdly, the step response, zero-state
response under the PPSW voltage, and the zero-input response
by the CFD-FEM with direct algorithm and indirect algorithm
are compared. Lastly, the reason for the numerical oscillations
of the zero-state response under the PPSW voltage is analyzed,
and the method to reduce oscillations is proposed. This paper
provides a new method for the transient electric field.

II. FINITE ELEMENT EQUATION OF TRANSIENT ELECTRIC
FIELD IN COMPLEX FREQUENCY DOMAIN

The EQS approximation is effective when the characteristic
length of the electromagnetic system is much smaller than the
distance that the electromagnetic wave travels during the
characteristic time of the electromagnetic system. The transient
electric field of the high voltage devices and apparatus often
satisfies the EQS condition, thus, the magnetic induction of
Maxwell’s equation can be neglected. As a result, the electric
field is free of rotation approximately, and the scalar electric
potential function φ can be introduced as E=−▽φ, where E is
electric field intensity.

A. Description of Initial Value – Boundary Value Problem
Under the EQS field, the governing equation of transient

electric filed in time domain represented by scalar potential is
expressed as [27]

( ) 0
t

         
 

(1)

where φ is scalar electric potential, ε and γ are permittivity and
conductivity of the medium, respectively, and t is time.
Supposing the mediums are isotropic, linear, and uniform, by
taking the Laplace transform of (1), the governing equation in
the complex frequency domain can be obtained, which is

  ( ) ( ) (0 ) 0l l ts s s            (2)
where φl(s) is the image function of φ in Laplace domain, φt(0−)
is the initial condition of φ in the time domain, s is complex
frequency, s=c+jω, ω is the angular frequency, and c is a

positive and real number, also named as decay coefficient.
The general domain and boundary for calculation are

depicted in Fig. 1. Let field domain Ω ⊂ ℝ2 is a convex
polygonal domain, the interface Γ12 separates Ω into two
subdomains with different medium Ω1 and Ω2, thus Ω = Ω1∪
Ω2 ∪ Γ12. Let ∂Ω is the boundary of domain Ω, Γ1 is the
Dirichlet boundary, Γ2 is the Neumann boundary, such that
∂Ω = Γ1∪Γ2.
For the general model in Fig. 1, the initial value and

boundary value problem for scalar electric potential in the
complex frequency domain can be expressed as
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where, ul(s) is the Laplace transform of the electric potential on
the Dirichlet boundary, ψl(s) is the Laplace transform of the
derivative of the electric potential in the normal direction on the
Neumann boundary, and φ(0) is the initial value of the electric
potential.

Fig. 1 A sketch of the domain and boundary[27]

B. FEM in Complex Frequency Domain
Discretizing the field domain into m finite elements with n

nodes in Ω. Among m elements, m1 elements are collinear with
the Dirichlet boundary Γ1, and m2 elements are collinear with
the Neumann boundary Γ2. Assuming there are (n-n1) nodes on
the Dirichlet boundary Γ1.
By using Galerkin’s method, the weak form of (3) can be

obtained. Then, by using Green’s formula, the integral of the
weak form can be decomposed into two parts, the integral for
the field domain and the boundary, respectively. Considering
physical meaning, −∂φ/∂n stands for normal component of the
electric field intensity En. Thus, the closed curve integral along
the boundary in the right hand of the weak form can be divided
into two parts. One is the curve integral along the Neumann
boundary where ∂φ/∂n is given, and the other one is the curve
integral along the Dirichlet boundary where ∂φ/∂n can be
represented as −En. Thus, the finite element equation
corresponding to (3) can be expressed as
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(4)

where, n is the total number of nodes, m is the total number of
elements, Nei is the base function for node i in element e.
The finite element equation (4) can be expressed as the

matrix form
(0 )k lk t k S Φ TΦ F (5)

where, Sk and T are stiffness matrixes, Fk is a vector of the
boundary integrals in the right hand of (5), and Φ is the column
vector of the nodal potential. The expression of Sk, T, and Fk are
expressed in the appendix

C. Constrained Electric Field Equation on the Boundary in
Complex Frequency Domain
When numbering the nodes, nodes that are in Ω but not on

the Γ1 are numbered firstly. Then, nodes on the Γ1 with given
nodal potentials are numbered in sequence. As a result, (5) can
be represented as partitioned matrixes

T T
11 11 21 1
1

2 20 0( ) ( )lk k lk k k


     Φ S T TΦ U F US (6)

1 21 22 21 22( ) ( )0 0k lk k lkk   S S TF Φ U Φ UT (7)
where, Φ is a column vector of the nodal potential which is
needed to be solved, and U is a column vector of the nodal
potential with known potential values on the Dirichlet
boundary.
Equation (6) is the finite element equation for electric

potential in the complex frequency domain, and (7) is the
constrained electric field equation on the boundary in the
complex frequency domain (CEFEB-CFD), which reflect the
constraint relationship between the normal component of the
transient electric field intensity and the transient potential.
Element values of column vector Fk1 are expressed as
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Equation (8) can be expressed in the form of a matrix
equation as

1=(0 )nl nk kk  H E FGE (9)
where, Enlk is the column vector of the normal component of the
electric field intensity on the Dirichlet boundary, En(0-) is the
Column vector consisting of the initial value of the normal
component of the electric field intensity on the Dirichlet

boundary, Hk and G are stiffness matrixes on the Dirichlet
boundary corresponding to Enlk and En(0-), respectively. The
expression of Hk and G are listed in the appendix.
By taking (9) into (7), CEFEB-CFD can be expressed as

 21 22 21 2
1

20( (0) )k k k lk k lnl k


     E Φ U TΦ UH S S T G
(10)

Equation (10) is also named the CEFEB-CFD. After
calculating the nodal potential in the complex frequency
domain by (6), the normal component of the electric field
intensity on the Dirichlet boundary in the complex frequency
domain can be calculated by (10).

III. INDIRECT ALGORITHM OF NUMERICAL LAPLACE
TRANSFORM

In the process of calculating the transient electric field by the
CFD-FEM, one of the most important procedures is achieving
the numerical inverse Laplace transform after obtaining the
electric potential and the electric field in each complex
frequency point by (6) and (10), respectively, to obtain the
transient electric potential and the transient electric field in the
time domain. As a result, the calculation algorithm of the
numerical inverse Laplace transform should be introduced in
this section in detail.
The inverse Laplace transform is defined by the Bromwich

contour integral
j

j
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c
f t F s s


 

 
  (11)

where f(t) is the time function, and F(s) is the image function of
f(t) in the Laplace domain. In general, the image function F(s) is
supposed to fulfill the following assumptions:

(a) Re[s]>0, (b) F(s)=0 when |s|→∞, (c) F*(s)= F(s*),
where the asterisk stands for complex conjugate value.
To approximate the kernel of exp(st) in the expression of

inverse Laplace transform (11), the damping factor a is
introduced, where a is a positive and real parameter. When
a > ct, then |e−2ae2st ≪ 1|. Thus, the kernel of the inverse
Laplace transform exp(st) can be approximated by

2 2
e ee

2cosh( ) 1+e e
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The reciprocal hyperbolic functions can be expressed as an
infinite sum of rational functions as follows [23]
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By using (12) to (15), the Bromwich contour integral can be
calculated by residual theorem, thus, the approximate formula
of the inverse Laplace transform can be expressed as [23]
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where fc(t, a) and fs(t, a) are the approximate formula f(t) by
using the indirect algorithm of the numerical inverse Laplace
transform of F(s), of which the kernel is approximated by (12)
and (13), respectively.
Under the condition of a > ct, (12) and (13) can be expanded

as a convergent MacLaurin series, from which the absolute
errors of (16) and (17) are as follows, respectively
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where θc(t, a) and θs(t, a) are the absolute errors corresponding
to fc(t, a) and fs(t, a), respectively.
The resultant error of the approximate formula can be further

suppressed by taking the arithmetic mean of (16) and (17). Thus
the approximate formula of the inverse Laplace transform can
be expressed as
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The corresponding absolute error is
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where θa(t, a) is the absolute error corresponding to fa(t, a).
This method is an indirect method to obtain the approximate

formula of inverse Laplace transform by approximating the
kernel of the inverse Laplace transform, rather than by directly
discretizing the Bromwich contour integral expression. This
method is firstly proposed by Valsa in 1998 [23]. Thus, this
method is named as the indirect algorithm in the following part.
In general, the convergence of the series in the approximate

formula is very poor, since the absolute value of its terms
decreases for large n only in inverse proportion to n2 and n of
(17) and (16), respectively. To improve the convergence of the
approximate formula, Euler transformation can be used [28, 29].
Euler transformation is especially effective with the series that
originally had very bad convergence under the condition of (a)
the signs of the series are alternating, (b) the absolute values of
the terms decrease monotonically with increasing n.
In summary, the problem of calculation of response in the

time domain is converted into the problem of calculation of
complex frequency responses in the Laplace domain. Thus,
many problems are thus simplified, for example, materials with
frequency-dependent dielectric losses.

IV. CALCULATION PROCEDURES FOR FEM IN COMPLEX
FREQUENCY DOMAIN BY INDIRECT ALGORITHM

The electric potential and the normal component of the
electric field intensity on the Dirichlet boundary can be
approximated by the approximate expression of the inverse
Laplace transform. Then, each term of the in the series
summation can be calculated by the finite element equation.
For the electric potential, each term can be calculated by (6).
While for the normal component of the electric field intensity
on the Dirichlet boundary, each term can be calculated by (10).
After obtaining the electric potentials at all instants, the electric
field intensity at each instant can be obtained by taking the
negative gradient of the electric potential at each instant. In
summary, the flow diagram for calculating transient electric
field by FEM in the complex frequency domain is illustrated in
Fig. 2.
In the calculation, it is worth noting that the image function

in the complex frequency domain of the boundary conditions
needs to be analytic. If the image function of the boundary
condition cannot be obtained analytically, the boundary
condition can be expanded into trigonometric series, and then
the image function of the trigonometric series can be obtained
analytically.

Fig. 2. Flow diagram for calculating transient electric field by FEM in the
complex frequency domain

For the combined insulation structure with multiple materials,
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the normal component of the electric field intensity on the
dielectric interface is discontinuous, and interfacial charges will
accumulate on the dielectric interface due to the discontinuity
of the permittivity and conductivity of the materials. To
calculate the normal component of the electric field intensity on
the dielectric interface and interfacial charge density, special
treatment needs to be arranged [27]. The filed domain Ω needs
to be decomposed into several subdomains Ωi with only one
material. Thus, all dielectric interfaces between subdomain Ωi

and other subdomains and the Dirichlet boundary of subdomain
Ωi can be regarded as the equivalent Dirichlet boundary in
subdomain Ωi.
In subdomain Ωi, the nodal potential at each complex

frequency is obtained by (6) in the previous procedures. Then,
the normal component of the transient electric field intensity at
each complex frequency on the equivalent Dirichlet boundary
of subdomain Ωi can be calculated by (10). Repeating the above
procedures for all subdomains, the normal component of the
transient electric field intensities at each time step on the
Dirichlet boundary and the dielectric interface of domain Ω can
be solved.

V. NUMERICAL EXAMPLES

A. Numerical Model
A classical model with double-layered dielectrics in series is

selected for numerical calculation, as shown in Fig. 3.
Dielectrics in the model are isotropic linear and homogeneous,
which are labeled as 1 and 2. For the dielectric 1, the thickness,
the permittivity, and the conductivity are d1, ε1, and γ1,
respectively. While for the dielectric 2, these parameters are d2,
ε2, and γ2, respectively. In the calculation, d1=d2=1 mm,
εr1=3.96, γ1=2.55×10-15 S/m, εr2=2.26, and γ2=1.04×10-12 S/m,
When t = 0, the switch is closed and the voltage us(t) is applied
across the two electrodes. The fringing effect is neglected, thus
the fields in each dielectric are uniform [6].

Fig. 3. Model of the composite structure with double-layer dielectrics[30]

B. The Step Response of the Transient Electric Field
The step response of the classical model in Fig. 3 is selected

to evaluate the numerical error of the indirect algorithm since
the step response of the classical model is analytical. Besides,
the numerical result calculated by the direct algorithm is also
compared.
The expression of the direct algorithm of the numerical

inverse Laplace transform is expressed as [31]
1

j2 /
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e eRe
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where, c is the damping coefficient, Δt is the sampling interval
of time, tmax is the maximum calculation time, N is the total
number of the sampling points, n is the label of the discrete
sequence of time, k is the label of the discrete sequence of
complex frequency, Fk is the value of the image function F(s) in
the kst complex frequency point sk.
The damping coefficient c is recommended as [31]

max max

1 3c
t t

  (23)

The comparison of the step response of the transient electric
field in dielectric 1 by the direct algorithm and indirect
algorithm is depicted in Fig. 4. Among them, Fig. 4(a) is the
comparison of the numerical results of electric field intensity,
and Fig. 4(b) is the relative error of the electric field intensity.
In the calculation, the magnitude of the step voltage is

Um=1000 V, and the maximum of the observing time is
tmax=250 s. For the direct algorithm of the FEM in complex
frequency domain (CFD-FEM), N=500, Δt=0.5 s,
c=1/tmax=0.004. While for the indirect algorithm of the
CFD-FEM, the numerical results are calculated by (20).
Besides, the coefficient a=3, the number of terms in the series
summation is ns=20, and the number of terms in the series
summation by Euler transformation is nd=20.

(a)

(b)
Fig. 4. Comparison of the step response of the transient electric field intensity
in dielectric 1 by the direct algorithm and indirect algorithm, (a) magnitude of

the electric field intensity, (b) relative error.

As shown in Fig.4(a), the numerical results by both direct
algorithm and indirect algorithm have no numerical oscillations,



CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, Accepted, DECEMBER, 2021

which can match well with the analytical solution. The relative
error of the indirect algorithm is significantly lower than that of
the direct algorithm by more than one order of magnitude when
calculating the step response of the transient electric field,
which is depicted in Fig.4(b).

C. The Zero-state Response of the Transient Electric Field
under the PPSW Voltage
When t = 0, the switch is closed and the excitation voltage

us(t) is applied across the two electrodes. Initially, there is no
unpaired charge between the electrodes either in the volume or
on the interface. Under this condition, the response of the
transient electric field is the zero-state response. In this section,
the calculation of the zero-state response of the transient
electric field is conducted under the positive periodic square
waveform (PPSW) voltage.
The schematic figure of the PPSW voltage is depicted in Fig.

5, where, Um is the magnitude of the PPSW voltage us(t), tu and
td are the rise time and fall time of the PPSW voltage,
respectively, α is the duty cycle, which is defined as the ratio of
the duration of positive impulse voltage within a cycle to the
duration of the cycle Tc is the cycle.

Fig. 5 Schematic of the positive periodic square waveform voltage [30]

The PPSW voltage us(t) can be expressed as

c
0

( ) ( )s T
i

u t u t iT




  (24)

where, uT(t) is the expression of us(t) when t∈[0, T], and uT(t) is
expressed as




u u c c

c d c d

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

T

m

u t tu t t t u t t t T u t T
t T t u t T t U

 

 

       

   
(25)

By taking the Laplace transform of uT(t), the image function
UT(s) can be obtained
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By using the time-shift characteristics of the Laplace
transform, the image function Us(s) of the PPSW voltage us(t)
in the complex frequency domain is

 ( )
2
1 1( ) 1 e e e 1 e

fr T t st s Ts
s m TsU s U

s
   

    
(27)

The results of the zero-state response of the transient electric
field in dielectric 1 under the PPSW voltage are shown in Fig. 6.

In the calculation, Um=1000V, tu=td=1 s, α=0.5, Tc=50 s.
Different numerical results by the direct algorithm and indirect
algorithm of the CFD-FEM and FEM in the time domain
(TD-FEM) are compared. For higher numerical accuracy of the
electric field intensity, in the calculation by TD-FEM, the
transient constrained electric field equation on the boundary is
adopted [27], and the time step is selected as Δt=0.5 s. Other
calculation parameters of the direct algorithm and indirect
algorithm of the CFD-FEM are the same as those in Section V-B.

Fig. 6 Comparison of the zero-state response of the transient electric field
under the PPSW voltage.

As shown in Fig. 6, the results by the direct algorithm of
CFD-FEM can match well with the results by TD-FEM, and no
numerical oscillation appears. While for the results by the
indirect algorithm of CFD-FEM, the overall trend is consistent
with the results by TD-FEM, but the numerical oscillation is
obvious. In the first cycle, the numerical oscillation is very
small, which can be ignored. However, the oscillation increases
with time. The reason for the oscillation and the method to
eliminate it will be explained in Section VI.

D. The Zero-input Response of the Transient Electric Field
The zero-input response refers to the response caused only

by the initial state variables without external excitation. Based
on Section V-C, supposing that the switch is opened at t=250 s,
and the external excitation of the PPSW voltage is removed.
Due to the effect of the applied voltage within 0 s<t<250 s,
there are some interfacial charges on the dielectric interface,
and the electric field is distributed in the medium at t=250 s. As
a result, the calculation of the transient electric field after
t>250 s is the problem of calculating the zero-input response of
the transient electric field, where the initial state variable is the
electric potential at t=250 s. The results of the zero-input
response of the transient electric field in dielectric 1 are
depicted in Fig. 7.
Different numerical results calculated by the direct algorithm

and indirect algorithm of the CFD-FEM are compared in Fig. 7.
The time duration for calculation is [250s, 500s]. Other
calculation parameters of the direct algorithm and indirect
algorithm of the CFD-FEM are the same as that of Section V-B.
As illustrated in Fig. 7, the overall trend of the transient

electric field calculated by the direct algorithm and indirect
algorithm of the CFD-FEM are almost the same, and the results
can match well at the intermediate time duration. However, at
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the beginning and the ending of the calculation time duration,
the numerical results calculated by the direct algorithm have
some numerical oscillations. While results calculated by the
indirect algorithm do not show any numerical oscillations.

Fig. 7 Comparison of the zero-input response of the transient electric field.

VI. DISCUSSIONS

As it can be seen from the numerical examples in Section V,
the numerical accuracy of the indirect algorithm of the
CFD-FEM is more than an order of magnitude higher than that
of the direct algorithm. For solving the zero-input response of
the transient electric field, the indirect algorithm will not
produce any numerical oscillations. While for calculating the
zero-state response under the periodic excitations, numerical
oscillations will occur. This section aims to reduce this kind of
numerical oscillation.
The approximate formula of the numerical inverse Laplace

transform behaves like a low-pass filter, as illustrated in (16),
(17), and (20). In actual calculations, the summation of the
series is conducted for finite terms, which will filtrate
high-frequency components of the response. As a result,
numerical oscillations are produced inevitably. Intuitively
speaking, increasing the number of terms in the summation of
the series will reduce the numerical oscillations.
For the zero-state response of the transient electric field

under the PPSW voltage in Section V-C, the response is
calculated under a different number of terms in the summation
of the series, which is shown in Fig. 8.
As illustrated in Fig. 8, oscillations appear in the 1st cycle

when ns=20, and nd=20. When the number of terms increases by
ns=100 and nd=20, oscillations occur in the 3rd cycle. And when
the number of terms further increase by ns=150 and nd=20,
oscillations only emerge in the 5th cycle. Moreover, the
oscillations are very small, which can be almost neglected.
Thus, these results in Fig. 8 confirm the conjecture that the
oscillations can be reduced by increasing the number of terms
for the summation of the series in the approximate formulas.
In the actual calculations, the number of the terms for

summation cannot be obtained through a continuous test by
trial, because it may cause much calculation time. Thus, how to
quantitatively select the number of items for summation will be
discussed in the following.
In the approximate formulas, for each time instant of t, the

angular frequency of the last complex frequency point for the
calculation is

2n f
t
   (28)

where, f is the corresponding frequency.
Suppose the cut-off frequency of the transient response of the

electric field which needs to be solved f(t) within a specific
truncation error limit is fc. To obtain f(t) within a specific error
limit from F(s) by the approximate formula, the frequency of
the last complex frequency point for calculation should not be
less than fc. As a result, n should satisfy

2 cn tf (29)
If we want to obtain f(t) in the time interval [0, tmax], the total

number of items in the series summation nsum should satisfy
sum max2 cn t f (30)

Fig. 8. Zero-state response of the transient electric field under the PPSW
voltage with a different number of terms in the summation of the series.

To evaluate the cut-off frequency of the response of the
electric potential within a specific truncation error limit, the
image function of the response can be written as

L
( )

( ) ( ) ( ) s
s

U s
s U s H s

s


 
 


(31)

where, φL(s) is the image function of response φ(t) in the
complex frequency domain, Us(s) is the image function of the
excitation voltage Us(t),H(s) is the transfer function, and for the
transient electric field in the EQS field, H(s)=1/(γ+εs).
Thus, the cut-off frequency of the φ(t) can be obtained from

the frequency spectrum corresponding to the φL(s). The cut-off
frequency is selected as the frequency point in which the
amplitude of the spectrum attenuates to 1% of the maximum
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magnitude of the spectrum. For the composite insulation
structure with multiple materials, if there are multiple media in
the field, corresponding to each media, the cutoff frequency of
φ(t) is calculated respectively corresponding to the parameters
of each media. Then, the maximum cut-off frequency is chosen
as the cut-off frequency of φL(s).
The frequency spectrum corresponding to φL(s) with

different parameters is depicted in Fig. 9, where the blue line
and the red line are frequency spectrum with parameters in
dielectric 1 and 2, respectively. As shown in Fig. 9, the cut-off
frequency is selected as fc=1 Hz.

Fig. 9. Frequency spectrum corresponding to φL(s).

Thus, the total number of items in the series summation nsum
can be obtained by (26), i.e. nsum≥500. The calculation results
are shown in Fig. 10, where, a=3, ns=500, and nd=20.
As shown in Fig. 10, the numerical oscillations are almost

eliminated, compared with that in Fig. 8. And even in the last
cycle, there is no obvious oscillation in the result. Thus, it
proves the effectiveness of the proposed method for reducing
oscillations. It can be testified that the proposed method for
selecting the total number of items in the series summation nsum
is effective.

Fig. 10. Zero-state response of the transient electric field under the PPSW
voltage with nsum=500.

The premise of reducing oscillations is to increase the
computational cost. To reduce the total computation cost, the
following suggestion can be adopted. Before calculating time
response at t=tk, increase an additional procedure to calculate
the minimum of nsum(tk) by

sum ( ) 2k k cn t t f (32)
That is to say, the number of terms of the summation of the

series is varying with time. And the total computational cost
will be reduced by half.
To testify the effectiveness of the proposed method of the

time-varying number of terms of the summation, the
calculation results of the zero-state response of the transient
electric field under the PPSW voltage are depicted in Fig. 11,
which is compared with the calculation results with the definite
number of terms of the summation in Fig. 10.

Fig. 11. Zero-state response of the transient electric field under the PPSW
voltage with time-varying number of terms of the summation.

As shown in Fig. 11, the calculation results with the
time-varying number of terms of the summation are matched
well with the calculation results with the definite number of
terms of the summation. To quantitatively describe the
difference between the zero-state response of the transient
electric field under the PPSW voltage with the time-varying
number of terms of the summation and the definite number of
terms of the summation, respectively, the relative error is
depicted in Fig, 12. The relative error is calculated based on the
numerical results with the definite number of terms of the
summation.

Fig. 12. Relative error of the zero-state response of the transient electric field
under the PPSW voltage with time-varying number of summation terms.

The maximum of the relative error is 4.01%, as shown in Fig.
12, which is acceptable in engineering. Besides, the average
relative error in the whole calculation time is just 0.15%.
Moreover, the calculation cost of the numerical results
calculated with the time-varying number of terms of the
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summation is decreased by 52.51% compared with that of the
numerical results calculated with the definite number of terms
of the summation. It can be proved that using the proposed
time-varying number of terms of the summation for
calculations can reduce the calculation cost by a little more than
a half while ensuring a relatively small error, which is
acceptable and practical in engineering calculation.

VII. APPLICATION

To apply the proposed method to the actual engineering
model, the transient electric field of the actual model is
conducted by the proposed indirect algorithm of the CFD-FEM.
The actual insulation structure of direct bonded copper

(DBC) structure is the main insulation structure used in the
press-packed insulated gate bipolar transistor (IGBT). The
voltage applied to the DBC structure under the actual
working condition is the PPSW voltage. In the calculation,
the magnitude of the PPSW voltage is Um=18kV, the
frequency of the voltage is f=50Hz, the duty cycle is α=0.5,
the rise time and fall time of the voltage is tr=tf=2μs, the total
calculation time is 200s. These waveform parameters are
corresponding to a typical working voltage of the Silicon
carbide (SiC) based press-packed IGBT device for the
power grid application.
For the typical working voltage of the SiC based

press-packed IGBT, the cut-off frequency is selected as
fc=10 Hz. Thus, ns in the calcalation is selected as ns=20tk
accoring to (32). Besides, nd=20, and a=3, which are selected as
the same with those in Section VI.

(a)

(b)

Fig. 13. Distribution of the transient electric field at the end of the off-state in
different cycle, (a) the first cycle, (b) the last cycle.

To display the calculation results, the distributions of the
transient electric field at the end of the off-state in different
cycle are shown in Fig. 13. The contour of the electric field in
the first cycle and in the last cycle are depicted in Fig. 13(a) and
Fig. 13(b), respectively.
The transient electric field and the interfacial charge density

at selected point is illustrated in Fig. 14, in which the Fig. 14(a)
and Fig. 14(b) are the electric field intensity and interfacial
charge density varying with time, respectively.

(a)

(b)
Fig. 14. The transient electric field and the interfacial charge density at
selected point, (a) electric field intensity, (b) interfacial charge density..

As shown in Fig. (13) and Fig. (14), these calculation results
reflect the transient characteristics of the electric field and
interfacial charge density of the DBC structure under the PPSW
voltage. It also can be testified the validity of the proposed
indirect algorithm of the CFD-FEM to the actual model.

VIII. CONCLUSIONS
This paper proposes an indirect algorithm for the finite

element method in the complex frequency domain (CFD-FEM),
the main conclusions are as follows.
(1) CFD-FEM is proposed for the transient electric field

under electroquasistatic field by using the indirect algorithm of
the inverse numerical Laplace transform. CFD-FEM can
calculate the transition process under periodic excitation and
the zero-input response caused by the initial conditions, which
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solves the problem that the FEM in the frequency domain can
only calculate the periodic steady-state response, but cannot
calculate the transition process.
(2) The indirect algorithm of the CFD-FEM has higher

numerical accuracy than that of the direct algorithm. Besides,
the indirect algorithm solves the problem of numerical
oscillation of the zero-input response by the direct algorithm
CFD-FEM. However, when calculating the zero-state response
under periodic excitation, the indirect algorithm will produce
numerical oscillation, and the numerical oscillation gradually
increases with time.
(3) In order to reduce numerical oscillations by the indirect

algorithm when calculating the zero-state response under
periodic excitation, the method of choosing the number of
terms for summations of the series in the approximate formula
is proposed in this paper. In addition, choosing the number of
terms for summations of the series which is time-varying for
each time, selecting the number of summations can reduce the
computational cost by nearly a half while reducing the
numerical oscillation.

APPENDIX

The expression of stiffness matrix Sk is written as

k s  S K K (A1)

where K  and K� are the stiff matrixes corresponding to the
conductivity and the permittivity respectively. Expressions for
K, and K�, can be given as
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Stiffness matrix T and column vector Fk are expressed as

T K (A4)
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Each element in Fk can be expressed as
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Each element of the stiffness matrixes Hk and G are
expressed as
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where, i, j=n1+1, ⋯, n, n1 is the number of nodes on the Dirichlet
boundary, and m1 is the number of elements on the Dirichlet
boundary.
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