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Abstract—With the booming of artificial intelligence (AI),
Internet of Things (IoT), and high-speed communication tech-
nology, integrating these technologies to innovate the smart
grid (SG) further is future development direction of the power
grid. Driven by this trend, billions of devices in the SG are
connected to the Internet and generate a large amount of data
at network edge. To reduce pressure of cloud computing and
overcome defects of centralized learning, emergence of edge
computing (EC) makes the computing task transfer from the
network center to the network edge. When further exploring
the relationship between EC and AI, edge intelligence (EI)
has become one of the research hotspots. Advantages of EI in
flexibly utilizing EC resources and improving AI model learning
efficiency make its application in SG a good prospect. However,
since only a few existing studies have applied EI to SG, this
paper focuses on the application potential of EI in SG. First,
the concepts, characteristics, frameworks, and key technologies
of EI are investigated. Then, a comprehensive review of AI and
EC applications in SG is presented. Furthermore, application
potentials for EI in SG are explored, and four application
scenarios of EI for SG are proposed. Finally, challenges and
future directions for EI in SG are discussed. This application
survey of EI on SG is carried out before EI enters the large-
scale commercial stage to provide references and guidelines for
developing future EI frameworks in the SG paradigm.

Index Terms—Artificial intelligence, edge computing, edge
intelligence, federated learning, smart grid.

I. INTRODUCTION

DRIVEN by development and application of Internet of
Things (IoT) technology, vast volumes of data are gen-

erated in smart grids (SG). To collect, transmit and process
these data items, information & communication technologies
(ICTs) play a vital role [1], [2]. Computing is one of the
main functions of ICTs, which determines the way of data
processing [3]. At present, the computing framework widely
deployed in SG is cloud computing [4]. However, with in-
creasing number of IoT devices in SG, centralized cloud
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computing may cause the following obstacles to development
of SG: (1) Bandwidth of distribution network limits speed
of cloud computing; (2) Cloud computing is challenging to
meet all computing needs of millions of SG devices; and (3)
Communication brought by cloud computing threatens data
security.

To deal with the hidden dangers of cloud computing in
continuous development of IoT, edge computing (EC) is
born, which transfers computing from the network center
to the network edge [5]. During implementation of SG, EC
can realize a real-time collection of heterogeneous data for
different devices by using container technology and providing
elastic computing resources for a deep learning model. EC
resource allocation can meet offline processing and analysis
to ensure secure transmission and processing of various data.
In addition, with the help of high-speed communication tech-
nology, EC can reduce network latency, improve utilization
of network transmission bandwidth and realize efficient and
stable data transmission [6]. Some devices in the SG already
have functions similar to EC, such as computing, calculating,
and controlling of relay protection equipment. Although these
functions reflect characteristics of EC to some extent, they are
not intelligent and flexible compared with actual EC [3]. In the
near future, with continuous increase of distributed generations
and electrical load, importance of EC in SG will become more
and more prominent.

With proliferation of EC, how to combine EC with AI has
become a new research hotspot, giving rise to a new concept,
i.e., “edge intelligence (EI)” or “edge AI” [7], [8]. Unlike
EC, which only applies AI algorithms to the edge directly, EI
allocates training and inference of the AI model to different EC
resources in an optimal way with consideration of economy,
efficiency, and reliability. For example, federated learning can
train an excellent global model through decentralized training.
I. Stoica of UC Berkeley first proposed cloud edge AI is a
significant development direction to achieve critical mission
and personalized AI [9]. Subsequently, the concept of EI first
appeared in the Gartner hype cycle in 2018 [10]. Gartner
estimates EI is currently in its infancy and will peak in the next
five to ten years. In recent years, several corporations, such as
Google, Amazon, and Microsoft, have moved AI to the edge.
To make the AI model applicable to the edge, some companies
have specially designed chips for EI, such as Google edge
tensor processing unit (TPU), Intel Nervana NNP, Huawei
ascend 910, etc.

Rapid development trend of EI makes people see its appli-
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cation potential in the SG. Notably, individual studies have
made preliminary exploration on application of EI to SG
at present, from aspects of load forecasting [11], condition
monitoring [12], and scenario generation [13]. However, ex-
isting studies on application of EI to SG are far from ade-
quate. Application scenarios of EI in SG should be explicitly
specified. Thus, an insightful investigation on how to achieve
integration of SG and EI is warranted. This paper provides
interdisciplinary values to integrate EI and SG from the
prospect of SG application requirements. To clarify relevance
among various concepts, a Venn diagram of EC, AI, SG, and
their integrations in Fig. 1 is utilized to depict their intertwined
relationships. Importance and contributions of this paper are
as follows:

Edge
computing

AI

Smart grid

EI

EI for SG

Fig. 1. Relationships of edge computing, AI, and smart grid.

1) A full technical roadmap is offered to deploy EI in SG.
Specifically, concepts and characteristics of EC and EI are
introduced. Moreover, frameworks and related technologies of
EI in SG are presented.

2) A comprehensive review of AI and EC applications in
SG is provided, which provides potential applications for EI in
SG. Defects of EC applied in SG are pointed out and necessity
of applying EI is illustrated.

3) Application advantages of EI in SG are analyzed, and
recent advances of EI in SG are investigated. On this basis,
four potential EI application scenarios in SG are proposed, i.e.,
decentralized-dominant application, latency-sensitive applica-
tion, resource-intensive application, and security application.
Enabling technologies of EI that can be leveraged in each
scenario are given.

4) Challenges existing applications face in practice and
future works that can be conducted are discussed from the
perspectives of reliability, robustness, efficiency, sustainability,
economy, and security.

The remainder of this paper is organized, as shown in
Fig. 2. To clarify the relationships between EI, AI and EC, and
thus illustrate application potential of EI in SG. Definition,
characteristics, frameworks, and related technologies of EI
are introduced in Section II. Sections III and IV provide a
comprehensive review of AI and EC applied in SG. Based on
associated technologies of EI and SG application scenarios,
application potentials for EI in SG are given in Section V. In
Section VI, challenges and future directions of EI in SG are

IV. EC applications in SG

VII. Conclusion

VI. Challenges and future directions of EIapplying in SG 

V. Application potential for EI in SG 

A. Challenges B. Future directions

A. Forecasting
B. Demand
response 

C. Condition
detection 

D. System
management

E. Analysis and
control F. Cyber security

A. Application scenariosof EI in SG B. Latest advance of EI in SG 

II. Edge intelligence

A. Definition and characteristics of EC B. Definition and characteristics of EI 

III. AIapplications in SG 

A. Support for
real-time 

B. Intelligent
coordination 

C. Intelligent
cognition 

D. Optimal
design

E. Privacy and
security

I. Introduction of EI for SG

A. Definition and characteristics of EC

Fig. 2. Structure of this paper.
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discussed. Section VII concludes this review.

II. EDGE INTELLIGENCE

First, we clarify definitions and characteristics of EC and
EI, and focus on differences and correlations between EI and
EC. Then, based on characteristics of EI, the main framework
and related technologies of model training and inference are
given.

A. Definition and Characteristics of EC

1) Definition of EC

EC is a distributed computing paradigm that brings com-
putation and data storage closer to data sources, which can
avoid unnecessary communication latency and enable faster
responses for end-users [14], [15]. Concepts similar to EC
include cloudlets [16], fog computing [17], and mobile edge
computing [18]. In addition, the concept of “edge grid” has
emerged in SG, which is similar to part of the characteristics
of EC, but it focuses on edge electrical devices rather than
computing resources [19]. Main functions of EC include
computation, communication, caching, and control. There are
some devices in the power system that can realize EC-related
functions, but EC is more intelligent and flexible than these
devices.

2) Characteristics of EC

a) Low latency: Edge devices are located at the network
edge, and the data source is very close to the transmission
target, which significantly shortens communication latency.
For cloud computing, communication latency is usually tens
or hundreds of milliseconds, while it only takes a few millisec-
onds or even microsecond levels to transmit for EC [20]. Rapid
development of 5G technology will further promote reduction
of latency.

b) Energy efficiency: EC makes full use of existing local
network resources, idle storage, and computing resources of
edge devices. Moreover, data flow can be dynamically adjusted
from the device to the cloud according to security policy. Data
transmission volume and network bandwidth occupation can
be decreased to reduce data processing cost and device energy
consumption [21].

c) Privacy and security: Security of EC includes phys-
ical security and cyber security. For physical security, due to
local computing characteristics of EC, impact of a single point
of failure on EC is much less than that of cloud computing.
For cyber security, edge servers are usually scattered in
geographical locations. This is conducive to local users to
manage and save data by themselves and avoid information
leakage caused by data uploading and downloading [22].

d) Flexibility: In the planning stage, when the SG intro-
duces new computing tasks, computing resources near the new
tasks can be directly included in the EC, which is in line with
the “plug and play” criterion of the SG. In operation phase,
EC resources can be divided into multiple models for users to
invoke flexibly [3].

3) Challenges of EC

In addition to the above advantages, EC inevitably has some
challenges in practical application:

a) It is not easy to obtain a large number of EC re-
sources [23]. Although edge devices have many computing
resources, these computing resources generally have their
inherent computing tasks. To coordinate self-computing tasks
and edge computing tasks of these resources is a challenge.
In addition, construction of additional EC equipment will
increase investment and maintenance costs.

b) Some computing resources may not fit all computing
environments. Several companies use existing computing re-
sources for EC. However, these computing resources are often
only specific to some hardware and may not be suitable
for heterogeneous environments [24]. Upgrading these edge
computing resources to a general computing environment
brings challenges to the software platform, and it is also a
significant investment.

c) Assigning tasks to near-edge nodes directly may lead to
uneven allocation of computing resources and reduce comput-
ing efficiency.

B. Definition and Characteristics of EI

1) The Definition of EI

To date, there is no consensus about the official definition of
EI. Some organizations and institutions define EI as running
AI on an edge device [25], [26]. However, this definition is
too limited. According to the relationship between AI and EC,
EI can be divided into AI for edge and AI on edge [15]. AI for
edge is optimal allocation of EC resources through AI to make
EC faster and more energy-saving. AI on edge studies how to
allocate training and inference of AI models to different EC
resources in an optimal and flexible way with consideration
of economy, efficiency, privacy, and reliability. This direction
aims to provide a framework for training and inference of AI
models on edge devices. The above definitions still cannot be
used to define EI comprehensively. Considering EI is deep
integration of EC and AI, EI can be defined by combining the
definitions of AI for edge and AI on edge. Therefore, in this
paper, EI is defined as the confluence of EC and AI that can
improve operational efficiency, security, and reliability of EC
or AI models by optimizing EC resource utilization. Compared
with only running AI with EC, EI focuses on how to apply
AI to EC in an optimal and flexible way.

2) Characteristics of EI

Apart from strengths of EC, EI has unique advantages.
Compared with EC, EI can reallize not only optimal allocation
of EC resources, but also enhance operational efficiency of AI
model and improve utilization of EC resources through flexible
deployment of AI model training and inference. Specific
advantages can be described as the following:

a) Realizing optimal allocation of computing resources:
EI can optimize the combination of cloud-edge-device com-
puting resources according to application requirements and
characteristics of computing resources.
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b) Cognition and robustness: Since EC resources are
only responsible for devices and users within their scope, they
can understand specific needs and obtain nearby environmental
information. In addition, by combining multiple edge models,
a highly robust comprehensive model can be obtained.

c) Flexibility of model training and inference: EI sep-
arates training and inference of the AI model, so training
and inference are deployed on different computing resources,
making training and inference not limited by their computing
resources. Besides, the model can be further segmented in
training and inference to improve operational effect of the
model.

d) Extensive application scenarios of AI: With EI, data
associated with systems and electrical devices promote forma-
tion of AI models and enrich application scenarios of AI.
3) Challenges of EI

EI also faces some challenges in application as follows.
a) The challenge of AI for edge:

• Since the definition of EC resources in SG is not clear,
a resource optimization model is not easy to build.

• Model establishment of AI for edge is restricted. AI-
based algorithms may not work well if search space is
constrained [15].

• Data related to EC resources is not easy to obtain.
b) The challenge of AI on edge:

• Raw data from variable edge devices are not readily
available and may have a bias, which can affect learning
performance.

• Increase in communication between models poses a threat
to data security;

• How to select the scale, training frameworks and accel-
erator architectures poses challenges when building the
model.

• How to balance optimality and efficiency challenges
deploying AI algorithms on resource-constrained edge.

In a word, EI is more concerned with how to optimally
deploy AI model training and inference on EC resources than
EC. Based on characteristics and concerns of EI, frameworks
and related technologies for model training and inference of
EI are described below.

C. Frameworks and Related Technologies of EI

1) Model Training of EI
a) Frameworks: According to different training deploy-

ment modes of the AI model, the training framework can
be divided into centralized, local, decentralized, and hybrid
training [27], as shown in Fig. 3. Specific introductions of
each framework are as follows:

• Centralized: framework deploys training of the AI model
on cloud computing completely, so it is called centralized
training. This mode transmits data to the cloud, avoiding
resource consumption of the device and the edge, but
inevitable communication cost and data security problems
are very prominent. Strictly speaking, this framework
does not belong to EI. However, in order to reduce
computing burden of edge devices, many applications
often deploy training as a centralized computing mode.
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Fig. 3. Taxonomy of model training frameworks. (a) Centralized framework;
(b) Local framework; (c) Decentralized framework; (d) Hybrid framework.

• Local: Each model trains on the edge or device locally,
and there are few communications among models. Ap-
plication of EI under this framework is a completely
distributed computing mode, which is easy to lead to an
overload of EC resources.

• Decentralized: It means different AI models are trained
by their nearest EC resources, and then the global AI
model is updated by sharing model gradient. The most
typical technology in EI under this framework is federated
learning, which can form a robust model while making
full use of EC resources.

• Hybrid: To integrate the advantages of cloud computing
and EC, centralized training and decentralized training
are combined to form a hybrid training framework. Under
this framework, part of the training tasks is assigned to
the cloud server and the other to the edge server. This
framework takes full advantage of cloud computing and
EC to avoid crowding out of computing resources and
allows more efficient model training for EI.

Most model training tasks in SG are deployed on the
cloud. From the distributed trend of EI, the higher the degree
of decentralized training, the more mature the development.
Some studies have shown that edge-cloud synergy can reduce
time delay and save energy consumption. However, which EI
training framework is the best cannot be measured according
to a standard but depends on actual needs in SG.

b) Key Technologies:
• Decentralized learning technology
A typical decentralized learning technology in EI is fed-

erated learning. Federated learning is a learning method of
sharing parameters through decentralized training [28]. The
main problem faced by this method is how to update pa-
rameters and whether they are updated well or not. In terms
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of updating gradients, a selective stochastic gradient descent
protocol was proposed in [29]. However, this model does
not consider parameters that may be unbalanced and non-
independent distribution. To supplement the above defects,
Ref. [30] proposed a FedAvg method, in which the central
server will average parameters updated. For the problem
of whether the parameter update is good or bad, existing
methods are mainly improved from two aspects: reducing
number of training cycles [31] and changing parameter update
structure [32]. Gradient quantization [33] and gradient sparsifi-
cation are proposed to reduce communication cost of gradient
updating. Gradient quantization is a lossy compression that
achieves compression by reducing accuracy of each gradient,
while gradient sparsification is achieved by lowering part of
the gradient. Federated learning in SG is suitable for strongly
decentralized learning objects, such as distributed genera-
tion, load and individual electrical devices with monitoring
equipment, which can learn prediction objects of individual
edge devices and form a comprehensive prediction model
containing characteristics of each edge device.

• Model splitting technology
Due to limited computing power of a single edge device,

deploying a complete model to a single device can easily result
in slow training. In this case, splitting the model into multiple
models and deploying them on different edge devices is a
solution. The role of model splitting is not only to coordinate
computing resources of devices and edges but also to improve
privacy. To ensure the division point of deep neural network
(DNN) splitting can meet latency demand, [34] utilized the
differential private mechanism and divided DNN after the
first convolution layer to minimize cost of the mobile device.
Moreover, a multi-split machine learning (ML) system was
developed for 5G cellular networks [35]. It reformulates the
complicated multi-split problem to a min-cost graph search
and achieves optimal efficiency. Model splitting technology
is used in SG for learning objects with complex models,
high training volumes and need for privacy protection, such
as condition monitoring of electrical devices and microgrid
energy management.

• Training acceleration technology
One of the challenges faced by EI model training is long

training time. Due to limited computing resources at the edge,
training times are increasing. To mitigate this problem, transfer
learning and randomized gossip algorithms can be used to
shorten the training period.

Transfer learning can accelerate training and reduce com-
puting cost of the model on the edge server. We can train
a primary network first, then fine-tune it; transfer it to the
target network, and train the target network. In this way,
training speed of the target network can be accelerated, and
energy consumption of edge devices can be reduced. [36] used
federated learning to train models locally and utilized transfer
learning to improve training efficiency by knowledge transfer.

To further accelerate training of decentralized training, we
can leverage randomized gossip algorithms to realize a training
method with fast convergence. [37] first proposed a gossip
averaging algorithm, which realizes rapid convergence by

exchanging information from peer to peer. Then, to make
the training process faster, researchers in [38] proposed a
gossip-based stochastic gradient descent algorithm. The above
training acceleration techniques are also applicable to training
of complex models in SG.

• EC framework advancement technology
Most existing hardware architecture, software platforms

and programming frameworks are designed based on central-
ized computing paradigm. However, edge learning focuses
on different aspects, such as energy efficiency, lightweight
architecture and edge-oriented computing framework. From
the perspective of hardware architecture optimization, ML
processors are chips designed for edge learning tasks. [39]
studied the Cortex-M microcontroller and proposed a stream-
ing hardware accelerator to accelerate convolutional neural
networks (CNN) in edge devices. [40] developed an EC
platform based on FPGA and realized transfer of deep learning
computing from mobile devices to edge FPGA platforms.
From a software perspective, both Amazon’s Greenglass and
Microsoft’s Azure IoT edge have implemented their software
platforms or services to support EC. In terms of programming
frameworks, there have been some frameworks specially de-
signed for EC, among which MXNet [41], Tensorflow Lite,
and CoreML are typical representatives. Some edge devices
and edge computing systems [42] are summarized in Table I.

TABLE I
SOME EDGE DEVICES AND EDGE COMPUTING SYSTEMS

Productions Owners

Edge
device

TPU Google
DianNao family Cambrain
Turing GPUs NVIDIA Corporation
7 Series FPGA Xilinx
HiSilicon Ascend series Huawei
Exynos 9820 Samsung
Xeon D-2100 Intel
TrueNorth IBM

Edge
computing
systems

CORD The Open Network Foundation
EdgeX Linux Foundation
Akraino Edge Stack Linux Foundation
Azure IoT Edge Microsoft
AWS IoT Greengrass Amazon
KubeEdge Huawei
OpenEdge Baidu
OpenVDAP Connected and Autonomous

dRiving Lab
VideoEdge Microsoft Research

SG’s edge nodes may consist of different commercial and
established microprocessors. Heterogeneous computing sys-
tems provide a variety of architectural capabilities to execute
an application through orchestration, with subtasks having dif-
ferent execution requirements [42]. One type of heterogeneous
computing system is a mixed-mode machine, in which one
machine can run in different parallel modes. Another type is
a hybrid machine system in which a set of different kinds of
high-performance machines are interconnected by high-speed
links [43].
2) Model Inference of EI

a) Frameworks: Model inference refers to testing or
online applications on new data with trained models. In
consideration of cooperation among cloud, edge, and devices,
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the deployment framework of EI inference can be divided into
the following categories [23]: edge-based mode, device-based
mode, edge-device mode, and edge-cloud mode. The edge-
based mode and device-based mode rely on edge and device to
complete the inference. For edge-device mode, partial model
is on the device, and another partial model is on the edge.
Moreover, edge-cloud mode refers to partial model on the edge
and another partial model on the cloud. Typically, EI deploys
model inference only at the edge or the device. The latter two
frameworks are complex, but model inference will be faster.

b) Key Technologies:
• Model simplification technology
To alleviate computational pressure on the edge, we can

use model compression to reduce complexity of the model. At
present, model compression mainly includes weight pruning,
data quantification, and compact architecture design, where
weight pruning [44] is the most widely used. Weight pruning is
a method to reasonably remove excess weight from the trained
DNN. It is to sort neurons according to the contribution of
each neuron and eliminate neurons with a low contribution to
realize weight pruning.

Since a high-precision DNN usually has a deep structure,
it consumes tremendous computing resources to execute this
model. To reduce impact of deep structure on inference speed,
model early exit can take output data of the early layer as the
final prediction result. A typical model early exit framework is
BranchyNet [45]. Based on Branchyet, researchers have suc-
cessively developed distributed DNNs [46], and Edgent [47]
to navigate the accuracy-latency tradeoff, DeepIns [48] for
manufacturing inspection systems.

The above model simplification techniques play an im-
portant role in online inference of complex models in SG.
For example, when microgrid energy management models
are applied online, inference still faces a large amount of
computation due to high complexity of trained models. In this
case, both weight pruning and model early exit can make the
model lighter and improve speed of online operation.

• Model partition technology
To further reduce calculation pressure of DNN on a single

device, the model can be divided and distributed to different
devices. The key to this method is how to divide the model
and where to set the partition point to obtain optimal model
partition effect. For partition between the edge and device, [49]

Edge device
Edge serverBase station

Intermediate data

Input

Output

Fig. 4. Typical case for DNN partition.

partitioned DNN between device and edge to utilize nearby
hybrid computing resources for real-time DNN inference. In
addition, considering privacy of partition model transmission,
a model partition combined with lossy feature encoding was
proposed in [50]. A typical case for DNN partition between
the edge and device in SG is shown in Fig. 4. PV prediction
model is divided into two pieces, one running on the PV
device and the other on the edge server. For partition between
devices, [51] first established a microcomputing cluster based
on WiFi direct technology. Then, [52] developed a partition
state graph to model different partition solutions of DNNs,
and proposed a neighbor effect to give the heuristic rule for
the search process. When applied in SG, model partition mode
can be selected according to different application scenarios and
distribution of computing resources.

• Model enhance technology
Several application scenarios require fast responses when

models are inferred online. However, due to complexity of
the inference process, response latency is long. To achieve fast
responses, edge caching is a good option. Edge caching is a
method to reduce latency by buffering DNN inference results.
Glimpse [53] first applied edge caching to start detection.
To increase buffer capacity, [54] proposed an experience-
driven edge caching method based on deep reinforcement
learning, which is suitable for systems with a large number of
small files. This technology can play an essential role in SG
application scenarios where online response needs are high,
such as demand response.

Effect of DNN inference will be affected by quality of input
data. Therefore, it is crucial to filter input data. [55] proposed
a method to accelerate video analysis by skipping frames
with little change. This method applies a difference detector
to highlight temporary differences between frames and then
leverages lightweight binary classifiers to monitor differences.
Besides, [56] developed an Extended Kalman Filter-based
localization algorithm by edge computing to achieve a high
level of accuracy and broader coverage for robot location.
Filtering input data is suitable for scenarios with high data
noise in SG, e.g., renewable energy generation forecasting.

• EC capacity advancement technology
To speed up AI inference, existing hardware acceleration

can be used, such as CPU and GPU, as well as customized
application-specific integrated circuits (ASICs) for AI, such as
Google’s TPU [57]. [58] proposed another customized ASIC,
which focuses on efficient memory access to reduce latency
and energy consumption. DNN accelerator based on a field-
programmable gate array (FPGA) is another promising method
because FPGA can provide fast computing while maintaining
reconfigurability [59]. These customized ASIC and FPGA
designs are usually more energy-saving than traditional CPU
and GPU, but cost is higher.

Limitation of EC resources has led to development of
technologies related to computation modes, e.g., lightweight
function libraries and in-memory computing, etc. Lightweight
function libraries enable more applications to run on mature
operating systems in resource-limited environments of SG[60].
Some work is ongoing to build a lightweight ML library on a
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general-purpose chip [61]. In addition, in-memory computing
is a new way of using embedded chips in the future. In-
memory computing achieves high performance on a chip by
storing data in RAM and processing it in parallel [62].

According to the above description, key technologies for
model training and EI inference are listed in Table II.

TABLE II
KEY TECHNOLOGIES FOR MODEL TRAINING AND INFERENCE OF EI

Types of technologies Specific technologies

Model
training

Decentralized learning Federated learning
technology Gradient quantization

Gradient sparsification
Model splitting technology DNN splitting
Training acceleration
technology

Transfer learning

Randomized gossip algorithms
EC framework advancement ML processors
technology Heterogeneous computing

Model
inference

Model simplification
technology

Model compression

Model early exit
Model partition technology Partition between edge and

device
Partition between devices

Model enhance technology Edge caching
Input filtering

EC capacity advancement
technology

Lightweight function libraries

In-memory computing

III. AI APPLICATIONS IN SG
With increasing penetration of renewable energy resources,

SG faces an environment of flourishing uncertainty and com-
plexity. Traditional methods have apparent defects in dealing
with highly complex systems and uncertain problems. Rapid
development of AI in recent years provides a new way to ana-
lyze and control SG. Deep learning (DL) can realize fitting of a
highly complex system through a deep neural network to make
effective classification and predictions. Moreover, reinforce-
ment learning (RL) and deep reinforcement learning (DRL)
have certain advantages in dealing with control problems with
uncertainty. This section summarizes typical applications of
AI in SG and discusses them from the perspective of EI.

A. Load/Renewable Energy Generation Forecasting
Predicting uncertain energy objects at different levels is

crucial to reasonably arranging a power generation plan. Many
studies have applied different DL to load or renewable energy
generation forecasting. For load forecasting, [63] proposed a
multi-scale recurrent neural network (RNN) to extract different
levels of features and then learn from these features. Ref. [64]
used the enhanced green Wolf optimizer to automatically
architecture CNN. In addition, a few studies focus on demand
forecasting at the individual building level and apply vari-
ous DNNs, such as RNN-gate recurrent unit [65], unshared
convolution-based deep learning [66], etc.

Renewable energy generation has characteristics of high
uncertainty and intermittence, so its prediction is difficult.
ML methods applied to renewable energy generation fore-
casting include neural networks [67]–[69], support vector ma-
chine [70], (boosted) decision tree [71], and gaussian process

regression [72]. For long-term wind power forecasting, a
wind power forecasting model was proposed in [73] using a
tree-based learning algorithm. A robust spatio-temporal deep
learning framework based on long short-term memory (LSTM)
and entropy was proposed in [74] to deal with possible data
pollution of photovoltaic (PV) measurement data. This method
can predict PV output for multiple regions and horizons at the
same time.

Models constructed in the above studies all require sig-
nificant computational resources, and centralized computing
would overstrain servers. However, load and new energy are
naturally distributed forecasting targets, and each load or new
energy field can be used as an edge computing object for
EI applications. Application of EI allows for better resource
utilization and less data communication for load/renewable
energy generation forecasting.

B. Demand Response

Demand response is the change made by users to coordinate
balance of energy supply and demand. How to predict and
control energy flexibility is the key to realizing demand re-
sponse. Regarding flexible load identification, [75] used neural
network-integrated particle swarm optimization to identify and
predict flexibility. Furthermore, researchers in [76] leveraged
RNN to classify users. Demand response by controlling load
is a high-dimensional control problem with randomness and
partial observation, suitable for RL/DRL applications. [77]
applied regular RL to resident demand response. Subsequently,
a dueling deep Q network framework was proposed in [78]
to optimize demand response under time of use tariff and
variable electricity consumption patterns. Moreover, [79] used
actor-critic to optimize demand response accounting for un-
certainties in load demand. To coordinate demand response
of different regions, [80] proposed a novel cooperative and
decentralized reinforcement learning method, dubbed extended
joint action learning, and analyzed advantages of this method
compared with other centralized learning. Although the above
methods are effective in achieving demand response control
of loads, response time is prolonged during centralized cal-
culations when achieving online control, which affects the
control effect. For this application scenario, which is sensitive
to communication time, application of EI can significantly
reduce communication time of online model inference.

C. Condition Detection of Electrical Device

In SG, vast volumes of measuring devices for condition
monitoring have been installed. Based on data collected by
these devices, state and characteristics of the devices can be
abstracted and extracted by using deep learning, and then these
characteristics can be learned to realize prediction of device
abnormalities, vicious attacks, fault conditions, etc. At present,
ML and DL are mainly utilized to detect status of PV ar-
rays [81], wind turbines [82], rotating electrical machines [83],
transformers [84] and transmission lines [85]. An improved
attention-octave convolution structure was proposed by [86]
for fault detection of wind turbine converters. [87] compared
a variety of ML algorithms and proposed a comprehensive
detection and diagnosis system to evaluate impact of different
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algorithms on wind turbine fault diagnosis. Moreover, there
are studies on using CNNs for deteriorated porcelain insulator
detection of transmission lines [88], RNN for transformer fault
diagnosis [89], etc. In the process of condition monitoring, a
large amount of data is generated, which consumes a lot of
resources for storage and processing. EI uses EC resources to
complement cloud computing, enabling storage, processing,
training and inference of condition monitoring data to be
deployed at the edge, making utilization of resources more
rational and efficient.

D. Microgrid Energy Management

Since the microgrid contains dynamic and variable objects
such as renewable energy, varying loads, energy storage, and
electric vehicles, its operation and control face significant
challenges. AI algorithms have some advantages in dealing
with these uncertain variables. To find optimal or approx-
imate optimal solution for dynamic energy optimization of
the microgrid, an energy management system was proposed
in [90] by combining DL and an RL framework for multi-
microgrid. Considering power flow equations and other oper-
ational limits, [91] presented a constrained multiagent policy
learning method for optimal energy management of networked
microgrids. For planning and operation of energy storage in
microgrids, an RL method for controlling charge and discharge
cycle of different energy storage devices was proposed in [92].
Note there are enormous amounts of control objects in the
microgrid, some studies leveraged distributed control with
multiagent learning to realize collaborative optimization [93],
[94]. Although the above control methods are distributed,
allocation of computational resources for model training and
inference is still centralized. EI can allow for complete decen-
tralization of model training and inference, making rational
use of the limited resources available in the microgrid.

E. Power System Analysis and Control

Power system analysis and control are based on numerical
calculation of physical models with certain assumptions and
simplifications, so traditional analysis methods are difficult to
predict and control accurately. Data-driven AI methods can
realize model-free analysis and control through data learning.
For transient stability assessment (TSA), an LSTM network
was built in [95] to form a time-adaptive TSA system. Re-
searchers in [96] transformed rotor angle into RGB pictures
and constructed an online transient stability assessment system
using CNNs. Besides, deep belief networks (DBNs) [97]
and improved CNN-based orthogonal weight modification
algorithms [98] have also been applied to TSA. In terms
of prevention control, [99] proposed a deep belief network-
enabled surrogate modeling for fast preventive control. [100]
introduced a novel approach for transient-stability preventive
control (TSPC) using graph CNN and transfer DRL. The aim
is to tackle the challenges associated with the non-convergence
issues observed in conventional optimization algorithms and
the sluggish training pace of artificial intelligence algorithms
when applied to TSPC. Taking into account the model’s
adaptability to diverse structures and grid configurations, [101]
developed an automatic voltage control approach tailored for

differential power grids. This method leverages transfer learn-
ing and DRL techniques, showcasing its ability to maintain
high performance without requiring additional training, even
when structural alterations occur. For emergency control, a dy-
namic braking and low-voltage load shedding control measure
with DQN was proposed in [102]. This method can effectively
maintain voltage stability and rotor angle stability of the sys-
tem. To realize coordinated control of different regional power
grids, [103] and [104] developed cooperative methods based
on multi-agent deep reinforcement learning for load frequency
control and voltage control of the multi-area power system.
The power system has many controllable devices, models
constructed are complex, computational resources required for
training are high and real-time responsiveness of the control
system is required. Application of EI to the above research
allows coordination of computational resources in the power
system and enhances responsiveness of the control system.

F. Cyber Security

With continuous integration of ICT in the SG, measurement
and control of SG have been greatly improved. Nevertheless,
it also increases risk of malicious attacks on the system,
where false data injection (FDI) brings challenges to system’s
stable operation. Identifying and eliminating erroneous data
is the key to solving this problem. Topology attacks were
monitored by DRL in [105], and vulnerability of the system is
analyzed. For detection of power stealing behavior, CNN was
used in [106] to monitor FDI and power stealing behavior in
real time. In addition, [107] utilized real-time measurement
data obtained by PMUs to monitor degree of data damage
through semi-supervised DL. To deal with cyber-attacks under
different modes and establish prevention mechanisms, [108]
proposed scenario-based two-stage spark models for cyber-
attack. Moreover, [109] developed a multi-agent deep rein-
forcement learning algorithm for automatically discovering
weak points in traditional schemes, and can identify suscepti-
bility of most advanced detection schemes to multiple different
coordinated FDI attacks on distributed communication links.
AI-based approach is effective in monitoring cyber-attacks, but
since model training and inference are based on centralized
computing, frequent data communication leads to an increased
risk of data leakage. EI can not only reduce the number of
data communications, but also decrease the possibility of data
leakage during model training and inference through model
encryption.

IV. EC APPLICATIONS IN SG

According to characteristics of EC, its applications in SG
include support for real-time, intelligent coordination, intel-
ligent cognition, optimal design/resource utilization, privacy
and security, and so on [110].

A. Support for Real-time

For application of supporting real-time, a distributed
distribution-network fault detection method based on EC was
proposed in [111], which can realize timely perception and
real-time response to distribution network faults, accelerate
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distribution network fault processing speed, shorten outage
time and improve power supply reliability and user satis-
faction. Besides, [112] developed an EC-based fault location
method for distribution networks with both homogenous and
hybrid feeders. To overcome shortcomings of cloud computing
mode in power systems, [113] proposed an EC system based
on IoT SG. With help of the EC paradigm, SG based on IoT
realizes connection and management of a large number of ter-
minals, provides real-time analysis and processing of massive
data, and promotes digitization of SG. For developing a low
latency detection scheme of high impedance fault detection,
a sustainable deep learning method with an edge device was
proposed in [114], which can achieve high throughput, reduce
latency and offload network traffic. In order to integrate the
EC framework deeply with the infrastructure of the power
system, [115] processed wide-area protection information into
smaller encapsulated knowledge and transmitted it at different
edge nodes. Fault incidence of each node is established and a
matrix calculation is used to obtain diagnostic values for fault
location, thus saving computational and communication costs.

Although EC can reduce communication latency to some
extent in the above literature, computing power of edge devices
is weak and the practical feasibility of applying AI models
directly to EC devices is poor. Compression or splitting of
models in EI technology is beneficial to solving the above
problems.

B. Intelligent Coordination

In terms of intelligent coordination, [116] proposed a peer-
to-peer network-based EC-based SG model in that peer-to-
peer networks were applied to the EC layer, improving energy
resources management efficiency and utilization of renewable
energy. In addition, researchers in [117] developed a Raspberry
Pi-based EC hardware prototype that coordinates agents in a
low-voltage SG by solving a distributed optimal power flow.

EC is also flexible in coordination of device, edge and
cloud resources. EC can adaptively optimize the way in which
computing resources are composed according to requirements
of the application and characteristics of computing resources.
A three-layer cloud-fog computing framework of energy man-
agement was proposed in [118] for networked microgrids.
Reconfiguration techniques and cloud-fog computing frame-
work are used to quickly change topology of networked
microgrids and free up line capacity to avoid feeder failures.
In order to prevent the energy management system from being
unable to recover in time due to a single point of failure of
the microgrid, [119] developed dynamic economic scheduling
based on cloud and EC framework, so the scheduling process
can be carried out on the remote cloud computing platform
and renewable energy inverter chip, respectively.

C. Intelligent Cognition

Compared to AI under centralized computing, EC can
provide more fine-grained features for AI and achieve higher-
precision cognition. EC can act as a bearer for multi-agents in
AI, enabling efficient cognition of agents to realize distributed
control. Microgrids contain multiple tunable power compo-
nents, complicating optimization of power systems. EC-based

adjustment methods can efficiently use EC resources to pro-
vide distributed intelligence solutions. [120] proposed an EC
and reinforcement learning-based power control framework to
control power devices, achieving goals of fast response and
local autonomy. Security situational awareness is an online
approach to providing security services for power system
operations. [121] introduced EC between terminal and cloud
to address drawbacks of centralized computing and proposes a
deep reinforcement learning algorithm for EC based on multi-
agent deep deterministic policy gradients to analyze security
situational awareness for smart grids with minimal processing
costs.

On the other hand, EC can enhance status identification ca-
pability of terminal devices. To solve the problem that existing
intelligent building based on optimization participates in the
control of demand response with a high cost of computing and
storage, [122] proposed a cost-effective edge-cloud integration
solution using reinforcement learning. Reinforcement learning
uses an agent construction model that automatically learns
from construction of operational data to learn optimal control
strategy on the cloud infrastructure, and then distributes the
strategy to edge devices for execution, which improves exe-
cution efficiency. In order to minimize resource consumption
of the SG, [123] utilized EC to predict load, and proposed an
intelligent resource management scheme and load forecasting
model based on task unloading, improving resource allocation
capacity of the SG.

Nevertheless, existing EC-related research fails to address
coordination of model training and EC resources in depth. For
this problem, EI provides solutions for how to deploy model
training and inference on different EC resources.

D. Optimal Design/resource Utilization

With regard to optimal design/resource utilization, [124]
discussed possible applications of EC in strengthening dis-
tributed optimization and control of SG, including power
system asset management, distributed charging scheme and
microgrid protection. Furthermore, [125] developed an EC
framework to balance content generation of cameras in SG.
The method could allow SG to incorporate devices that gen-
erate visual content by efficiently utilizing available resources
and achieving highest Quality-of-Service.

To overcome defects of portable devices, such as large
power consumption, short battery life, and intolerable de-
lay, [126] proposed a forward central dynamic availability
method. System level battery model is established by evaluat-
ing energy dissipation of IoT devices. Considering advantages
of EC in energy efficiency, [127] proposed a massive multiple-
input-multiple-output mobile EC framework for SG. Besides,
a sequential iterative optimization algorithm was developed
to jointly optimize offloading rate and transmission power to
minimize energy consumption of SG.

E. Privacy and Security

Security can be divided into physical security and cyber
security [3]. From the perspective of physical security, EC
enhances resilience of SG in two ways [128]. On one hand, EC
can support emergency communication and critical computing
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tasks to ensure basic system operation after a power system
failure. On the other hand, after a communication system
failure, the SG can use EC to transfer affected tasks to
operational devices, thus avoiding cascading failures caused
by large-scale communication failures. [129] explores benefits
of EC for system security by using automatic voltage control
as an example of how EC can guarantee security of the control
process.

From the perspective of cyber security, EC enables the
fundamental tasks of security monitoring and cyber security.
Demand response management is a fundamental requirement
for an efficient and reliable SG environment. To cope with cy-
bersecurity issues under demand response management, [130]
proposed an EC demand response management authentication
scheme that achieves system resilience against various cyber-
attacks. The EC framework also poses security risks to the
SG. [131] developed a multi-state heterogeneous security
architecture for EC-based SG to secure critical services of the
SG. The system introduces intelligent scheduling, intelligent
decision-making, and attack management. A dynamic schedul-
ing algorithm based on actuator credit and heterogeneity was
also proposed to improve defensive capability and security of
the system.

Although EC plays a certain role in improving system
security, when AI is applied to EC, data transmission of the
model in the process of training and inference is still faced
with the problem of data security. In this situation, EI-related
technologies are required to further encrypt data to ensure data
security.

V. APPLICATION POTENTIALS FOR EI IN SG
A. Application scenarios of EI for SG

Based on the above advantages of EI and application
scenarios of AI in SG, this paper proposes four SG application
scenarios that can effectively take advantage of EI, e.g.,
decentralized-dominant applications, latency-sensitive appli-
cations, resource-intensive applications, and security applica-
tions. Specific scenarios in SG and enabling technologies for
these four application scenarios are shown in Table III.
1) Decentralized-Dominant Applications

EI is typically characterized by a decentralized comput-
ing model and can therefore be applied in decentralized-
dominant scenarios. Load and renewable energy resources are
naturally predictive objects in a distributed way and are typ-
ical decentralized-dominant application scenarios. Federated
learning mentioned in Section II-C is leveraged to integrate
models of different edges into a global model. For load

forecasting, each edge node can be deployed on different
types of loads, and a load forecasting model suitable for
various load types can be formed by federated learning. For
prediction of renewable energy generation, each node is de-
ployed in renewable energy generating stations with different
distributions. Through federated learning, a comprehensive
prediction model suitable for different distributions can be ob-
tained [132]. The global model brings together characteristics
of sub models with different edges and has high robustness.
Nevertheless, effect of the global model depends on edge data
distribution [133]. If distribution differences of edge data are
too significant, effect of the global model will be reduced.
With development of the power IoT, there are more and
more computing resources at power device end, which will
also form a decentralized-dominant application scenario. In
addition, distributed control has the advantage of decentraliza-
tion because of its decentralized control mode. Training and
inference of each agent in distributed control can be deployed
on EC resources, forming complete decentralization. In the
microgrid, distributed control is often used for control of dis-
tributed generation devices, so microgrid energy management
is also a decentralized-dominant application scenario. From the
perspective of hardware, because data structures of different
edge devices may be heterogeneous, heterogeneous computing
needs to be introduced to realize interaction of data with
different structures.
2) Latency-Sensitive Applications

In view of the advantages of EI in time delay, EI can
be applied to the latency-sensitive scenario of SG, including
various operation control scenarios and online actions and
responses in SG. Both voltage and frequency control and
online demand response need low latency to ensure fast
dynamic response and system performance. Taking demand
response as an example, as for model inference, demand
response has high requirements for communication quality.
However, communication has certain uncertainties, such as
noise, data loss, and latency. If model inference is implemented
on the cloud, and communication quality is poor, load side
cannot respond to supply side in time. Moreover, the com-
munication path from the cloud to device is prolonged. If the
model inference is deployed on the device or edge, reliability
of inference will be greatly improved due to reduction of
communication requirements, and latency of inference will
also be reduced [27]. Due to high demand for low latency in
latency-sensitive scenarios, model inference can be done using
model partition and model early exit to reduce complexity
of the model run by a single-edge device. To reduce latency

TABLE III
APPLICATION SCENARIOS AND ENABLING TECHNOLOGIES FOR EI IN SG

Application scenarios Specific scenarios in SG Enabling technologies
Decentralized-dominant
application

Load/renewable energy generation forecasting, condition
detection of electrical device, microgrid energy management

Federated learning, input filtering, heterogeneous computing

Latency-sensitive
application

Demand response, condition detection of electrical device,
power system analysis and control

Model partition, model early exit, edge caching, ML
processors, in-memory computing

Resource-intensive
application

Condition detection of electrical device, microgrid energy
management

Model splitting, transfer learning, model compression, model
early exit, model partition, lightweight function libraries

Security application Cyber security Federated learning, model splitting
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in the inference process, edge caching can be used to buffer
part of the inference and achieve fast inference online. From
the hardware perspective, to further improve inference speed,
ML processors and in-memory computing can be leveraged to
accelerate online inference.
3) Resource-Intensive Applications

In SG, billions of devices need to detect their status in
real time. If their models are all trained on the cloud server
during model training, it will lead to excessive computing
pressure on the cloud server. Putting training on the device
will also lead to excessive energy consumption due to device’s
capacity limitation. In this case, the hybrid mode mentioned
in Section II-C can be adopted to assign some training tasks
to the cloud and another part to the edge, which can alleviate
computing pressure of the cloud and save energy consumption
on the device [15]. However, this training framework also
has some defects, e.g., increasing communication between
models deployed in the cloud and the edge. Therefore, when
designing the hybrid training framework, we should consider
economy, reliability, and efficiency comprehensively to obtain
the optimal cloud-edge-device cooperative training scheme.
Resource-intensive scenarios in SG include condition detection
of electrical devices and Microgrid energy management. Mod-
els built in these two scenarios are very complex, difficult to
train, and resource consumption is large. To reduce complexity
of model training, model splitting, transfer learning, and model
compression can be used to decrease computing resource
consumption of model training under a single device. For
online inference, model early exit and model partition reduce
complexity of model inference. In addition, calculation load
can be further reduced by using lightweight function libraries.
4) Security Applications

In the inference process, failure of communication system
will cause false operation of a large-scale cloud-based AI
model. However, for EI, characteristics of local communi-
cation make it avoid large-scale faults and can add nearby
computing resources to achieve self-healing [134]. In addition,
cyber-attacks mainly come from theft and destruction during
data communication. If inference of the AI model is deployed
on the cloud, the cloud and device need to communicate
continuously, aggravating the possibility of cyber-attacks. If
the training and inference of the AI model are deployed at the
edge and device, communication demand will be greatly re-
duced, so possibility of data being attacked will be decreased.
Nevertheless, the decentralized training framework still needs
a large amount of communication. In this case, data encryption
methods should be introduced, such as adding noise to the
data [135]. All of the above processes can be implemented
through federation learning, a technique that not only enables
decentralized deployment of models but also adds model and
data encryption to model interactions. In addition, prevention
of data leakage can also be achieved by model splitting.

B. Latest Advance of EI for SG
1) AI on Edge

Although many studies have applied AI to the edge of
SG, there are few studies on how to deploy AI at the edge
optimally.

Concerning load/renewable energy generation, [136] pro-
posed a unified edge training framework combined with a
light GBM algorithm for short-term prediction of PV output
power. Experiments show the framework can save storage
resources and energy consumption. Furthermore, a federated
probabilistic forecasting scheme of solar irradiation was pro-
posed in [132] based on deep learning, variational Bayesian
inference, and federated learning, and strength of applying
federated learning to uncertain prediction problems was ver-
ified. A deep learning algorithm was proposed in [137] to
optimize online scheduling strategy of virtual power plants
(VPPs). EC framework is designed to deal with randomness
and large space characteristics of VPPs. The above research
only applies AI to the EC framework or federal learning
directly, without considering heterogeneous information and
data leakage. Heterogeneous computing can be used to make
EI applications more versatile.

When it comes to condition monitoring, a transfer learn-
ing detection method under the framework of cloud-edge
cooperation was proposed in [138] to detect high-impedance
faults. The edge server extracts and updates features according
to synchronous measurement value provided by the phasor
measurement unit. Then, all features from different distribution
networks are integrated to form a unified cloud CNN model.
For detection of high voltage devices, [139] proposed a data-
driven framework for electrical device recognition based on in-
frared image. An edge-oriented generative adversarial network
was developed. The edge features of electrical devices are
used as a priori information to generate real infrared images.
Although the above study makes full use of edge information
for EI model training, it does not consider difficulty of model
training due to limited EC resources. In order to shorten model
training time, model splitting and model compression can be
leveraged to reduce model complexity.

For detection of security operation, an abnormal target
detection method combining cloud/edge fusion framework and
deep learning was proposed in [140]. In view of the impact of
massive heterogeneous power terminals on security situational
awareness (SSA), [121] took advantage of EI to introduce
edge computing between device and cloud. Furthermore, a
deep reinforcement learning algorithm-based edge computing
paradigm was proposed. This algorithm is utilized to analyze
SSA with minimum detection error rate of SG with minimum
processing cost. For power system control, [141] proposed a
local power loss estimation approach for frequency emergency
control. Distributed load coordination is realized by using EI
and IoT technologies. This method can make distributed load
provide fast and accurate frequency support for the SG. Nev-
ertheless, the real-time requirement of frequency emergency
control is high, but the above literature does not consider
impact of communication delay in the process of EI online
inference. Model partition and model early exit can be used
to reduce complexity of model inference, and edge caching
can be used to realize information buffering to ensure fast
response of online inference.

Energy management within and across microgrids is com-
plex due to many uncertainties contained in microgrids, such
as renewable energy resources. [142] proposed an open frame-



1634 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 9, NO. 5, SEPTEMBER 2023

work that uses machine learning algorithms at the edge to
predict energy consumption and production for energy man-
agement of smart microgrids. The framework provides good
results in terms of scalability and prediction accuracy. [120]
developed a power control framework combining EC and
reinforcement learning, which utilized edge nodes to sense
network state and control power equipment of microgrid to
achieve fast response and local autonomy.

Federated learning is one of the typical techniques of
EI training, as introduced in Section II-C. For application
of federated learning, [143] proposed a distributed machine
learning framework to detect intrusion of false data on PV DC
/ DC and DC / AC converters. The framework combines fed-
erated learning to support cross-device collaborative training
without sharing raw data. Besides, [144] introduced federated
learning into fault prediction, and the prediction model can be
learned at each node through mutual communication among
nodes. This strategy can achieve parallel performance and
further reduce complexity of the prediction model. At present,
application of federated learning in SG is in the prelimi-
nary exploration stage. Data distribution, communication cost,
privacy protection, and personalized processing can also be
considered in construction of federated learning.
2) AI for Edge

AI for edge utilizes AI to optimize resource allocation of
EC. Usually, the resource allocation optimization model is
established first, and then the AI algorithm is used to solve
it. For computational tasks at multi-access edge computing
(MEC) energy supply in the microgrid, [145] provided an op-
timization method of energy supply strategy. First, the problem
is formulated as an optimization problem. Then the optimiza-
tion problem is divided into two subproblems: energy-efficient
tasks assignment problem and energy supply plan problem,
which are solved by density-based spatial clustering and DRL,
respectively. Simulation results show the performance of MEC
is significantly improved under a high-precision energy supply.
Subsequently, [94] leveraged a stochastic multiagent game
that ensures a joint-strategy Nash equilibrium to analyze risk-
aware energy scheduling problems and proved convergence
of the proposed model. This approach mitigated dimensional
catastrophes in state space and selected the optimal strategy
among agents for risk-aware energy scheduling problems.

Table IV summarizes recent advances and EI in SG. As can
be seen from the table, application of EI in SG is still at the
stage of applying AI algorithms to EC only, and little research
has been conducted using EI-related techniques introduced in
Section II-C. Considering future needs of SG for real-time,
high efficiency, and security, there is still much room for
development of EI in SG research.

VI. CHALLENGES AND FUTURE DIRECTIONS OF EI
APPLYING TO SG

Although EI shows excellent potential in SG and may
promote rapid development of AI technology, it still faces
substantial challenges in further research and implementation.
According to the requirements of SG, this paper analyzes
possible challenges faced by EI applying to SG from aspects of
reliability, robustness, efficiency, sustainability, economy, and
security, as shown in Fig. 5, and points out research directions
in the future.

A. Challenges

1) Reliability
Although EI reduces data communication between device

and central server, increased complexity of model training and
inference reduces reliability of model operation. Therefore,
reliability of model communication is a key consideration
when applying EI. Unlike AI model reliability, EI-related
reliability focuses on communication reliability of the model.

In terms of decentralized training, federated learning needs
continuous communication between central server and each
sub server to update the global model. During the communi-
cation process, if communication quality is not good enough,
it may lead to incomplete model updates, affecting the model’s
training effect. In the process of model inference, whether
for model compression or model early exit, model’s integrity
decreases, which may output inaccurate results during model
inference. In addition, after model partition, model inference
needs to be executed in different places, resulting in increased
communication within the model and posing a threat to stable
operation of the model.

Decentralized training composed of federated learning and
the collaborative inference achieved by model partition in-
creases communication within the model, which may reduce

TABLE IV
LATEST ADVANCE OF EI FOR SG

Application scenarios Specific scenarios in SG Ref. Year Technologies

EI for SG

Decentralized-dominant application
PV forecasting [97] 2021 Edge training framework + lightGBM algorithm
PV forecasting [103] 2020 Variational Bayesian inference + federated learning
VPP scheduling [104] 2020 EC framework + deep reinforcement learning

Latency-sensitive application
Security operation detection [107] 2020 Cloud/edge fusion framework + deep learning
Security situational awareness [108] 2021 Deep reinforcement learning algorithm-based EC
Frequency emergency control [109] 2021 Decentralized framework + cyber-physical architecture

Resource-intensive application

High impedance faults detection [105] 2020 Cloud-edge cooperation + transfer learning
Electrical device recognition [106] 2020 Edge-oriented generative adversarial network
Microgrid energy management [110] 2021 Machine learning algorithms at the edge
Microgrid energy management [111] 2021 EC framework + reinforcement learning

Security application False data detection on PV [112] 2022 Federated learning + deep learning
Fault prediction [113] 2021 Federated learning + LSTM

AI for Edge Energy supply with microgrid [114] 2019 EC + deep reinforcement learning
Energy supply with microgrid [115] 2021 EC + multiagent deep reinforcement learning
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Fig. 5. Challenges and future directions of EI applying to SG.

model’s reliability. Therefore, when decentralized training and
model partition are applied to the AI model of SG, ensuring
high reliability of internal communication of the model be-
comes a key consideration in the implementation process.
2) Robustness

When implementing EI, many EI-related techniques are
heavily influenced by parameters and environment, so robust-
ness is one of the challenges that EI needs to face. Compared
to robustness of the AI model itself, robustness of EI needs
to consider not only impact of model parameters but also
influence of hardware environment.

Although federated learning can improve robustness of the
model to a certain extent, application scenario of federated
learning is narrow, which is only suitable for training of deep
neural network models in a distributed environment. Moreover,
federated learning has several requirements for number of
users’ devices. If the number is too small, the model’s accuracy
will be reduced, and training time of the model will increase.
For model inference, the optimal partition point of model
partition is suitable for a specific model. If the model is
replaced, calculated model partition point may not be optimal.
Therefore, a better training and inference mode is desired to
design according to the actual application scenario to realize
the high robustness of the model in training and inference.

In addition, due to a large number of heterogeneous devices
using different protocols, compatibility between devices faces
challenges. To improve compatibility between devices, when
building the framework of EC, it can support compatibility
of communication. These frameworks can be open-source and
show interaction between edge devices through the interface.
3) Efficiency

Due to limitation of computing power of the edge server, if
all training and inference of the models are deployed on the
local server, it will inevitably lead to the problem of too slow
computing speed. If the model training framework is the cen-
tralized framework, computing pressure on the central server
remains unresolved. Therefore, how to rationally allocate edge
computing resources to make the model run more efficiently
is the challenge EI needs to face when applied. To avoid this
problem, on one hand, training and inference can be split

on the cloud, edge, and device to form a mutual cooperation
mode. That is to say, the hybrid framework may be a preferred
option. However, how to reasonably allocate computing tasks
to cloud, edge, and device is another challenge. On the other
hand, model compression or model early exit can be used to
reduce model’s complexity and improve model’s inference ef-
ficiency. However, when implementing decentralized training,
communication between sub-models and global models and
number of sub-models will affect training efficiency. The more
the sub-models, the higher the training efficiency, but the more
complex the communication. In addition, computing capacity
and storage capacity are two other significant limitations.
Performance of the AI model and limitation of computing
resources need to be weighed. Therefore, the margin of model
execution complexity should be given if the model is deployed
with limited computing resources.

For a complete computing task, multiple AI models may
be included. Due to complexity of the model and crowded
utilization of resources, it is difficult for EI to transfer these
tasks. In this case, multiple AI models can be deployed on dif-
ferent EC servers to realize modular operation so each server
can realize lightweight computing. Moreover, the modular
computing method also helps build various SG tasks quickly.
4) Sustainability

In addition to sustainability of AI model, sustainability of
EI mainly considers sustainability of EC resources supporting
AI computing. Wide application of EI in SG requires many
servers to be configured at the edge. Maintenance, renovation,
and replacement of these devices is a considerable project. Due
to the heterogeneity of EC resources, it is difficult to unify the
maintenance scheme of devices. Besides, the scalability of EC
resources is also one of the critical factors for sustainability
of the system. However, while establishing an extensible EC
framework, we have to provide reliable support for more
devices and networks, bringing more incredible difficulty
to device maintenance. Sustainability of EI is therefore an
unavoidable challenge in construction of the EC framework.

Sustainability in EI is also reflected in high efficiency of
devices and utilization of renewable energy resources [146].
Energy-efficient design [147], energy harvesting [148], and
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efficient use of renewable energy sources [149] should be a
focus on to realize sustainability of EI in SG. Energy harvest-
ing refers to looking for energy from the outside to support
operation of some small devices, realizing high efficiency of
devices.
5) Economy

When constructing the EI framework, economy is the key
assessment indicator in system planning. Economy of EI is
mainly reflected in investment of EC devices and energy
consumption of EI operation. Although model training and
inference on the edge/device can reduce central server’s com-
puting pressure and energy consumption, deploying multiple
servers at the edge increases cost of the initial investment. In
addition, model inference on edge/device increases local en-
ergy consumption and puts some pressure on local computing
tasks and communication bandwidth. Therefore, it is crucial
to predict local computing demand in the planning stage of
configuring servers on edge. Reasonable prediction can avoid
waste of initial investment. In addition, it is necessary to
manage computing, storage, and communication resources of
different edge devices effectively in SG. The resource man-
agement strategy can optimize comprehensive performance of
the system with acceptable latency, energy consumption, and
capacity.
6) Security

EI still faces challenges from both physical and cyber
security perspectives. Different from security problems of AI,
security of EI is reflected in security problems caused by its
distributed structure and different computing resources.

Although EI enhances security of the system by reducing
communication, it still faces several challenges. Geographi-
cally distributed computing resources improve the possibility
of physical attacks on the system. In SG, due to the large
number of edge devices, the leave one out (N-1) failure rate
of all the edge devices is high. Therefore, how to reduce
failure rate of distributed EC devices is a direction worthy
of discussion.

In terms of cyber security, there is no unified data security
protocol under the EC framework. Different edge devices
may follow different protocols, which increases risk of data
leakage in the process of data transmission. Therefore, how to
formulate a set of unified data security protocols for EI in SG
is a valuable topic.

B. Future Directions and Potential Works
According to the above possible challenges faced by ap-

plying EI to SG, future directions and potential works can be
summarized as follows.
1) Enhancing Reliability and Robustness of EI Learning

• Ensure high reliability of internal communications of the
model when decentralized training and model partition
are applied.

• Find a better training and inference mode according to the
specific application scenario to realize high robustness.

2) Improving Compatibility and Scalability of EC Devices
• Improve compatibility between devices when building the

framework of EC and EI.
• Enhance scalability of EC resources.

3) Allocating EC Resources Reasonably and Flexibly
• Allocate computing tasks to cloud, edge, and device

reasonably.
• Give the margin of model execution complexity when the

model is deployed with limited computing resources.
• Deploy multiple AI models on different EC servers to

realize modular operation.
4) Optimizing Energy Efficiency and Performance of EI

• Develop energy-efficient design, energy harvesting, and
efficient use of renewable energy sources.

• Predict local computing demands in the planning stage
of configuring servers on edge.

• Optimize comprehensive performance of the system with
acceptable latency, energy consumption, and capacity.

5) Promising Security of EC Device and EI Learning Process
• Reduce failure rate of distributed EC devices.
• Formulate a set of unified data security protocols for EI

in SG.

VII. CONCLUSION

Driven by boosting of AI and IoT, EC, which can transfer
computing tasks from cloud to edge, is rising rapidly. The
combination of EC and AI promotes the birth of EI. With
a growing body of IoT devices connected to the SG, EI has
great application potential in the SG. In this survey, we aim to
discuss application advances and potentials for EI in SG. First,
we give an in-depth insight into EI in SG, including definition,
characteristics, frameworks, and related technologies. Next,
we summarized a comprehensive review of AI and EC in
SG. Further, we propose application advantages of EI in four
scenarios, which provides a reference for further research.

Since EI technology is still in the initial development
stage and has few existing applications in SG, it faces many
challenges in the next exploration and practical application.
According to needs of future development of SG, we clarify
challenges faced by application of EI in SG from the aspects of
reliability, robustness, efficiency, sustainability, economy, and
security, and point out improvements and research directions
that can be made in the future.
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