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ABSTRACT The optimal design of power converters often requires a huge number of simulations and
numeric analyses to determine the optimal parameters. This process is time-consuming and results in a high
computational cost. Therefore, this paper proposes a deep reinforcement learning (DRL)-based optimization
algorithm to optimize the design parameters for power converters using a deep neural network (DNN)-based
surrogate model. The surrogate model of power converters can quickly estimate the power efficiency from
input parameters without requiring any simulation. The proposed optimization model includes two major
steps. In the first step, the surrogate model is trained offline using a large dataset. In the second step, a soft
actor-critic-based optimizationmodel interacts with the surrogate model from step 1 to determine the optimal
values of design parameters in power converters. Unlike deep Q learning-based methods, the proposed
method is able to handle large state and action spaces. In addition, using entropy-regularized reinforcement
learning, our proposed method can accelerate and stabilize the learning process and also prevent trapping
in local optima. Finally, to show the effectiveness of the proposed method, the performance of different
optimization algorithms is compared, considering over ten power converter topologies.

INDEX TERMS Component sizing, deep reinforcement learning, deep neural networks, optimal design
parameters, optimization, power converters, surrogate model.

NOMENCLATURE
ABBREVIATIONS
DNN Deep neural network
DRL Deep reinforcement learning
DDPG Deep deterministic policy gradient
SAC Soft actor-critic
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I. INTRODUCTION
With the rapid growth of clean energy sources (wind turbines
and PV panels) and their integration with the power system,
hybrid AC-DC power networks are becoming popular in
modern power systems. Due to the integration of AC/DC
sources and AC/DC loads, a DC subgrid has recently been
developed and tied to the AC bus via one or multiple
bidirectional DC/AC interlinking converters [1]. In a subgrid,
primary energy resources and local load are commonly
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connected to the electrical network via DC-DC/AC-DC
converters [2].

Power converters consist of interconnected individual
circuit components (e.g., resistors, capacitors, inductors,
diodes, and switching devices), making their design quite
complex and prone to inefficiencies. To increase the energy
conversion efficiency and stability in modern power systems,
power converters are often optimally designed to achieve
different operation goals [3]–[6]. For instance, the authors
in [4] have proposed a novel soft-switching integrated boost
DC-DC converter for PV power systems to reduce loss and
improve power conversion efficiency. The authors in [5]
have developed an optimization-based design method for
high-efficiency power converters that considers the power
factor and limitations of current ripples. The authors in [6]
have developed a multi-objective design for buck converters
to improve the overall performance of the output LC
filter.

To achieve the design goals, many optimization algorithms
have also been proposed and widely used for specific prob-
lem, including single- or multiple-objective problems [7], [8].
The simulated annealing algorithm has been utilized for
parameter identification of an energetic hysteresis model [9].
A population-based search algorithm, the bee colony opti-
mization algorithm, has been used for a Sheppard-Taylor
power factor correction converter [10]. A genetic algorithm
and particle swarm optimization algorithm are proposed
in [11] for the total power loss optimization of a resonant
converter. A novel optimal design for medium-frequency
transformers using a multi-objective genetic algorithm has
been presented in [12] to determine the best transformer for
a given power converter topology.

However, these optimization algorithms [8]–[12] have
often been developed based on a model-based approach.
Therefore, a complex model might be required, and it may be
impossible to develop detailed models for complicated power
converter topologies. Therefore, several recent studies have
applied self-learning models, e.g., reinforcement learning
(RL), for decision-making problems of power converter
design [13]–[18]. In RL, there is no requirement for any
model of the dynamic environment, and the learning agent
evaluates its selected actions based on penalties or rewards
obtained by interacting with the dynamic environment
[19], [20]. A Markov decision process (MDP) model and
a deep Q network-based optimization model have been
developed in [15] for the stabilization issue of power
converters. A Q-learning algorithm has been applied in [16]
to train an agent offline for a DC-DC converter, and then
the trained agent provides control decisions online during
real-time operation to reduce the power losses. A deep
deterministic policy gradient (DDPG) algorithm has been
applied in [17] to minimize power losses in dual active bridge
(DAB) converters. A DDPG-based optimization model has
been proposed in [18] to adjust the active disturbance
rejection controller for the voltage regulation of DC-DC buck
converters.

Most of these studies have focused on solving opti-
mal parameter design problems using Q-learning, deep
Q-learning [15], [16], or DDPG [17], [18]. In these methods,
it is often difficult to tune hyperparameters to achieve
global optimization due to brittle convergence properties
and high sample complexity [21], [22]. Using Q learning
and deep Q network-based models also present challenges
to handling a large or continuous action space [23], [24].
In addition, in the optimal parameter design for power
converters, thousands of simulations are required for the
optimization process. This process often takes many hours
to determine the optimal solution with high computation
cost. Therefore, an approximation model to replace dynamic
simulation modeling is necessary to quickly map the input
information onto the output measurement.

To overcome the above-mentioned problems, a soft
actor-critic (SAC)-based optimization algorithm is proposed
in this study to optimize the design parameters of power
converters. First, a DNN-based surrogate model is developed
and is then trained by an offline process. Then, the trained
agent can interact with the surrogate model to quickly esti-
mate the power efficiency, without requiring any simulation.
This can significantly reduce the learning time for optimal
parameter design of power converters. Furthermore, the
proposed SAC-based optimization model inherits several
desirable traits, such as the ability to handle continuous
state and action spaces, accelerate and stabilize the learning
process, and prevent trapping in local optima by using
entropy-regularized RL. The performance of the proposed
method is also evaluated using over ten DC-DC power
converter topologies. Finally, the performance of the pro-
posed method is compared with different parameter design
algorithms for power converters. The major contributions of
the paper are as follows.

• An SAC-based optimization strategy is proposed to
optimize the parameter design for power converters
using a deep neural network-based surrogate model.
The use of entropy-regularized reinforcement learn-
ing results in an accelerated and stabilized learning
process.

• Deep neural network-based surrogate models are devel-
oped to replace dynamic simulationmodels. This greatly
reduces the learning time for the DRL agent to find the
optimal solution.

• Implementation of the state-of-the-art RL algorithm can
achieve a better cumulative reward and can determine
better solutions for the parameter design problems. The
proposed method also shows good performance with
over ten test topologies.

The rest of the paper is organized as follows. Section II
discusses the development of a DNN-based surrogate
model for power converters. Section III presents the
proposed DRL-based optimization algorithm for com-
ponent sizing of power converters. Section IV shows
the effectiveness of the proposed method with various
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FIGURE 1. A test case with buck converter.

FIGURE 2. Typical surrogate model.

power converter topologies. Finally, conclusions are drawn
in Section V.

II. SURROGATE MODEL FOR POWER CONVERTERS
A. PHYSICAL MODEL AND SURROGATE MODEL
1) PHYSICAL/DYNAMIC MODEL
Figure 1(a) shows a popular power converter topology used in
power systems (i.e., buck converter). This topology consists
of a DC voltage source, two switches, a capacitor, and a
resistor. Figure 1(b) describes a block diagram to calculate
the power efficiency using input/output voltage, input/output
current, and power losses. In the design process of power
converters, the values of input parameters were varied within
a predefined boundary and power efficiency was measured
by carrying out Simulink simulations. However, this process
might require hundreds of thousands of simulations for a sin-
gle user’s desired outputs. Therefore, we collect simulation
data and use it to train a surrogate model to reduce the design
cycle of power converters, as shown in Figure 2.

FIGURE 3. DNN-based surrogate model.

2) SURROGATE MODEL
The surrogate model is an approach used when the outcomes
of a model cannot be directly measured easily or require a
long time to complete a simulation [25], [26]. The surrogate
model is developed in those cases to mimic the behaviors of
the physical or simulation models as closely as possible [26].
This will greatly reduce the time spent in optimizing the
design and analyzing the sensitivity of a model that requires
thousands of simulations to carry out.

Figure 2 shows the process of developing a surrogate
model. This process is divided into two main stages,
(i) dataset collection and (ii) training and testing of the
surrogate model. The dataset is generated by performing sim-
ulations with different setting values of the input parameters
{x1, x2, . . . , xN }. The output signal is measured at the end
of the simulation {y1, y2, . . . , yN }. This process is executed
iteratively to obtain a large dataset for the training and testing
processes of the surrogate model. After the training and
testing processes, the surrogate model is used to quickly map
the input parameters onto the output with high accuracy.

B. DNN-BASED SURROGATE MODELS FOR POWER
CONVERTERS
In this study, a DNN-based surrogate model is used to
replace the simulation model of power converters. Firstly,
a large number of simulations are performed using MAT-
LAB/Simulink with different combinations of input parame-
ters, such as resistance, inductance, switching frequency, and
so on. This dataset is then split into training and test sets
for training the surrogate model. After the training process,
the surrogate model can provide an estimation of the power
efficiency that is close to the Simulink simulation results
using the same input information. The training and testing
process of the DNN-based surrogate models of the power
converter is summarized in Figure 3.

Table 1 shows ten common parameters for a typical power
converter (e.g., buck converter). This table provides setting-
values boundaries for different components like inductors,
capacitors, resistors, and switching components. The number
of converter parameters determines the number of nodes in
the input layer or the size of the input layer. For instance,
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TABLE 1. Input information of surrogate model for buck converter.

TABLE 2. Setup of DNN-based surrogatge model.

10 input parameters are considered for a buck converter,
so the input layer size is 10 nodes. The different values of
input parameters are fed into the input layers of the DNN-
based surrogate model. The output of the surrogate model
represents the power efficiency of the converter and the
output size is always 1. To determine the optimal parameters
for DNN, a sensitivity analysis was performed with many
different network configurations. Selected configuration not
only avoids underfitting and overfitting issues but also
minimizes the training/testing loss. Detailed parameters for
the DNN-based surrogate model are tabulated in Table 2.

III. DRL-BASED COMPONENT SIZING OF POWER
CONVERTERS
In this section, a detailed DRL-based optimization model is
presented for optimal component sizing of the power con-
verter. In power converter design, there are two major steps
including (i) designing the converter topology and (ii) optimal
component sizing of a given topology. This study mainly
focuses on step 2 to solve the component sizing problem.
Since a power converter is composed of various components,
different sizes of components might significantly affect the
performance of the power converter (e.g., power efficiency).
Therefore, optimal component sizing for power converters
is an important task to determine the suitable size of all
components in a power converter for a given design objective,
such as reducing design costs or increasing power efficiency.

A. COMPONENT SIZING AS A MARKOV
DECISION PROCESS
Here, we formulate the component sizing problem of power
converter as an MDP which consists of four essential

elements: state, action, state transition, and reward, as fol-
lows [19], [20].
• State (st ): A state represents the information about
setting values of input parameters of power converter,
as shown in (1). The value of state parameters needs to
be normalized for the convergence and stability of the
training process, as given in (2).

• Action (at ): The agent observes the system state st at
time t and selects an action, which represents the change
in input design parameters, as shown in (3).

• State transition: The state’s transition from time t to t +
1 is shown as st+1 = f (st , at ) and the state transition
mainly depends on the action selection.

• Reward (rt ): A reward function represents the improve-
ment in power efficiency at the current state compared
with the initial state, as shown in (4), and the learning
agent attempts to maximize the cumulative reward
during the training process. The reward at each state is
quickly determined using the surrogate model.

st =
[
PSetm,t , . . . ,P

Set
M ,t

]
∀t ∈ T (1)

st [k] =
st [k]− smint [k]

smaxt [k]− smint [k]
∀k ∈ K , t ∈ T (2)

at = {1PSetm,t , . . . ,1P
Set
M ,t } (3)

rt = SM (st + at)− SM (sinital) ∀t ∈ T (4)

A SAC-based optimization model is implemented to
determine the optimal components’ size of power converter.

B. SAC-BASED OPTIMIZATION MODEL
In this study, soft actor-critic (SAC) is used to optimally
determine the component sizing of power converters due to
its fast learning and stable training process. The main idea
behind SAC is to use a modified RL objective by adding
entropy regularization, as given in (5) [22], [27].

J (θ) =
∑
t∈T

E(st ,at )∼ρπθ [r(st , at )+ αH(πθ (.|st ))] (5)

where:

H is the entropy measure
α is a weight factor (or temperature parameter)

representing the importance of the entropy term

The entropy term indicates how unpredictable a random
variable is. This means that high entropy leads to the value
of the variable being more unpredictable. Therefore, high
entropy is important to explicitly encourage exploration, and
the policy assigns the same probability to actions having the
same Q-values. This ensures that the learning agent does not
collapse into repeatedly selecting the same action during the
learning process.

In SAC, the learning agent learns a policy network {πθ }
and two Q-networks {Qφ1 ,Qφ2}. The loss function of the Q-
networks is calculated using (6), while the target is computed
in (7). The Q-function is updated by one step of gradient
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descent using (8).

L (φi,D) = E
(s,a,r,s′,d)∼D

[(
Qφi (s, a)− y

(
r, s′, d

))2] (6)

y
(
r, s′, d

)
= r + γ (1− d)

(
MinQφtar,i

(
s′, ã′

)
−αlogπθ

(
ã′|s′

))
i = 1, 2 (7)

Gφ = ∇φi
1
|B|

∑
sample in B

(
Qφi (s, a)− y

(
r, s′, d

))2
i = 1, 2 (8)

The learning agent tries to maximize the sum of the
expected future returns and expected future entropy. This
helps the learning agent to accelerate the learning process
and avoid trapping in local optima. The policy network is
updated by one step of gradient ascent using (9). Finally, the
target network is updated by soft copy, as given in (10). This
helps the target network to change slowly and ensures a stable
learning process.

Gθ = ∇θ
1
|B|

∑
sample in B

(
MinQφi (s, ãθ (s))

−αlogπθ (ãθ (s)|s)) i = 1, 2 (9)

φtar,i ← ρφtar,i + (1− ρ) φi i = 1, 2 (10)

The optimization algorithm and learning process are
presented in detail in the following section.

C. OPTIMIZATION ALGORITHM AND LEARNING
PROCESSES
The optimization process for maximizing power efficiency is
shown in Figure 4 with two major learning models, including
training a surrogate model and the optimal parameter design
of power converters.

Firstly, a DNN-based surrogate model is trained to mimic
the behavior of a given power converter with a large
dataset. This dataset is collected by carrying out a Simulink
simulation, where input combinations are randomly selected
and measure a simulation outcome (i.e. power efficiency).
A DNN with optimal weights is used to predict the power
efficiency for the optimal components sizing of the power
converter.

A DRL agent is developed to optimize the component size
of a power converter using the soft actor-critic algorithm.
Firstly, five different deep neural networks are initialized
for the learning process, including a policy network, two
Q networks, and two target networks. A memory of size
D is also initialized for the experience replay process. The
learning agent starts at the initial state with initial setting
values for all components and chooses actions using the
current policy. The agent carries out these actions, receives an
immediate reward, and observes a new state. The immediate
reward is determined using the DNN-based surrogate model,
instead of carrying out a long simulation (up to several
minutes). Optimizing parameter design of power converters
typically requires a large number of simulations. Therefore,

the use of the surrogate model significantly reduces the
learning time for the DRL agent. After finishing a transition
from s to s′, the information of

{
s, a, r, s′

}
is stored in the

memory D. During a training step, a mini-batch is randomly
drawn fromD and the target y, and losses are then calculated.
The optimization step is carried out to minimize the loss
function. The weights of all deep neural networks are updated
using gradient descent (i.e., Q-functions) and gradient ascent
(i.e., policy). The target network is slowly updated using
a soft copy from Q-functions; this helps to stabilize the
learning process. The learning process is summarized in
Algorithm 1 and is repeated for multiple episodes.

Algorithm 1: SAC-Based Optimal Component Sizing of
Power Converters
Initialize policy θ , Q-function φ1, φ2, replay buffer D
Set target parameters: φtar,1 ← φ1, φtar,2 ← φ2
for e = 1, E do: # Learning episodes

for k=1, K do: # Learning step
Observe state of power converter:
s is initial values of all components
Select action a ∼ πθ (.|s) and carry out a to adjust the
setting values
Observe s′, reward r , done signal d , and store
(s, a, r, s′, d) in D

end
for g=1, G do: # Gradient step

Randomly sample a batch of transitions B from D
Compute target Q network:
y(r, s′, d) =
r + γ.(1− d)

(
Min Qφtar,i (s

′, ã′)− α.logπθ (ã′|s
′)
)
i = 1, 2

Update Q network using:

∇φi
1
|B|

∑
sample in B

(
Qφi (s, a)− y(r, s

′, d)
)2

i = 1, 2
Update policy network using:

∇θ
1
|B|

∑
sample in B

(
MinQφi (s, α̃θ (s))−α.logπθ (ãθ (s)|s)

)
i=1, 2

Update target networks:
φtari ← ρ.φtar,i + (1− ρ).φi i = 1, 2

end
end

After training with a large number of episodes, the learning
agent can use policy parameters to determine the optimal
setting values for components of power converters with any
initial input parameters.

IV. SIMULATION RESULTS
A. SURROGATE MODEL: TRAINING AND TESTING
PROCESSES
In this section, the detailed training and evaluation process of
a DNN-based surrogate model is presented for a specific case
(i.e., buck topology). The same process is performed for ten
other common topologies, including boost, buck-boost, LLC,
DAB, flyback, forward, push-pull, half-bridge, full-bridge,
and switched-capacitor converters.

1) BUCK CONVERTER
To show the performance of the proposed surrogate model,
a simple buck converter is used in this section. As mentioned
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FIGURE 4. Overall flowchart for optimal component sizing with surrogate model.

earlier, a large dataset is required to train and test the surrogate
model. In this study, the dataset is generated by carrying out
Simulink simulations with different setting values of input
information and measuring power efficiency in each case.
We consider ten different parameters for the buck converter,
as given in Table 1. Therefore, the input and output size of the
DNN-based surrogate model are as follows.
(i) Input layer: 10 nodes representing 10 input parameters
(ii) Output layer: 1 node representing the power efficiency
Other parameters of DNN is optimally selected as given

in Table 2. Firstly, a sensitivity analysis is performed to
determine a suitable size for the dataset. The DNN-based
surrogate model is trained with different sizes of datasets,
and the average error on the test set is summarized in
Figure 5. It can be observed that with a larger dataset, the
performance of the surrogate model is improved. However,
generating a large dataset is time-consuming, so a trade-off
between the size of the dataset and the prediction error is
considered. A suitable size for the dataset is about 30,000
data points, and the error of the proposed model is also within
an acceptable range. Furthermore, with a larger dataset (i.e.
over 30,000), the performance of the surrogate model does

FIGURE 5. Performance of surrogate model with different sizes of dataset.

not show significant improvement. Thus, a dataset of 30,000
is used for all DNN-based surrogate models in this study. The
detailed dataset for a buck converter is shown in Figure 6.
With random combinations of 10 input parameters, the power
efficiency ranges from [0.35, 1.00].

The dataset is split into the train, validate, and test sets
composed of 70%, 20%, and 10% of the dataset respectively.
Figure 7 shows the training process for the DNN-based
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FIGURE 6. Dataset of buck converter with 30,000 samples.

surrogate model. It can be observed that the training and
validation losses have converged after 500 training epochs,
as shown in Figure 7(a). The well-trained parameters of the
DNN are saved for power efficiency prediction. To represent
the accuracy of the proposed surrogate model, 100 data
points are randomly drawn from the test set and fed to the
model. The actual and predicted power efficiencies are shown
in Figure 7(b). The detailed error for each data sample is
shown in Figure 7(c). It can be observed that the proposed
DNN-based surrogate model can estimate the output with
acceptable errors. The average error for 100 random test
samples is less than 0.005, where the error of each sample
and average error of a test set are determined by (11), (12),
respectively.

ek =
∣∣ηact,k − ηpred,k ∣∣ (11)

eavg =
1
N

N∑
k=1

∣∣ηact,k − ηpred,k ∣∣ (12)

where:

ηact,k : actual power efficiency using Simulink
simulation

ηpred,k : predicted power efficiency using surrogate
model

eavg: average prediction error over N test samples

Finally, the performance of the proposed surrogate model
is summarized in Figure 8. Figure 8(a) shows the prediction
error with the entire available dataset, while Figure 8(b)
shows the prediction error with only new data (i.e., test sets).
It can be observed that most test data have a rather small
prediction error in [−0.03, 0.03].

2) OTHER POWER CONVERTERS
As mentioned earlier, the proposed method is tested with
11 well-known converter topologies. Table 3 summarizes the
prediction error for DNN-based surrogate models for buck,
boost, buck-boost, LLC, DAB, flyback, forward, push-pull,
half-bridge, full-bridge, and switched-capacitor converters.
It can be observed that all proposed surrogate models are able
to provide good performance. Most predictions on the test
data have small errors, between 0 to 0.03.

FIGURE 7. Training and testing processes of the surrogate model.

B. DRL-BASED COMPONENT SIZING OF POWER
CONVERTERS
In the previous section, DNN-based surrogate models were
developed and tested with various power converter topologies
to predict power efficiency with high accuracy and also
to reduce the learning time for an optimal components
sizing process. This section determines the optimal size
of components in power converters that use different
deep reinforcement algorithms for maximizing the power
efficiency.

1) THREE MAJOR INPUT PARAMETERS
Firstly, the optimal number of parameters needs to be
specified. In the first test case, only 3 parameters are selected
for the optimization process, including switching frequency,
inductance, and capacitance. To show the effectiveness of
the proposed method, the performance of both DDPG-based
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FIGURE 8. Testing performance of the surrogate model.

TABLE 3. Test performance of proposed surrogate models (11
topologies).

and SAC-based optimization models is presented in this
study. The training process with both algorithms is shown
in Figure 9 for a buck converter. Figure 9(a) shows the total
episode reward and Figure 9(b) shows the average rewards
with 500 training episodes. It can be observed that both
algorithms converge to a close value of total episode rewards
after 500 training episodes.

Since both algorithms converge to a similar total reward,
the optimal solutions using 2 algorithms are also similar.
In addition, the brute force method is also used to search the
optimal parameters by performing Simulink simulation with
a large number of input combinations. Optimal parameters
determined using different methods are presented as follows:
(i) Brute force: Optimail parameters [F, L, C] are [128889,

0.0001, 0.0005] and optimal efficiency is 0.975592.

FIGURE 9. Training process for three parameters (buck).

(ii) DDPG: Optimail parameters [F, L, C] are [158964.0,
0.0001, 0.0005] and optimal efficiency is 0.9774.

(iii) SAC: Optimal parameters [F, L, C] are [148964.0,
0.0001, 0.000185] and optimal power efficiency is
0.9775.

Other parameters are kept constant at default value as
follows.
• MOSFET resistance (Rds): 5e-3 �
• Diode voltage (Vd ): 0.8 V
• Rising time (tr ): 4e-9 s
• Falling time (tf ): 6e-9 s
• Input voltage (Vin): 48 V
• Output voltage (Vout ): 5 V
• Output power (Pout ): 20 W
Based on the comparison of simulation results of 3 differ-

ent methods, it can be observed that the proposed method can
find the optimal parameters with better power efficiency.

2) INCREASED NUMBER OF INPUT PARAMETERS
In previous case, only 3 parameters are kept constant accord-
ing to user requirements, including input voltage, output
voltage, and output power at 48 V, 5 V, and 20W, respectively.
All remaining parameters are optimally determined using
different optimization algorithms in this section. The training
process is shown in Figure 10 with 500 episodes. Figure 10(a)
shows the total episode rewards, while Figure 10(b) shows the
average value of rewards over the learning process. It can be
observed that both algorithms converge at high total rewards;
however, the SAC-based optimization model can find an
optimal solution, which is much better than using the DDPG
method.
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FIGURE 10. Training process for seven parameters (buck).

TABLE 4. Optimal parameters using different methods.

Table 4 summarizes the results obtained from the three
different methods, with detailed information for the setting
values of the parameters. The proposed method and brute
force simulation can determine better parameters with higher
power efficiency than the DDPG-based model. However, the
brute force method often requires doing a lot of simulation
and this can require a high computational cost.

Similar to the previous section, the proposedmethod is also
tested with different power converter topologies. The optimal
solutions for over ten different topologies are presented in

TABLE 5. Optimal solutions for different 11 topologies.

TABLE 6. Computation cost with/without surrogate model.

Table 5. It can be observed that the proposed method can find
optimal solutions close to those of the brute force method,
where a large number of simulations are carried out with
random input combinations.

3) COMPUTATION COST COMPARISON
Table 6 summarizes the computation cost for determining
the optimal parameters for power converters. In most studies
available in the literature on optimal parameter design,
the optimization model typically measures the response
from the dynamic environment by performing an actual
simulation. Therefore, it often prolongs the learning process
considerably. In Table 6, the buck converter is presented as
an example, with detailed information for the offline/online
learning process. It can be seen that an offline learning
process is required to train the surrogate model and it
may take about 1 day. However, this is just an offline
learning process and the well-trained surrogate model is
used to accelerate the online learning process to determine
component sizes (∼30 minutes), whereas without a surrogate
model, the learning agent must carry out a large number of
simulations. This significantly increases the online learning
time (∼18 hours). Moreover, this online learning process is
required every time if the user information changes (e.g.,
input voltage, output voltage, output power).

V. CONCLUSION
In this paper, a soft actor-critic (SAC)-based optimization
strategy using a deep neural network-based surrogate model
is proposed to optimize the design parameters for power
converters. Firstly, a DNN-based surrogate model is trained
for each power converter with a large dataset. After the offline
training process, the online training time is significantly
reduced to only about 30 minutes with any change in user
settings, whereas it may take up to 18 hours to determine
the optimal solution with each change in user settings
without the surrogate model. In addition, the comparison of
different optimization algorithms shows that the SAC-based
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models can help the learning agent converge quickly to the
optimal solution. The results obtained using the SAC-based
optimization model are acceptable and are similar to the brute
force method, i.e., carrying out a large number of simulations
with random input combinations.
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