I have spent most of my professional life in an educational environment, and I have thoroughly enjoyed my career. Research-intensive universities encourage their faculty to engage in the pursuit of new knowledge through research but also to educate the next generation of mostly young, but some not-so-young, students. When the system works well, it can be very effective: most successful academic researchers I know enjoy interacting with students at different levels through teaching; at the same time, the system allows students to learn from and be inspired by people who are passionate about their subject and can bring the excitement of discovery and innovation to the classroom or seminar.

It is a delicate balance, however. In recent years, the pressure on faculty to generate research funding and maintain their institutions’ research reputation has often led to education being shortchanged, at least in my view. This is especially the case at the pre- or undergraduate level, where, in its worst form, teaching and learning are assigned to junior staff on temporary and insecure contracts, while “star” academics are shielded from any significant engagement with students. This trend disturbs me because, in the long run, a university is a community that thrives when both its education and research arms flourish together.

One characteristic of the fields of interest in the IEEE Microwave Theory and Techniques Society (MTT-S) is continuous and rapid technology change; a professional in our field can never stop learning throughout his or her career. Often, this occurs through self-education—reading an article, attending a conference session, viewing a webinar, taking an online course, and so on. The MTT-S provides many resources and wide-ranging support to help in this process.

The most obvious examples are the journals and conferences sponsored by the Society. IEEE Microwave Magazine, for example, provides excellent, authoritative technical content in an accessible form and is a great

Education Never Stops

Tom Brazil

Tom Brazil was 2018 MTT-S president and a member of the faculty at University College Dublin, Ireland. Prof. Brazil passed away suddenly on 13 April 2018, just six weeks after this column was written.
place to start reading oneself into a less familiar area—much more reliable than a random Google search! But there is much more.

The Society’s Distinguished Microwave Lecturer program supports leading international experts in delivering high-quality talks to Chapters at the local level, providing attendees and members with a great opportunity to both learn and network with other professionals sharing similar interests within their geographical area. Through our very active Education Committee, led by Prof. Ramesh Gupta, the Society has also developed a highly successful set of webinars (https://mtt.org/webinar-library). These are delivered live, one each month, and last one hour, including time for questions and answers.

The Education Committee is also very active in promoting awards, scholarships, and financial support to students at different levels. For example, each year some ten to 20 scholarships are awarded to undergraduate or first-year master’s degree students working in the area of RF/microwaves. This is a competitive program offered worldwide: students submit their project proposals, which are evaluated by an expert team, and the winners receive a US$1,500 grant and a US$1,000 travel stipend to attend the Society’s flagship IEEE MTT-S International Microwave Symposium (IMS). The Education Committee also oversees the awarding of ten (general category) and two (medical category) fellowships every year to graduate students working in RF/microwaves. In this case, following competitive evaluation, the winners receive a US$6,000 fellowship and a US$1,000 travel stipend to attend the IMS. I feel these generous award programs are perhaps not as well known as they should be. Find out more at https://mtt.org/students.

I am happy the MTT-S continues to recognize the importance of education at every stage of a professional’s life, not just at school but as a young professional or in one’s midcareer or later-career stage. The future evolution of our field of technology is hard to predict, but we can be sure of one thing—our need for further and continued education will never stop.

One characteristic of the fields of interest in the MTT-S is continuous and rapid technology change; a professional in our field can never stop learning throughout his or her career.

100+ GHz Open Resonator Measurements of Dielectric Sheets

- Complex Permittivity, Loss Tangent, Dk, Df
- Cavity™ Software
- Measures in-plane Anisotropy
- Sizes Spanning ~8 GHz - 110 GHz
- Common Analyzers

DAMASKOSINC.COM