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Trajectory Plan for an Ultra-Short Distance
On-Orbit Service Based on the Gaussian

Pseudo-Spectral Method
Fei Han, Zhaolong Wang, Liang He, Hailei Wu, Guang Yang, and Guangren Duan

Abstract—Considering the ultra-short distance approaching
plan of on-orbit service, the trajectory plan strategy based on
the Gaussian pseudo-spectral method is researched. Given the
target spinning, safety, fuel and maneuver factors, a model
which contains a secure area as well as a prohibited area is
built. Furthermore, the method to plan a safe on-orbit service
trajectory and the solution based on the Gaussian pseudo-spectral
method are also presented. Finally, simulations are performed to
prove the validity of the plan, and analyze the influence of optimal
function and maneuver time. The results demonstrate that the
planned trajectory is capable of avoiding the prohibited area and
finding the best trajectory in terms of the relative distance, fuel
cost and maneuver time respectively.

Index Terms—Gaussian pseudo-spectral method, on-orbit ser-
vice spacecraft, orbit maneuver, trajectory plan.

I. INTRODUCTION

THE On-orbit servicing spacecraft (OOSS) is becoming a
highlight in the study of the space field [1], with typi-

cally missions including spacecraft function expansion, fault
reparability, refueling, and so on. Synergetic orbit maneuver
between two satellites is the foundation of an orbit service.
It is crucial that a quick plan is created wherein maneuvering
from the initial position to the service area can occur without
crossing the prohibited area.

There has been extensive research carried out regarding the
trajectory plan of rendezvous and docking (RVD) and space
war battlefield, which is based on an artificial intelligence
algorithm. Deng Hong researched a trajectory plan based on
a genetic algorithm for safe routes among several sphere
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envelopes [2]. Zhao Lin presented an intercept orbit optimiza-
tion for continuous low-thrust based on a genetic algorithm
[3]. For an OOSS trajectory plan, R. Menasri and Mingming
Wang demonstrated the trajectory plan based on a bi-level
optimization and particle swarm algorithm [4], [5]. Wang
Yanyang studied a trajectory plan based on fuzzy optimization
of multiple targets aiming at crossing among dangerous areas
[6]. Michael proposed a trajectory plan for a rolling target
RVD based on a direct optimization method [7].

The researchers above considered the target as an ideal
particle or sphere, and ignored the status of targets’ motion.
The trajectory terminals were set on the edge of the sphere, and
the algorithm converged slowly. The previous trajectory plans
were mostly intended to research a long distance situation.
This has resulted in a lack of research concerning short
distance, and especially ultra-short distance trajectory. In this
paper, we research an ultra-short distance trajectory plan,
and present a method based on the Gaussian pseudo-spectral
method to meet the demand of time and distance accuracy,
which can be carried out offline, based on measurement
information downloaded from orbit in advance.

The structure of this research paper is as follows: Section
II will present the dynamic model of an on-orbit service for
the tumbling target model, including the design of the secure
and prohibited areas. Section III of this paper will demonstrate
the trajectory plan based on Gaussian pseudo-spectral method.
Penultimately, Section IV presents a simulation of the pro-
posed method and Section V draws the paper to a conclusion.

II. RESEARCH DESCRIPTION

A. Modeling

Generally, an on-orbit service is composed of two parts:
the target satellite and the service satellite. For the purpose
of this research, the target satellite is assumed to be rotating
around one axis (see Fig. 1). The service process contains the
initialization of the service plan, a calculation of the hovering
area, orbital maneuver and the implementation of the service,
etc. In this paper, our focus is on the planning of the orbits
trajectory, considering maneuver time, fuel consumption, the
area prohibited by the rotation of the target, and so on.

Due to the aforementioned problem, it is imperative to
design a model which is capable of accurately solving dynamic
trajectory-satisfying restraints. This is to make the model
suitable for dealing with the real time threats-making it a
control optimization. We hope to calculate a trajectory which
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is nearest to the satellite envelope and consumes as little
fuel as possible, whilst still being in accordance with safety
constraints. We take the restricted spots in the trajectory from
the previous nonlinear path plan as samples, which are then
used as restraints to solve the future nonlinear plan. In this
paper, the continuous optimal control problem is converted
into a more discrete, nonlinear one, and solved by the Gaussian
pseudo-spectral method.

Fig. 1. Diagram for on-orbit service.

B. Design of the Secure and Prohibited Area

The secure area is designed to guarantee a safe distance
for the ultra-short distance orbit approaching. In other words,
the OOSS should not pass the area. Typically, the secure area
is designed as a sphere surrounding the target. However, an
innovative “sphere and ellipsoid” model is designed to keep
the whole spacecraft off course of any collision threats. The
prohibited area and restraints are designed in accordance with
the satellite sphere envelope.

The satellite body is assumed to be a cube, whose length
is a. And the dimensions of its solar panel are xf , yf , zf , the
length of the straight line antenna located at the center of +Z
surface is l. In the target body frame, considering the model
designed above, the prohibited area S1 can be described as:
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On the edge of the prohibited area ∂S1, it is assumed to
cause collision when the relative velocity vector points to the
prohibited area, expressed as:

{ṙ ∈ R3 : vvvT
1 ṙrr < 0}. (2)

where vvv1 =
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is a vector point-

ing towards outside normal of S1, r is the relative position
vector of the two satellites.

While in the ellipsoid envelope (S2) the prohibited area can
be described as:
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Similarly, the possible collision is predicted to occur on the
edge of the prohibited area ∂S2 when the velocity vector is
outward normal to S2, expressed as:

{ṙ ∈ R3 : vvvT
2 ṙrr < 0}. (4)

where vvv2 is a vector pointing towards outside normal of S2

stated as
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(
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Thus, we have two collision restraints:
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C. Trajectory Optimization

As the envelope principles’ axis frame is coincidental with
the target body frame, and its docking axis’ direction changes
dynamically in the inertial frame with respect to target rotation,
the safe trajectory plan is thus made in the target body frame.

1) Pose Restraint: The position and velocity should satisfy
geometry restraints; thus different restraints are grouped in
terms of different poses.
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 [ẋtb ẏtb żtb]T > 0.

If−
√

3a

2
≤ xtb ≤

√
3a

2

h2 =
x2

tb

3
(a

2

)2 +
y2

tb

3
(a

2

)2 +
z2
tb

3
(a

2

)2 − 1 > 0.

When h2 = 0

 x2

tb

3
(a

2

)2

y2
tb

3
(a

2

)2

z2
tb

3
(a

2

)2


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2) Performance Measurement: Considering the ultra-short
approach, trajectory should be designed close to satellite
envelope. The distance between the OOSS and the target can
be expressed as follows:
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Meanwhile, fuel cost and some other factors should be taken
into consideration, an optimal function is designed as:

J = min(h +
1
2
uT u)

where u is a control force of OOSS, stated as uuu = (ux, uy, uz).
The control force sequence during the approach process can
reflect the fuel cost quantity, so the quadratic sum of control
force sequence is used to compare the fuel cost of different
trajectories.

3) Optimization Parameters: Optimization parameters
include position, velocity and control parameters
(x, y, z, vx, vy, vz, ux, uy, uz). Due to the model above,
the trajectory plan is converted from a solution to a
multi-objective optimization with nonlinear restraints.

III. GAUSSIAN PSEUDO-SPECTRAL PLAN

A. Gaussian Pseudo-Spectral Method

The Gaussian pseudo-spectral method is to use polynomial
parameterizing state changes and control rule [8], the differen-
tial equation is approximated to an orthogonal polynomial, and
Legendre-Gauss point as the collocation point [9]. Gaussian
pseudo-spectral method is a type of spectral method which has
a superiority of fast convergence.

Generally, by introducing a new time variant, the Bolza
optimal control can be stated as [10]:

minJ = ϕ(x(t0), t0, x(tf ), tf )

+
tf − t0

2
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s.t.
dX

dτ
=
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2
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C(X(τ), U(τ), τ ; t0, tf ) ≤ 0

(5)

where x ∈ Rn is a state parameter, u ∈ Rm is a control
parameter, t is arbitrary actual time, t0 is initial time, and tf

is final time, τ ∈ [−1, 1] , t =
tf − t0

2
τ +

tf + t0
2

, Φ and
g are scalar functions, while f ∈ Rn, φ ∈ Rq and c ∈ Rc

are vector functions. To solve the continuous Bolza optimal

control problem, it is common to transform the optimization
into a nonlinear plan by discretization. The basic theory of
Gaussian pseudo-spectral method is to use an interpolating
polynomial, approximating state and control trajectory.

State variant is approximated by an (N +1)-order Lagrange
interpolating polynomial Li(τ), after taking the derivative, the
expression is:

Ẋ(τ) ≈
N∑

i=0

X(τi)L̇i(τ). (6)

The differential of every LG point of Lagrange polynomial
can be expressed by a differential approximate matrix D ∈
RN×(N+1), each part of the matrix can be stated as:

Dki = L̇i(τk) =
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(τi − τj)
(7)

where k = 1, 2, . . . , N, i = 1, 2, . . . , N .
The matrix above is able to transform the dynamic restraint

to an algebraic restraint:

N∑
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DkiXi − tf − t0
2

F (Xk, Uk, τk; t0, tf ) = 0,

k = 1, 2, . . . , N (8)

where
Xk ≡ X(τk) ∈ Rn, Uk ≡ U(τk) ∈ Rm.

In addition, Xf is defined by Gauss integration of Xk and
Uk:

Xf = X0 +
tf − t0

2

N∑

k=1

ωkF (Xk, Uk, τk; t0, tf ) (9)

where ωk is Gauss weight.
Approximate cost function by Gaussian quadrature

J = ϕ(X0, t0, Xf , tf ) +
tf − t0

2

N∑

k=1

ωkG(Xk, Uk, τk; t0, tf ).

(10)
The boundary restraint is stated as:

ϕ(X0, t0, Xf , tf ) = 0 (11)

The LG points restraint is:

C(Xk, Uk, τk; t0, tf ) ≤ 0, k = 1, 2, . . . , N (12)

Thus, an NLP problem is defined, whose solution is the
approximated solution of continuous Bolza problem.

B. Safe Service Trajectory Plan

In the target body frame, define:
x1 = xtb, x2 = ytb, x3 = ztb, x4 = ẋtb, x5 = ẏtb, x6 = żtb.
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the relative orbit dynamic model can be stated as:
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The performance parameter is assessed by the shortest
relative distance and the least fuel cost, thus:
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Initial state

X(t0) = (x10, x20, x30, x40, x50, x60, u10, u20, u30).

Terminal state:

X(tf ) = (x1f , x2f , x3f , x4f , x5f , x6f , u1f , u2f , u3f ).

The restraint of the state variant, in other words, obstacle
restraint is defined as Ci(X) < 0. Due to the definition of the
secure area mentioned, the restraint function can be stated as
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Thus, the approaching trajectory plan is transformed into a
control optimization.

C. Solution to Safe Service Trajectory Plan

The state variants of each Gauss point are firstly defined
as X1N , X2N , X3N , X4N , X5N , X6N ∈ RN , control variants
U1N , U2N , U3N ∈ RN , then the optimization is turned into
NLP problem.

1) Here Is the Approximate Target Function by Gaussian
Quadrature Formula:

J = ϕ(tf − t0) +
tf − t0

2
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where ω ∈ RN is Gaussian weight.

2) The Differential Approximate Matrix D ∈ RN×(N+1) Is
Used to Get the Integration of State Function:
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When converting the optimization to NLP problem, it is
necessary to discretize the state matrix in consideration of the
successive time various.

The state matrix is represented as

A =
[
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]
(20)

which is related to target attitude, so firstly we discretize the
target Euler angle.
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The discretization of Euler angle is expressed as

Ωi+1 = Ωi + Ω̇l · τi+1 − τi

2
tf . (22)

Thus the approximate Euler angle ΩN = [ψN , θN , ϕN ] ∈
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target body frame to inertial frame can be stated as:
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4) The Trajectory Restraint of Gaussian Point
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(28)

else




h =
X2

1Xi

3
(a

2

)2 +
X2

2Ni

3
(a

2

)2 +
X2

3Ni

3
(a

2

)2 − 1 > 0, CiN = −h

h = 0, k =


 X1Ni

3
(a

2

)2

X2Ni

3
(a

2

)2

X3Ni

3
(a

2

)2




[X4Ni X5Ni X6Ni]T > 0, CiN = −k
(29)

If
√

3a

2
≤ X3Ni ≤ a

2
+ l, m = X2

1Ni +X2
2Ni > 0, CiN =

−m.
Obviously, the heavy calculation increase is responsible for

the massive discrete points, which just highlights the excellent
performance of Gaussian pseudo-spectral method for less node
calculation. Then, by this means of interpolating, a precise
solution can be evaluated. In this paper, 20 Gaussian points
are set to solve this NLP problem.

IV. SIMULATION

A. Validation of the Trajectory Plan Algorithm

Assuming the target satellite is a cube with 2 meters’ length
of edge, connecting solar panels whose dimensions are 4 m ×
0.1 m × 1 m. The spinning velocity on z axis is 0.14 rad/s. The
docking location is on (0, 0,−3) m in the target body frame.

The mass of OOSS is assumed as 50 kg. The OOSS is
assigned to maneuver from P0 = (10,−8,−5)T m to Pf =
(0, 0,−3)T m. Considering fuel cost only, the approaching tra-
jectory is designed in the secure area, and the hovering position
is solved which satisfies the restraints set by the Gaussian
pseudo-spectral method. In order to completely validate the
planning algorithm, based on the discrete trajectory points
calculated, the continuous smooth trajectories by Lagrange’s
interpolating polynomial are generated first, and then the
discrete control strategy is substituted into dynamical model to
acquire the simulation trajectories. Finally, the errors between
the two kinds of trajectories are analyzed.

The generated trajectory is illustrated in Fig. 2 which incor-
porates the assumptions made above, where the green points
represent the discrete trajectory points; the red dotted line
conveys the interpolated trajectory based on those discrete
points and the blue solid line conveys the dynamic trajectory
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generated by dynamic model. It is clear to see that the interpo-
lation and dynamic trajectory have not entered the prohibited
area which is combined by a sphere and an ellipsoid, and they
are almost overlapped, with the errors between them illustrated
in Fig. 3; showing the max value being 0.06 m. All these results
have proved the validity of the planning algorithm, and its
ability to avoid collision of any possible part of the satellites,
including the antenna, nozzle, solar panel, etc.

Fig. 2. Optimized safe trajectories P0 = (10,−8,−5)T m to Pf =

(0, 0,−3)T m.

Fig. 3. Errors between the interpolation and dynamic trajectory.

In order to prove the universality of the planning algorithm,
the initial and terminal positions are respectively adjusted to
P0 = (10, 8,−5)T m and Pf = (0,−3, 0)T m.

The optimized safe relative motion states and trajectories of
two satellites in the target body frame are generated and shown
in Fig. 4; the errors between the interpolation and dynamic
trajectory are shown in Fig. 5, with max value being less than
0.02 m.

Furthermore, relative motion trajectory in the target orbit
frame is shown in Fig. 6, where the blue solid line conveys the
target satellite’s docking axis trajectory, and the red blocked
line conveys the OOSS trajectory relative to the target. During
the approaching phase, the OOSS should always track the
docking axis of the target. However, the orientation of the
docking axis changes due to the rotation of the target, so
there should be a dynamic docking corridor for the OOSS
to approach the docking position, whilst spinning along with
the target. It is designed to finish the approach in 50 s in this
simulation, with the target rotating about one circle.

Fig. 4. Optimized safe trajectories ((10, 8,−5)T m to (0,−3, 0)T m).

Fig. 5. Errors between the interpolation and dynamic trajectory.

Fig. 6. Relative motion trajectory in target orbit frame.

B. Simulation Analysis of the Trajectory Plan Algorithm

1) Influence of Different Optimal Objectives: Previous sim-
ulations were designed to research the influence of different
optimal ambitions during the ultra-short approach. For require-
ments of various applications, it may be expected to plan a
very close trajectory to the satellite envelope, or least fuel cost
or integrated optimization. In order to prove the validity and
feasibility, three optimization options are designed as follows:

Considering relative distance only, the optimal function is:

J = min h.

Considering fuel cost only, the optimal function is:
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Fig. 7. Optimized relative trajectories respectively to three optimization options.

TABLE I
FUEL COST UNDER DIFFERENT OPTIMAL FUNCTION

Optimal function Fuel cost
J = min h 656.9464

J = min

(
1

2
uT u

)
0.4788

J = min

(
h +

1

2
uT u

)
104.0128

J = min (
1
2
uT u).

Considering relative distance and fuel cost, the optimal
function is:

J = min (h +
1
2
uT u).

The initial and terminal position are adjusted to
(−10, 8,−5)T m and (−3, 0, 0)T m. The optimized trajectories
respective to three optimization options in target body frame
(up) and target orbit frame (down) are shown in Fig. 7.

According to the simulation diagrams above, different op-
timized safe trajectories for different optimal functions can
be generated by the algorithm presented in this paper. The

fuel cost evaluated by J =
1
2
uT u is shown in Table I. It is

illustrated that for the on-orbit ultra-short detection mission
using Nano-satellite, considering both relative distance and
fuel cost is a better optimization than the other two, which
meet the demand of a close enough trajectory with less fuel.

2) Influence of Different Maneuver Time Restraints: In the
previous simulation, the maneuver time is manually set to 50 s.
But it is obvious that different maneuver time corresponds to
different approach routes, with varying fuel costs. Therefore
the trajectory plan also requires a linear search for optimal
maneuver time which satisfies restraints of the lower fuel
cost and terminal relative geometry relationship. The different
trajectories with different maneuver times are shown in Fig. 8.
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Fig. 8. Trajectories corresponding to different maneuver time.

The fuel cost under different time restraints is indicated in
Table II, drawing the conclusion that the fuel cost correspond-
ing to maneuver time of 150 s is the lowest among the four
time restraints. However, the optimal maneuver time cannot
definitely be 150 s. More simulations with the maneuver time
around 150 s should be performed to get closer to the lowest
possible fuel cost, whilst making sure the project is still viable.

TABLE II
FUEL COST WITH DIFFERENT MANEUVER TIME

Maneuver time (s) Fuel cost
50 14.63
100 11.95
150 8.44
200 10.96

V. CONCLUSION

This paper is aimed at creating an ultra-short approach
trajectory plan for OOSS, and we present a theory based on
the Gaussian pseudo-spectral method. Besides this, a new and
innovative model for secure and prohibited area considering
target rotation could be ensured. Finally, the paper has shown
a design for a trajectory plan algorithm for different safe
restraints, with its solution deriving from the Gaussian pseudo-
spectral method. The plan method covers relative distance, fuel
cost, and the maneuvers’ time consideration, and has been
proved valid and effective by the simulation above.
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