Abstract—The paper presents an innovative GNSS fault detection and exclusion approach for the adoption of satellite localization in the rail sector. Current global integrity monitoring systems cannot guarantee the safety level needed for such applications as train control where Tolerable Hazard Rate in the order of 10^{-9}h is required. A new method, named 2-tiers, enabling to integrate local augmentation systems and global augmentation infrastructures, is presented. It is based on the comparison of single differences residuals among satellites for detecting signal in space faults and double difference residuals among local augmentation stations and SBAS RIMS for detecting reference stations faults. GPS SIS faults described in literature and real GNSS raw data recorded on a train are taken into account. The present work reports the performance analysis for the 2-tiers approach carried out during relevant European projects. A Test-Bed architecture has been developed through the implementation of the algorithm in real-time on a local augmentation operational centre. Relevant performances have been tested on a rail track for validating the algorithm in real operative conditions. Significant results of the analysis are reported for SIS integrity assessment only.

Index Terms—Integrity, railway signaling, safety, train control, augmentation systems, Fault Detection and Exclusion.

I. INTRODUCTION

According with [1], [2], [3], the introduction of GNSS (Global Navigation Satellite Systems) technology for localizing a train and the adoption of IP (Internet Protocol) based communications are the next frontiers for the European standard for train control: ERTMS/ETCS (European Railway Traffic Management System / European Train Control System). Major benefits of such innovations rely in the possibility to reduce the maintenance and operational costs without losing in terms of system safety. These considerations led to the design of cost-effective solutions based on said technologies for the modernisation of the regional low traffic lines that in Europe represent a big market slice [3]. The big challenge in the adoption of the GNSS technology for train localization is represented by the fulfillment of the SIL 4 (Safety Integrity Level) requirements defined by the Comité Européen de Normalisation Électrotechnique (CENELEC). For this scope, the GNSS Integrity concept has to be adapted to the rail context and relevant requirements have to be met.

The target is to achieve a Tolerable Hazard Rate (THR) less than 10^{-9} hazard/(h x train), the same total hazardous failure rate of the traditional solution based on mechanical odometers and transponders deployed along the tracks at georeferenced points, named balises, [1], [5], [6], [7], [27], [38]. An important issue concerns SIS (Signal In Space) integrity assessment. A train location computed on the basis of measures either affected by satellite faults or strongly prejudiced by anomalous atmospheric propagation or local effects like multipath can lead to a Misleading Information (MI). A MI happens when the magnitude of the position error exceeds the confidence interval associated to the nominal THR, computed by the receiver, and addressed as Protection Level (PL) in avionics, without a timely warning. Therefore, the use of an Augmentation and Integrity Monitoring Network (AIMN), able to detect and to notify to the On-Board Units (OBU) the presence of hazards, is needed. For the aviation sector, Wide Area Augmentation Network (WAAN) and Local Augmentation Network (LAN) systems have been developed. Satellite Based Augmentation Systems (SBAS) belong to WAAN while Ground Based Augmentation Systems (GBAS) to LAN class. Through the transmission of pseudorange measurements corrections and Integrity Monitoring (IM) messages, a high level of integrity can be achieved by the rover receiver. While through SBAS it is possible to achieve a THR in the order of 10^{-7} hazard/operation at regional/global level, GBAS is able to meet THR in the order of 10^{-9}hazard/operation (CAT-II and CAT-III or LAAS GSL D-F integrity requirements [18]).

This paper has been submitted on IEEE Transaction on Aerospace and Electronic Systems.

Cosimo Stallo is with Consortium RadioLabs, Corso di Italia, Rome, 00198, Italy, cosimo.stallo@radiolabs.it.

Alessandro Neri is with the Engineering Department, University of Roma TRE, Via Vito Volterra 62, 00146 Roma, and is also President of RadioLabs Consortium, Corso di Italia 19, Rome, 00198, Italy, alessandro.neri@uniroma3.it.

Pietro Salvatori is with Consortium RadioLabs, Corso di Italia, Rome, 00198, Italy, pietro.salvatori@radiolabs.it.

Roberto Capua is with SOGEI (Societé Generale de Informatica), Rome, Italy, rcapua@sogei.it.

Francesco Rispoli is with Ansaldo STS, Genoa, Italy, francesco.rispoli@ansaldo-sts.com.

0018-9251 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
In literature, the IM algorithms have been studied for both cases: Receiver Autonomous Integrity Monitoring (RAIM) [10], [11], [12], [13] and wide/local area Integrity Monitoring Network (IMN) [9], [14], [15], [16], [17]. In this paper, we will focus on IMN.

Current SBAS systems, like WAAS (USA) and EGNOS (Europe), provide augmentation data that allow to reach meter accuracy. Moreover, they monitor only a single frequency of the GPS constellation. Thus, to reach the submeter accuracy required by train control system configurations that rely on GNSS also for determining on which track the train is operating (track discrimination), augmentation networks with a denser set of Reference Stations (RSs) distributed on the area to be covered should be deployed [40]. In order to meet both accuracy and integrity requirements and reduce both capital and operational expenditure, several innovative architectures have been proposed [8], [9]. In particular, a 2-tiers architecture has been introduced in [17]. It is based on the joint use of an existing SBAS and an AIMN making use of low cost COTS (Commercial Off-the-Shelf) RS.

Through the integration of the Ranging and Integrity Monitoring Stations (RIMS) of the first tier, constituted by the SBAS, and the RSs of the second tier, it is possible to monitor, in a cost effective way, the integrity of both the Signal In Space (SIS) and the monitoring network itself, while computing the augmentation data. The dense network of the second layer allows to pave the way for high integrity NRTK (Network Real Time Kinematics) implementations. Furthermore, as in the NRTK case, a hot backup procedure can be guaranteed in case of single reference layer.

Starting from the theoretical approach carried out in previous work [17], a real augmentation network implementing the 2-tiers architecture has been deployed on the Sardinian railway testbed of RFI (the Italian Railway Infrastructure manager) and a test campaign carried out. To monitor integrity, this system implements a Fault Detection and Exclusion (FDE) algorithm which is based on:

- SIS FDE, based on the monitoring of single difference residuals among satellites;
- RS fault detection, based on the monitoring of Double Difference (DD) residuals between stations of the first and the second tier.

The relevant real-time integrity monitoring system module, named LIF (Local Integrity Function) has been implemented into GRDNet, an existing Italian local augmentation network that, before integration of LIF, provided augmentation without integrity.

LIF is in charge of implementing satellite, constellation and RS integrity monitoring based on the 2-tiers algorithm.

A performance analysis has been carried out in real rail operative scenarios. IM tests have been performed through real GPS fault cases studied in literature and injected on real GNSS raw measurement logged by the RSs of the monitoring network, and a receiver on a train during its rides along the Cagliari-San Gavino railway of the test-bed.

The performance analysis has been based on LIF functional, assembling, and integration tests on the field.

Raw data and injected faults have been fed into a performance analysis tool (VIRGILIO) [31], able to assess the integrity monitoring performance with respect to the target THR.

The tool generates the Stanford plot (e.g. [20]) and relevant availability, misleading and hazardous misleading statistics.

Input data for the functional test, containing relevant SIS fault cases scenarios, have been generated in two ways:

- real GNSS fault cases: they have been selected from GPS NANU and Galileo GSA fault records; RINEX (Receiver Independent Exchange Format) files for the relevant time interval of the analysis have been used for this scope;
- simulated fault cases: real GNSS measurements logged on the train, have been edited for injecting ephemeres and clock errors; ramp models for pseudorange errors have been also used for sensitivity analysis.

In this paper we report the assessment procedure and its results. In the assessment, a target THR = $10^{−9}$ hazard/(h x train) has been adopted. The results have shown that the application of the new IM method is able to detect fault cases, exclude relevant faulty satellites in an efficient way and to avoid MI. The paper is organized as follows. In section II, an overview of local augmentation techniques used for IM purposes is reported. In section III, the innovative IM algorithm is introduced. Section IV describes the adopted approach for the performance analysis and relevant test-bed architecture. Section V reports main conclusions of the work.

II. AUGMENTATION NETWORK ARCHITECTURES

In this section, we describe the main augmentation network architectures that have been proposed for the needs of train control systems. According to literature, an augmentation system can operate on a small, local, region or on a wider geographical area. The so-called Local Area (LA) Augmentation and Integrity Monitoring Networks (AIMN) belong to the first case [33], [34], while the Satellite Based Augmentation Systems (SBAS) belong to the WAANs [35]. A comparison of the performance that can be expected from the use of EGNOS and from the use of an AIMN based on low cost COTS receivers, for train positioning system can be found in [8]. As shown in Figure 1 where the configuration adopted for the comparison is reported, each train of the fleet is equipped with an OBU that receives data from the AIMN composed of a set of RSs and from a Track Area Location Server (TALS) that collects data from the RSs, processes them and produces the LA integrity and augmentation data for the OBU.

![Figure 1: Augmentation System Architecture SBAS-LAN Comparison](image-url)

The main difference between local and wide area network is...
in the fault detection capability. It is widely known how the LAN better mitigates the local effects like the atmospheric incremental delays, while the WAAN, thanks to the wider footprint, better compensates the global effects as the satellite ephemeris errors and clock offsets [17]. Starting by these two architectures, in [9], the authors defined a new system that we will refer to as “2-tiers” augmentation network.

Between the major benefit of such an approach, we can list:
i) the possibility to implement the second tier, whose aim is to provide a denser set of observations, by means of low cost RSs, whose health is monitored by comparing their observations with those of the first tier; ii) the possibility to detect both SIS faults and RSs failures mitigating the threats arisen by the monitoring network malfunctioning, in order to be compliant with the railway accuracy and integrity requirements; iii) the possibility to provide an integrity monitoring also for constellations not monitored by the first tier.

Figure 2 shows the 2-tiers functional architecture.

In this scheme the task of the TAAN-CC (Track Area Augmentation Network Computing Center) is to compute the augmentation data, containing integrity monitoring information, then format and send them to the OBU. Relevant messages contain:
- estimated probabilities of fault of constellations and satellites;
- estimated pseudorange measurements variances;
- constellation and satellite health masks.

Such messages have been proposed within the ERSAT project, following a Radio Technical Commission for Maritime Services (RTCM) like format ([23]). Such format proposal has also been presented to a RTCM SC-104 plenary meeting, within the framework of the “Integrity Monitoring for High Precision Applications” Working Group ([22]). The algorithm implemented in the TAAN-CC for the assessment of the SIS healthiness has been reported in [17]. It can be employed for both single tier and 2-tiers architectures.

![Figure 2: 2-tiers Augmentation Network Architecture](image)

III. SIS Integrity Assessment

The ability to identify, and then to exclude, a measure affected by hazards (like satellite faults, strong multipath, ionosphere issues and so on) is a key point in satellite-based train control system. This is due to the stringent safety requirements imposed CENELEC in terms of THR. In literature, several approaches have been studied. We can distinguish between Receiver Autonomous Integrity Monitoring (RAIM) techniques and AIMP approaches. While RAIM involves the OBU receiver alone, [10], [11], [12], [13], the AIMP approaches rely on a network of RSs deployed in known position. It has to be highlighted that the safety integrity has to be guaranteed at system level. Therefore, faults of the augmentation network itself have to be properly accounted for into the integrity monitoring system. On the other hand, very demanding train operational phases (e.g. Start of Mission (SoM) and protection of vital points) require a level of accuracy of 1 m or less with the same level of integrity. Moreover, train controls systems adopting adaptive modulation of train separation, like ERTMS Level 3, require also discrimination among parallel tracks, whose inter-axis is about 4 meters. To achieve this goal, a decimeter accuracy is then required.

GBAS and SBAS accuracy and integrity have already been summarized in the introduction. Concerning high accuracy commercial systems, Network-RTK (Real Time Kinematics) approach allows achieving centimeters level accuracy through quite dense RSs networks (e.g. with inter-distances of 70 km). Such systems make use of carrier phase GNSS measurements, needing the fixing of the integer of ambiguities through RTK methods. Such networks are usually implemented for surveying applications, where integrity is not a tighter requirement. Therefore, IM systems are generally not implemented for RTK augmentation networks and user receiver relies to SBAS for SIS Integrity.

Innovative high accuracy systems, as PPP (Precise Point Positioning), have been developed based on wide area sparse RS monitoring systems and broadcasting of global corrections to the user. IM algorithms have been simulated and (e.g. CRAIM (Carrier phase Receiver Autonomous Integrity Monitoring)) are currently a starting point for providing a high accuracy and integrity system. Time for convergence to 10 cm level (without considering PPP ambiguity resolution algorithms, still under consolidation) is today in the order of tenths of minutes.

In general, since the RSs locations are known, SIS integrity can be evaluated by analyzing the deviation of the expected and observed RS pseudoranges. Some examples of such technique can be found in [14], [15], [16], [17]. Obviously, a malfunctioning in the monitoring receiver can produce a misleading integrity assessment due to either false alarms (sometime referred as false exclusion), or miss detection. From this consideration, the necessity of RS integrity assessment arises.

In this paper, we will consider that the information on the first tier RS healthiness provided by the first tier interface is fully reliable. In the following, the basic elements of the implemented IM system are summarized for the pseudorange measurements case, described in detail in section C. It has to be highlighted that the proposed approach can be applied also to carrier phase measurements, once Ambiguity Resolution (AR) is performed or time difference approach used. Details on the method that can be used to identify, and eventually to exclude from the network, monitoring receivers affected by failures can be found in [10].

A. Pseudorange Residual Definition

We refer to Pseudorange Residual (PR) for the i-th satellite measured by the n-the RS at the k-th epoch as the quantity:
\[\zeta^i_n[k] = \rho^i_n[k] - \hat{r}^i_n[k] + c\delta t^i_n[k] - c\Delta \tau_{i,s}^n[k] - c\Delta \tau_{i,p}^n[k] \]
\[(1) \]

where:

- \(\rho^i_n[k] \) is the measured pseudorange for the i-th satellite by the n-th RS at the k-th epoch;
- \(\hat{r}^i_n[k] \) is the estimated geometric distance between the i-th satellite and the n-th RS at the k-th epoch estimated by means of the navigation message and the known receiver position;
- \(c\delta t^i_n[k] \) is the estimated clock offset of the i-th satellite at the k-th epoch by using the navigation message;
- \(c\Delta \tau_{i,s}^n[k] \) is the estimated ionospheric delay on the Line of Sight between the i-th satellite and the n-th RS at the k-th epoch estimated by means of the Klobuchar model;
- \(c\Delta \tau_{i,p}^n[k] \) is the estimated tropospheric delay on the Line of Sight between the i-th satellite and the n-th RS at the k-th epoch estimated by means of the tropospheric model;
- \(c\delta t_{n0}^i[k] \) is the estimated clock offset of the n-th RS at the k-th epoch by using the Least Square (LS) estimator.

In case of multi-constellation processing, we should consider the inter-constellation biases due to the different time offset between the constellations. For sake of compactness, we consider these terms as estimated and compensated, neglecting them in the following. If we consider the H_0 hypothesis (the satellite is healthy), the pseudorange residual \(\zeta^i_n[k] \) can be modeled as a Gaussian zero mean random variable with standard deviation \(\sigma^i_n \). In the H_1 hypothesis (the satellite is affected by a fault), \(\zeta^i_n[k] \) is still Gaussian distributed, but the mean is \(\mu^i_n(\beta) \) where \(\beta \) models a wrong satellite position offset. In case of fault of different sources, \(\beta \) will represent an effective satellite position error that would have produced an error on the estimated receiver position of equal entity. PR is a widely used indicator to monitor ephemeris and satellite faults. In [14] authors defined an approach to monitor satellite ephemeris errors, while in [15] authors used a least squares residual approach to identify and exclude multiple satellite faults.

B. Pseudorange L2 norm square

In [16], authors defined a procedure to identify and exclude faulty satellite by jointly processing PRs coming from several RSs deployed trackside. Let \(y^i[k] \) be defined as:

\[y^i[k] = \sum_{n=1}^{N_{RS}} \left(\zeta^i_n[k] \right)^2 / \left(\sigma^i_n \right)^2 \]

\[(2) \]

where \(\sigma^i_n \) is the standard deviation of \(\zeta^i_n \), and \(y^i[k] \) can be considered as the weighted L2 norm square of the vector \(\zeta^i_n[k] \) defined as:

\[\zeta^i_n[k] = \left[\zeta^i_{1n}(k) \zeta^i_{2n}(k) \cdots \zeta^i_{N_{RS}}(k) \right]^T \]

\[(3) \]

where

\[\zeta^i_n(k) = \left[\begin{array}{c} \zeta^i_{1n}(k) \\ \vdots \\ \zeta^i_{j-1n}(k) \\ \zeta^i_{jn}(k) \\ \vdots \\ \zeta^i_{N_{RS}n}(k) \end{array} \right] \]

\[(4) \]

is the vector of single difference residuals for the n-th RS and i-th satellite, and \(y^i[k] \) in the H_0 hypothesis follows a centered chi-square distribution with \(N_{RS} - 1 \) degrees of freedom, while it follows in the H_1 hypothesis a non-centered chi-square distribution with \(N_{RS} - 1 \) degrees of freedom and a parameter of non-centrality \(\lambda(\beta) \). For the standard deviations \(\sigma^i_n \) a classical elevation dependent model can be adopted. As an alternative, values computed by the network control centre filter can be employed (e.g. when an NRTK solution is developed in parallel). Here, an elevation model, based on classical SBAS modelling, has been used.

According to Neyman Pearson criterion, the i-th satellite is excluded if \(y^i[k] \) exceeds the exclusion threshold \(\gamma \) whose value can be set as:

\[\gamma = D^{-\frac{1}{2}}_{\chi^2_{N_{RS}-1}} (1 - P_{fa}) \]

\[(5) \]

where \(D^{-\frac{1}{2}}_{\chi^2_{N_{RS}-1}} \) is the chi square inverse cumulative distribution with \(N_{RS} - 1 \) degrees of freedom, and \(P_{fa} \) is the imposed false alarm probability.

For the aviation case (e.g. [26]), typical \(P_{fa} \) values are \(10^{-3} \) and \(10^{-4} \). Therefore, the value of \(10^{-3} \) has been allocated for the performance analysis carried out in this work. For a given \(P_{fa} \), the exclusion threshold can be derived through numerical inversion of the Generalized Chi-square (e.g. [29]).

Consequently, the miss detection probability \(P_{md} \) will be:

\[P_{md} = D^{-\frac{1}{2}}_{\chi^2_{N_{RS}-1}} (\gamma, \lambda) \]

\[(6) \]

where \(D^{-\frac{1}{2}}_{\chi^2_{N_{RS}-1}} \) is the chi square inverse cumulative distribution with \(N_{RS} - 1 \) degrees of freedom.
More in detail, the exclusion process follows the following criterion: the $y'[k]$ indicator is evaluated for each satellite belonging to the healthy list (initially we suppose that all the satellites are healthy), and the largest value is selected. Then, if the largest $y'[k]$ exceeds the threshold γ, the corresponding satellite is labeled as faulty and excluded. Then the set \{y'[k]\} is refreshed considering the updated list of healthy satellites, and the algorithm is repeated until the largest $y'[k]$ is below the threshold, or all the visible satellites have been excluded.

C. Pseudorange Double Difference L2 norm square

In [9], authors proposed a multiple fault detection algorithm based on Double Difference residual. The algorithm proposed has been designed to identify and exclude faulty RS. Here, it is extended to identify and exclude faulty satellites.

Let consider the satellites i-th and j-th observed by the m-th and n-th RSs. The DD PR at the k-th between the entities can be defined as:

$$z_{m,n,i,j}^i[k] = \hat{z}_{m,n,i,j}^i[k] - \hat{z}_{m,n,j,i}^j[k] + \hat{z}_{m,n,j,i}^j[k] + \hat{z}_{m,n,i,j}^i[k]$$

(7)

Let define the DD residual vector as:

$$\mathbf{g}_{m,n,i,j}^i[k] = (z_{m,n,i,j}^i[k], z_{m,n,j,i}^j[k], \ldots, z_{m,n,j,i}^j[k])^T$$

(8)

Let the satellite fault indicator $z'[k]$ be:

$$z'[k] = \sum_{m=1}^{N_m} \sum_{n=1}^{N_n} \mathbf{g}_{m,n,i,j}^i[k] = \sum_{m=1}^{N_m} \sum_{n=1}^{N_n} \mathbf{g}_{m,n,i,j}^j[k]$$

(9)

$z'[k]$ in the H_0 hypothesis follows a centered generalized chi-square distribution with $N_z = (N_{\text{sat}} - 1) \cdot (N_{\text{RS}} - 1)^2$ degrees of freedom. According to Neyman Pearson criterion, the exclusion threshold γ can be set as:

$$\gamma = D_{\mathbf{g}_{m,n,i,j}^i}^{-1} \left(\Lambda_1 - P_{\text{val}} \right)$$

(10)

where Λ_i are the eigenvalues of the covariance matrix of PR DDs, and $D_{\mathbf{g}_{m,n,i,j}^i}^{-1} \left(\cdot \right)$ is the centered generalized chi-square distribution:

$$D_{\mathbf{g}_{m,n,i,j}^i} = \frac{1}{\prod_{i=2}^{N} \Lambda_i} \prod_{i=1}^{N} \left(\frac{x}{\Lambda_i} \right)^{p_{i}} = \frac{1}{\prod_{i=2}^{N} \Lambda_i} \prod_{i=1}^{N} \left(\frac{x}{\Lambda_i} \right)^{p_{i}}$$

(11)

In the H_1 hypothesis, the test statistics follow a non-centered generalized chi-square distribution with N_z degrees of freedom and a parameter of non centrality $\mu(\beta)$. Then, the miss detection probability P_{val} will be:

$$P_{\text{val}} = D_{\mathbf{g}_{m,n,i,j}^i}^{-1} \left(\gamma, \Lambda, \mu \right)$$

(12)

The exclusion approach follows the following criterion: the $z'[k]$ indicator is evaluated for each satellite belonging to the healthy list (initially we suppose that all the satellites are healthy). After that, if the largest value of the indicator exceeds the exclusion threshold, the corresponding satellite is labeled as faulty and discarded. The algorithm is repeated until the largest value of the indicator is below the threshold, or all the satellites have been discarded. The algorithm workflow is depicted in the following pseudocode:

```
1. Insert all visible satellites in the HealthySat_List (i.e. label each satellite as healthy)
2. Set DetectFaultySatellites = TRUE
3. Repeat until (HealthySat_List is not Empty AND DetectFaultySatellites)
   a. For each satellite i in HealthySat_List
      i. Compute the DD residual vector corresponding to the HealthySat_List
      j. Compute $z'[k] = \sum_{m=1}^{N_m} \sum_{n=1}^{N_n} \mathbf{g}_{m,n,i,j}^i[k] = \sum_{m=1}^{N_m} \sum_{n=1}^{N_n} \mathbf{g}_{m,n,i,j}^j[k]$
      k. Select the index i corresponding to the largest $z'[k]$
      l. If $z'[k] > \gamma$ then
         i. Mark the satellite as faulty and remove it from the HealthySat_List
         ii. Recalculate $\gamma$
      else
         i. DetectFaultySatellites = FALSE
   End If
4. End Repeat
D. Literature Review Analysis

Considering the method presented in section B, the main limitation is the dependence of the system by the receiver clock offset estimation. In fact, $z'[k]$ is affected by the error in the receiver clock offset estimation. This means that a faulty satellite can lead to an incomplete receiver clock compensation corrupting all the residuals generated by that RS. This limitation has been removed in the algorithm proposed in C.

In fact, working with the double difference, all the clock offset components will be canceled out. On the other side of the coin, we have the impossibility to detect and exclude satellite faults due to satellite clock. The other advantage of using C approach instead of the one in B is the possibility to reveal more efficiently the presence of multiple satellite faults.

The main limitation of the C approach is represented by the computational cost in the evaluation of the exclusion threshold.

The presented approach offers an advantage in robustness
with respect to classical standalone systems (e.g. SBAS or GBAS), due to the fact that different systems are integrated. In such a way, the impact of common mode errors is reduced.

This is evident in the case of RS multiple failure. The integration of external, certified SBAS RIMS for performing DDs allows to avoid possible cancellation of common mode errors, and a more robust RS detection and exclusion.

Concerning the total constellation fault monitoring, consistent errors are detected through the following test statistics:

$$z_{e_r} = \left(e_r^T(k)\right)^T \mathbf{R}_{e_r}^{-1} e_r(k)$$

where $\mathbf{R}_{e_r}$ is the covariance matrix of the position error of the $n$-th RIMS.

### E. Advantages of the new approach

The proposed 2-tiers algorithm leads to several advantages with respect to classical LA systems that are needed for achieving THR for train position determination function in the order of 10-9 hazard per train.

Traditional LA systems (e.g. GBAS or IALA (International Association of Marine Aids to Navigation and Lighthouse Authorities) DGPS systems) are based on the installation of high grade and relevant cost RSs with a tight level of certification (e.g. to be compliant to D0-229D for the aviation case). As a matter of example, the implementation of a GBAS RS network is in the order of 120 k€ for a classical four reference receivers configuration ([40]). On the other hand, IM is typically used in some application fields, as maritime beacons, with very high cost DGNSS RSs implementation and maintenance.

Geodetic networks are based on geodetic COTS GNSS receiver. The price of a multi-constellation and multi-frequency RS is currently in the order 10 k€ and is continuously decreasing. Typically, such RS networks are developing RTK and NRTK services, and are operative for supporting national mapping authorities for land administration. Relevant interdistances are in the order of 70 km. Such services are currently used for surveying purposes. On the other hand, maximum distance from the reference receiver allowed for GBAS is 23 nautical miles.

Therefore, a cost saving of at least 15 k€ per reference receiver is foreseen with respect to a GBAS, leading to a total saving of at least 60 k€, with a greater service coverage area.

The new algorithm, presented in the work, allows reducing such costs through the integration of global (e.g. SBAS RIMS) and local solutions (COTS reference receivers).

A 2-tiers Control Centre (CC) can integrate its own second layer network based on COTS and, possibly, implement a densification through external RSs. Concerning the first layer, it is assumed that data coming from SBAS, certified RIMS, are provided for free by relevant institutions (e.g. EDAS (EGNOS Data Access Service)).

Therefore, it is evident how the possibility to use COTS receivers for implementing the needed GNSS high accuracy and integrity services leads to a cost saving of at least one order of magnitude.

The disadvantage is that such solution depends on the availability of first layer GNSS raw data for free. Just in case, such access is not available or relevant fees have to be paid for getting them, proper agreements have to be set up between SBAS stakeholders and national operators. However, such services generate evident public benefits, and it is expected that national authorities (e.g. ministries of transport) can favor their implementations.

### IV. PERFORMANCE ANALYSIS

A performance analysis test-bed has been implemented through the integration of the 2-tiers algorithm into an existing GNSS Network Control Centre, an on-board COTS receiver on a train and a rail performance analysis tool.

In order to test the 2-tiers algorithm performances, several fault scenarios (for satellite, constellations and Reference Stations) have been defined. Faults are generated using as input raw data RINEX files from existing historical GPS faults or through recorded RS and OBU files editing.

The performance analysis tool is able to take as input RS and OBU files and generate relevant integrity and accuracy performances statistics for the rail application since railway requirements have been set up into the software (e.g. THR for deriving the correct PL).

Probability of faults for satellite, constellations and RS, needed for the 2-tiers algorithm implementation, have been derived from literature or GNSS network operations statistics.

The output of the performance analysis is the Stanford plot for a simulated or real train track, subject to GNSS or local augmentation fault. A comparison of performances with or without the 2-tiers algorithm adoption has been analyzed.

A test bed, developed within the EU Horizon 2020 Project named ERSAT-EAV [36], has been used at this scope. The test site is shown in Figure 3, where the red line indicates the Cagliari-S. Gavino railway where the real-time tests have been carried out and the location of the reference stations for implementing the 2-tiers based augmentation network are reported.

### A. Performance Analysis Architecture

Relevant test architecture is reported in Figure 4. The Track Area Augmentation Network (TAAN) includes five multi-constellation and multi-frequency COTS receivers installed on public administration sites. They are connected to a high precision operating network named GRDNet (GNSS R&D network) located in Rome. A high QoS communication network is used at this scope. All the interfaces are using standard connection protocol and data format (RTCM 3 messages and NTRIP (Networked Transport of RTCM via Internet Protocol)). The 2-tiers algorithm has been implemented within the GRDNet Control Centre, and it works in real time. New RTCM messages have been defined for the communication of relevant integrity parameters to the TALS. The connection to the EGNOS RIMS (constituting the first tier) has been carried out through the EDAS.
real GNSS fault cases: a relevant set of real fault cases has been selected from GPS NANU [21] and Galileo GSA fault [20] records; RINEX files for the same time interval (therefore containing the declared fault) have been used as sources;

- simulated fault cases: real GNSS measurements, acquired by a receiver on the train during daily rides, have been injected with relevant SIS faults that have been generated through models described in literature.

The possibility to use both kinds of inputs allows a great testing flexibility and covering all the major fault cases. Furthermore, while real GNSS faulted data allows testing the algorithm in an operative case, simulated data allows performing sensitivity analysis on single parameters, and opportunely set thresholds and fault injection windows. The functional tests have been organized in four groups:

- TAAN Rs tests;
- general TAAN-CC tests;
- LIF system tests;
- TAAN integration tests.

Tests have been performed both in post processing and real time. For the real time case, faults have been added by the TAAN-CC to relevant raw measurements gathered by RSs. The LIF is therefore able to analyze the faulted value, detect the relevant and send the relevant integrity messages to the OBU on the train. In Table 1, the functional test phases are reported.

<table>
<thead>
<tr>
<th>TAAN Rs Tests</th>
<th>RSs configuration and interfacing tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>General TAAN-CC Tests</td>
<td>Network CC is tested while interfacing with GNSS RIMS and RSs.</td>
</tr>
<tr>
<td>LIF System Test</td>
<td>2-tiers algorithm is tested through real GNSS fault cases injection (probability of fault generation (single satellite, constellation, RSs) or integrity fault generation in real time (RTCM upgraded messages).</td>
</tr>
<tr>
<td>TAAN Integration Test</td>
<td>The augmentation system performances, based on the 2-tiers algorithm, are tested through four scenarios, based both on real GNSS and injected fault cases that have been carried out in real time (RTCM upgraded messages). TAAN-CC injects faults in the raw measurements, while the augmentation system detects them. Relevant satellites have been excluded from the messages sent to the user; satellite fault is recognized by the OBU, and not applied to the train positioning solution.</td>
</tr>
</tbody>
</table>

Table 1: Functional Test Phases

For the 2-tiers algorithm functional test, RINEX files corresponding to some literature fault cases have been analyzed in order to evaluate the Fault Detection (FD) capability.

1) LIF Integration Test

The following tests have been performed:

- real cases clock anomaly tests: satellite exclusion using 2-tiers algorithm applied on RINEX files containing the recorded fault period;
- simulated pseudorange error: a ramp error on a 30 min time window is added to a pseudorange

A LIF (Local Integrity Function) software module has been created and integrated into the CC (Control Center) for implementing the 2-tiers algorithm. It is in charge of performing GPS and GALILEO constellations, as well as RS FDE through the 2-tiers algorithm described in III.B, III.C, and III.D. Relevant results are used by the message formatter for deriving IM parameters to be sent to the user. Precise ephemeris and clock are gathered in real time from the IGS-RTS (International GNSS Service Real Time).

**B. Performance test methodology and assumptions**

The functional test methodology is the following. An Integrity Monitoring performance analysis tool, named VIRGILIO [31] and used in previous ESA and GSA projects for performance analysis on rail, has been configured with the SIL 4 safety requirements.

The tool takes as input GNSS raw measurements in RINEX format and the georeferenced railway database (ordered set of the geographic coordinates of the polyline approximating each track), and generates the Stanford plot (e.g. [20]) and relevant availability, misleading and hazardous misleading statistics.

Input data for the functional test, containing relevant SIS fault cases scenarios, are generated in two way:

The possibility to use both kinds of inputs allows a great testing flexibility and covering all the major fault cases. Furthermore, while real GNSS faulted data allows testing the algorithm in an operative case, simulated data allows performing sensitivity analysis on single parameters, and opportually set thresholds and fault injection windows. The functional tests have been organized in four groups:

- TAAN Rs tests;
- general TAAN-CC tests;
- LIF system tests;
- TAAN integration tests.

Tests have been performed both in post processing and real time. For the real time case, faults have been added by the TAAN-CC to relevant raw measurements gathered by RSs. The LIF is therefore able to analyze the faulted value, detect the relevant and send the relevant integrity messages to the OBU on the train. In Table 1, the functional test phases are reported.

<table>
<thead>
<tr>
<th>TAAN Rs Tests</th>
<th>RSs configuration and interfacing tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>General TAAN-CC Tests</td>
<td>Network CC is tested while interfacing with GNSS RIMS and RSs.</td>
</tr>
<tr>
<td>LIF System Test</td>
<td>2-tiers algorithm is tested through real GNSS fault cases injection (probability of fault generation (single satellite, constellation, RSs) or integrity fault generation in real time (RTCM upgraded messages).</td>
</tr>
<tr>
<td>TAAN Integration Test</td>
<td>The augmentation system performances, based on the 2-tiers algorithm, are tested through four scenarios, based both on real GNSS and injected fault cases that have been carried out in real time (RTCM upgraded messages). TAAN-CC injects faults in the raw measurements, while the augmentation system detects them. Relevant satellites have been excluded from the messages sent to the user; satellite fault is recognized by the OBU, and not applied to the train positioning solution.</td>
</tr>
</tbody>
</table>

Table 1: Functional Test Phases

For the 2-tiers algorithm functional test, RINEX files corresponding to some literature fault cases have been analyzed in order to evaluate the Fault Detection (FD) capability.

1) LIF Integration Test

The following tests have been performed:

- real cases clock anomaly tests: satellite exclusion using 2-tiers algorithm applied on RINEX files containing the recorded fault period;
- simulated pseudorange error: a ramp error on a 30 min time window is added to a pseudorange
measurement of a satellite; clock error has been simulated through ramp:

\[ \Delta \rho_{\text{PR}}^i(t) = d'(t - t_0) \]

where \( d^i \) is the pseudorange error drift (set to 0.1 m/s, [41]), \( t_0 \) is the starting time for the clock anomaly, and \( t \) is the current measurement time.

- clock anomaly simulated for a satellite through RINEX navigation file editing.

For each test, data are processed with and without the LIF 2-tiers algorithm activation to verify the fault detection performances.

Concerning the fault probabilities, relevant values are derived from historical GNSS fault cases.

As a matter of example, classical probability of fault satellite for an early satellite constellation can be in the order of 1 hour per year, leading to a \( P_{\text{sat}} \) of \( 10^{-4} \).

- \( P_{\text{const}} \) (probability of constellation fault): \( 10^{-8} \) and \( 10^{-8} \) [25]; the first one is intended for a value relevant for a still not completely operational constellation (e.g. GALILEO), while the second is applicable for a mature constellation, like the current GPS;

- \( P_{\text{sat}} \) (probability of satellite fault): \( 10^{-5} \) [26];

- \( P_{\text{RS}} \) (probability of RS fault): \( 10^{-5} \) ([18] and GRDNet statistics);

- \( P_{\text{FA}} \): \( 10^{-3} \), following classical aviation assumption [26].

In next evolutions, it is foreseen to introduce a real time estimation of relevant probabilities of fault in LIF software.

The details of the clock anomaly test due to real fault cases are here reported:

- Test 1 - Date/time 2006 JUL 31 22:15, PRN 03, clock anomaly;
- Test 2 - Date/time 2006 AUG 25 12:30, PRN 29, clock anomaly;
- Test 3 – Date/time 2009 JUN 26 09:30, PRN 25, clock anomaly;
- Test 4 - Date/time 2012 JUN 17 00:10, PRN 19, clock anomaly

All the faults have been detected correctly. As a matter of example, in Figure 5, the result for Test 2 is reported. As can be seen in Figure 5 (b), the single difference residuals with respect to GPS PRN 29 are increasing, and at about epoch 47600 the exclusion threshold is overcome.

After that time, the satellite is declared as faulted, excluded by the calculation by the relevant residual difference plot. In the visibility plot Figure 5 (a), PRN 29 is correctly excluded after that epoch. A satellite fault has been also simulated.

As reported in Figure 6, a ramp error has been injected on PRN 12, starting at 15, for 30 min.

The LIF is able to detect the anomaly and exclude the satellite (Figure 6 (a)).
been developed and are here described in detail:

**Scenario 1** – static test: two existing Sogei GRDNet RSs (ROMA and RIETI) and a fixed RS located in Fiano (Italy), used as an OBU, located in the centre of Italy on Day 17 June 2012 have been selected, when a fault on PRN 19, due to a clock anomaly occurred at 00:10. ROMA and RIETI RSs have an interdistance of 60 km, and are about 50 km far from the Fiano receiver. The test is intended to perform a first integration test through static receivers for validating LIF performances.

**Scenario 2** – simulated OBU: two RSs have been used in the area of the Sardinia test-bed. Two TAAN RSs (CAGR and VILL) and a simulated moving train over a synthetic track form Cagliari railway station to Località Produttiva (Villacidro) are considered. A fault on PRN 2 is simulated modifying a satellite clock offset bias on the RINEX navigation file day dated March 13 2016. CAGR to VILL interdistance is in the order of 24 km. The test is intended to perform a validation test LIF performances for a moving object.

**Scenario 3** – real rail track: Two TAAN RSs CAGR and SANL, installed in Cagliari and Sanluri respectively, and a real test on a train moving in the track from San Gavino to Cagliari, are considered. The scenario is placed in Sardinia. Since we are working off-line, the ground truth has been generated checking the absence of real GNSS faults in IGS and EDAS repository. A fault on PRN 12 is simulated, modelling an error as a ramp on the pseudorange and inserted into the LIF monitoring process for real-time FDE. The test is intended to validate the LIF FDE performance in a real rail operative scenario. The test was carried out on day 2016 April 06. It has to be noted that the RSs interdistances and the RS to rover receiver distance are within acceptable range both for pseudorange only and for network RTK operations (maximum of 70 km RS distance for the latter). In the present analysis, we are dealing with pseudorange measurement only.

For Scenario 1, relevant results are reported in Figure 7 and Figure 8. On the first figure (No LIF), the performances without the application of the LIF algorithm are presented, while on the second (LIF), the LIF FDE one is applied, and PRN 19 satellite excluded. The MI situation is fully recovered by the application of the LIF. It has to be noted that, in presence of faults, a preliminary check is performed by the performance analysis tool. Therefore, epochs with excessive square residuals are deleted and not taken into account into the total number of shown epochs. This is the reason why the number of epochs for the case where LIF is not applied is less than the ones with LIF applied.

In the Scenario 2 plots, relevant OBU data, taking the Fiano RS as source, are calculated with a 30 s rate over a period of about 5000 s. In this case, the number of epochs for the reference case is less than the relevant one in case of LIF FDE. This is due to the fact that, when a position cannot be calculated, the performance analysis excludes the relevant epoch from the total count. It has been demonstrated that the FDE algorithms allows promptly detecting the fault satellite and excluding it for the whole fault duration. Scenario 2 results are shown in Figure 9 and Figure 10. The extreme situation of full HMI case is fully recovered by the application of the LIF. Scenario 3 results are reported in Figure 11 and Figure 12. The simulated ramp error on the pseudorange (with relevant slope reported in section

---

[Figure 6: LIF Functional Test (CAGR GNSS RS, 2016 APR 04 15:00 simulated ramp error on PRN 12 for 30 min); (a) used GPS satellites; (b) square norm of single difference residuals per satellite and exclusion threshold.]
IV.B.1) introduces in this case relevant MI and HMI situations. After the application of the LIF 2-tiers FDE, all the MI and HMI situations are covered.

A multiple satellite fault analysis has been carried out within the framework of the RHINOS (Railway High Integrity Navigation Overlay System) Horizon 2020 project [30], [31], [32]. In this case, simulated errors are injected on pseudorange as ramps for multiple satellites. The data were collected on the OBU of the test-bed train on 6 April 2016. Erroneous data are firstly introduced on PRN 12 and then on PRN 24, 32, 25 and 29. Relevant performances of the LIF algorithm are reported in Figure 13. As can be seen in that figure, single satellite faults...
are detected and excluded in case of multiple failures. The reported processing time for epoch-by-epoch 2-tiers algorithm is in the order of 40 ms.

Concerning the communication losses and latency, a particular effort has been spent for minimizing it. High QoS links between single RS and the CC have been deployed. Relevant delays are monitored in real time. The maximum detected latency is in the order of 20 ms.

Processing delays for fault detection are 40 ms, derived from delay models in railway applications. A relevant latency is in the order of 100 ms can be expected.

VI. CONCLUSION

The adoption of satellite localization for train control system is a challenge task due to the high integrity requirement for rail operations. To this aim an innovative method based on a 2-tiers local augmentation and global monitoring networks has been developed. This architecture has been validated by detailed analyses using real data generated from fault cases described in literature and GNSS raw data acquired during rail operations. A local augmentation system able to implement in real time the proposed algorithm has been developed for this scope. The performance analysis results have shown that the new approach is able to detect and exclude faulted satellites meeting the rail safety requirements. At the same time, this architecture represents a cost efficient solution to be implemented, since it reuses existing augmentation networks instead of realizing high integrity networks only for the rail applications.

VI. ACKNOWLEDGMENT

The research described in this paper was supported by Lazio INNOVA of Lazio Region under contract VIRGILIO (Virtual InstRuments for GNSS AugmentatIon and LocalizatIOn) - LR 13/2008.

We acknowledge Giorgia Olivieri and Fabio Fritella from Sogei for their hard work on the LIF development and testing within the GRDNet network software.

REFERENCES


[27] ETCAS Application Levels 1 & 2 - Safety Analysis, SUBSET-089, UNISIG.


---

Cosimo STALLO obtained cum laude the Ph.D in Microelectronics and Telecommunications at Electronic Department of Engineering Faculty of University of Rome “Tor Vergata” in 2010. Since 2011 he is Professor for the course on Satellite Navigation at Master of Science on “Advanced Satellite Communication and Navigation Systems” of University of Rome Tor Vergata. Since 2013-14, he is tutor for the course on Communication Systems at University of Trento, Italy. Since February 2010, he is the Chair of the Space Systems Technical Panel of the IEEE AES. Since 2012 he is a senior Researcher at RadioLabs Consortium, where he has been/is involved in the technical committees of different GNSS projects in the railway sector as ESA IAP 3InSat (Train Integrated Safety Satellite System), ESA IAP SBS-RailIS (Space Based Services for Railway Signalling), H2020 GSA ERSAT-EAV and H2020 GSA RHINOS (Railway High Integrity Navigation Overlay System). Currently, he is the project manager of ESA GSTP Element 2-Competitiveness DB4RAIL (Digital Beamforming for Rail). He is co-author of about 75 papers on international journals/transactions and proceedings of international conferences.

---

Alessandro NERI is Full Professor in Telecommunications at the Engineering Department of the ROMA TRE University. In 1977 he received the Doctoral Degree in Electronic Engineering from “Sapienza” University of Rome. In 1978 he joined the Research and Development Department of Contraves Italiana S.p.A. where he gained a specific expertise in the field of radar signal processing and in applied detection and estimation theory, becoming the chief of the advanced systems group. In 1987 he joined the INFOCOM Department of “Sapienza” University of Rome as Associate Professor in Signal and Information Theory. In November 1992 he joined the Electronic Engineering Department of ROMA TRE University as Associate Professor in Electrical Communications, and became Full Professor in Telecommunications in September 2001. His research activity has mainly been focused on information theory, signal theory, signal and image processing, location and navigation technologies, and their applications to both telecommunications systems and remote sensing. Since December 2008 Prof. Neri is the President of the RadioLabs Consortium, a non-profit Research Centre created in 2001 to promote tight cooperation on applied research programs between universities and industries.
Pietro SALVATORI received a Ph.D. degree in Applied Electronics in May 2017 at the University of Roma TRE, Rome, Italy. He obtained the 1st level degree in Electronic Engineering in 2010 and a 2nd level degree cum laude in Information and Communication Technology Engineering in 2013 both at the University of Roma TRE, Italy. In 2013, he collaborated with RadioLabs consortium, carrying out research activities in the GNSS-based train control system. In January 2014 he joined the PhD program in Applied Electronics at the University of Roma TRE obtaining the title in May 2017. Currently he is employed at RadioLabs headquarter as Satellite Navigation System Researcher.

Roberto CAPUA received a Master Degree in Electronic Engineer. He has a consolidated background in the field of GNSS applications Research and Development for Public and Private Organisations. He worked on most important European Commission Programmes on Galileo design and applications. He was a Program Manager on satellite navigation applications for an important European Satellite Service Provider. His areas of activity include advanced high precision GNSS and Augmentation Systems, GNSS Software Receiver and GNSS surveying for cadastral and mapping applications. He worked on the development of hardware and software navigation and communication technologies for Road, Inland waterway, Aerospace and Surveying. He is currently responsible for GNSS R&D for Sogei, where he is managing a GNSS Network for Cadastral Purposes and the GNSS SDR development project. He is furthermore delegate for his company in the Galileo Services Association and RTCM SC-104 Committee, where he chairs the Integrity Monitoring for High Precision Application WG.

Francesco RISPOLI joined Ansaldo STS in 2011 and is the Manager for train control system’s satellite technology and Director General of Radiolabs. Since 2011 he was involved in the innovation projects with the European Space Agency (ESA) and the European GNSS Agency (GSA). Francesco has chaired the Working Group for the satellite activities of the European Next Generation Train Control System project with the rail and satellite stakeholders. In 2012 he launched with RFI (Italian Railways Infrastructure Manager) the ERSAT pilot line with GNSS and satcom tested for integration into the ERTMS system. He is board Director of Galileo Services Association coordinating the satellite applications for rail. From 2005, he was the Chief New Initiatives at Telespazio and previously Vice President Multimedia Business Unit with Alenia Spazio. Francesco holds a doctoral degree in Electronic Engineering (Polytechnic of Turin 1978) and a post-graduate Master in Applied Electromagnetism (University La Sapienza in Roma 1980). In 2012 he was awarded the Finmeccanica Innovation Prize with a satellite-based innovation for train control systems.