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ABSTRACT In this paper, a novel finite-time command filtered backstepping control algorithm is proposed
to address the problems of high order nonlinearity, noise and friction interference when tracking the pitch
angles of wind turbine hydraulic pitch systems. Since taking derivative is not required, the system noise
cannot be amplified in the algorithm design process. The finite-time command filter is first employed to
filter the state variables of the hydraulic pitch systems to eliminate the interference caused by the noise
and friction. Moreover, the filter is combined with backstepping design to approximate the derivatives of
virtual control variables to avoid ‘‘Differential expansion’’ phenomenon. In addition, in order to ensure the
accuracy of the filtered signals to approximate the virtual control variables, a finite-time error compensation
mechanism is designed. Simulation results show the effectiveness and high-precision tracking performance
of the proposed algorithm in this paper.

INDEX TERMS Wind turbine, hydraulic pitch system, backstepping control, finite-time command filter,
position tracking.

I. INTRODUCTION
As large-scale wind turbines continues to increase, hydraulic
pitch systems are widely used in the turbines. Compared with
the electric servo pitch systems, the hydraulic pitch systems
have many advantages such as faster response, longer service
life, higher reliability[1]–[3]. The hydraulic pitch systems
often use hydraulic cylinders as actuators, This system is
the first choice for large wind turbines as it has the charac-
teristics with high power density, small clearance and high
reliability. The pitch systems driven by hydraulic cylinders
convert the linear motion of the hydraulic cylinders into
the circular motion of blades by a crank slider mechanism,
thereby realizing pitch operation. However, the crank slider
mechanismwill complicate the pitchmechanism and prone to
occur faults. In order to overcome the shortages of hydraulic
cylinder pitch systems, we apply hydraulic motors as actua-
tors in this paper. The hydraulic motor pitch system drives
pinion gears to drive large ring gears at the blade root by
the hydraulic motors, which has simpler structure and higher
reliability than applying the hydraulic cylinders.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaowei Zhao.

To achieve effective tracking control of hydraulic systems,
many scholars have completed a lot of researches using
various advanced control strategies. Reference [4]–[6] pro-
posed using genetic algorithm and fuzzy rule to optimize
the parameters of PID controller to achieve adaptive control
and improve the tracking performance of hydraulic systems.
Reference [7]–[9] addressed the nonlinear dynamics problem
of hydraulic systems by means of feedback linearization.
Furthermore, Lyapunov theory was used to derive control
laws, which makes the system stable. Reference [10]–[12]
adopted fuzzy self-adjustment mechanism to adapt to sliding
mode control parameters. Therefore, the system vibrations
are reduced and convergence speed is improved. In [13],
a hydraulic pitch controller with self-tuning fuzzy sliding
mode compensation was developed to better compensate
the influence of Coulomb friction in hydraulic pitch sys-
tems. Most of the above references adopted linearization
methods. However, hydraulic pitch systems have complex
dynamic characteristics, for instance, the system parameters
will change with changing of pressure, oil temperature, and
valve opening, which demand higher performance of the
controller.
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In order to deal with the complex dynamic characteristics
of hydraulic systems, [14] proposed an ideal adaptive com-
pensation method with the function of eliminating system
noise, in which actual state feedback values were replaced by
the expected values and the discontinuity caused by the sym-
bol function was approximated by the continuous function
in compensation loop. Thereby, the progressive tracking per-
formance of hydraulic systems was improved. In [15]–[19],
a self-adaptive integral control for hydraulic systems was pro-
posed. The parameter uncertainty of systems was addressed
by the adaptive control law of discontinuous projection,
and the unmodeled interference was reduced by the integral
robust feedback term based on the extended error. In recent
years, many scholars have begun to apply backstepping
design method to hydraulic systems. The backstepping con-
trol was proposed to solve the nonlinearity and parame-
ter uncertainty of the system, and realize adaptive control
for hydraulic systems in [20]–[24]. In addition, to realize
progressive tracking in pitch systems, backstepping control
was combined with adaptive rules to solve nonlinearity and
parameter time-varying in pitch systems in [25] and [26].
However, it is difficult to guarantee the tracking accuracy for
external interference and noise.

In order to realize the bounded position tracking perfor-
mance of wind turbine hydraulic pitch systems and improve
the tracking accuracy of pitch angle, we proposes a finite-time
command filtered backstepping control strategy in this paper.
It is well known that the backstepping control can achieve
adaptive control of uncertain nonlinear systems. However,
in the backstepping design process, the derivatives of virtual
control variables need to be gained, which prone to the prob-
lem of ‘‘differential explosion’’. Therefore, we use a novel
command filter to approximate the derivatives of the virtual
control variables in the backstepping design process, avoiding
direct derivation of the virtual control variables. Furthermore,
we not only employ an error compensation mechanism for
derivation error to reduce the deviation introduced by com-
mand filter but also combine the command filter with finite-
time method to filter the actual state feedback variables to
reduce the interference of noise and friction. So the system
has better anti-interference performance, faster convergence
speed and higher precision.

The algorithm designed in this paper has many advantages
as follows.
(1) The problem of ‘‘differential explosion’’ caused by

direct derivative calculation is overcome by the
command filter technique. In addition, an error
compensation mechanism is used to compensate the
error.

(2) The derivatives of the state variables of hydraulic pitch
systems are not taken, so that the noise is not be ampli-
fied, and the interference caused by noise and friction
is reduced by the command filter.

(3) Compared with the PID control based on artificial
bee colony algorithm and finite-time expansion differ-
ential backstepping control, the proposed finite-time

FIGURE 1. Hydraulic motor pitch system.

command filtered backstepping control algorithm in
this paper has faster convergence speed and stronger
anti-interference capacity.

II. MODELLING FOR HYDRAULIC
PITCH SYSTEMS
The hydraulic pitch system is mainly composed of a
hydraulic motor, an electro-hydraulic proportional valve, an
accumulator, an overflow valve, a hydraulic pump and a pitch
controller, as shown in FIGURE 1. The electro-hydraulic pro-
portional valve changes the flow direction of the oil according
to the polarity of the output electric signals of the pitch
controller to realize the positive and negative rotation of the
hydraulic motor. In addition, the oil flow is controlled to
adjust the rotation speed of the hydraulic motor in terms of
the amplitude of electric signals. The hydraulic motor drives
pinion gears to propel girth gear rings at blade root, which
changes the pitch angle. The accumulator eliminates pressure
pulsation by absorbing oil shock to improve the stability
of the entire hydraulic systems. When system pressures are
greater than the normal set value of the systems, the overflow
valve acting as a safety valve will open and the pressure oil
will return to the fuel tank to avoid excessive pressure in the
hydraulic systems, which ensures not damage the hydraulic
systems.

The relationship between the spool displacement and con-
trol command is usually approximated as a first-order linear
formula, which is expressed as follows.

xv = kv u (1)

where xv is the electro-hydraulic proportional valve spool
displacement, kv is the proportional gain, u is the control
signal.
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According to Newton’s second law, the force balance for-
mula of hydraulic motor is expressed as follows.

J
··

θ = Dm Ps−Bm
·

θ −Tl −Tf (2)

where θ is the rotation angle of the motor, J is the total
moment of the inertia of the hydraulic motor and loads, Dm
is the displacement of the hydraulic motor, Ps = P1 + P2 is
the supply pressure of the hydraulic system, P1 is the inlet
chamber pressure of the hydraulic motor, P2 is the return
chamber pressure of the hydraulic motor, Bm is the damping
coefficient of the hydraulic viscous damping, Tl is the load
torque, Tf is the friction torque.

The dynamic formula of the load pressure of hydraulic
motor is expressed as follows.

Vt
4βe

·

Pl = −Dm
·

θ −Ct Pl +Ql (3)

whereVt is the total compression volume of the two chambers
and the connecting pipe of the hydraulic motor, βe is the
effective bulk elastic modulus, Pl = P1−P2 is the load
pressure, Ct is the total leakage coefficient of the hydraulic
motor, Ql is the load flow of the hydraulic motor.

The flow formula of the electro-hydraulic proportional
valve is expressed as follows.

Ql = Cd Wxv

√
Ps−sign (xv)Pl

ρ
(4)

where Cd is the flow coefficient of the valve, W is the area
gradient of the valve, ρ is the density of the hydraulic oil.
Symbolic function Sign(∗) is expressed as follows.

sign (∗) =


1, if ∗ > 0
0, if ∗ = 0
−1, if ∗ < 0

(5)

The pitch angle β is expressed as follows.

β =
θ

ig
(6)

where ig is the gear ratio, and its size must meet the following
constraint.

wmmin

wpmin
≤ ig ≤

wmmax

wpmax
(7)

where wmmin and wmmax are the minimum and maximum
speeds of the hydraulic motor respectively, wpmin and wpmax
are the minimum and maximum speeds of the pitch gear
respectively.

The state variables in hydraulic pitch systems are defined

as x = [x1, x2, x3]T =
[
β,
·

β,Pl

]T
, then the state space

formulas of the hydraulic pitch systems are expressed as

follows.

·
x1 = x2
·
x2 =

Dm
Jig

x3−
Bm
Jig

x2−
Tl + Tf
Jig

·
x3 =

4βe Cd Wk

Vt
√
ρ

u
√
Ps− x3 sign (u)−

4βe Ct
Vt

x3

−
4βe Dm ig

Vt
x2

x1 = yd

(8)

The formula (8) can be further expressed as follows.

·

x1 = x2
·

x2 = b1 x3− b2 x2− b3
·

x3 = b4 g (x, u) u− b5 x3− b6 x2
x1 = yd

(9)

where b1 = Dm
J ig
, b2 = Bm

J ig
, b3 =

Tl +T f
J ig

, b4 =
4βe Cd Wk
Vt
√
ρ
,

b5 =
4βe Ct
Vt

, b6 =
4βe Dm ig

Vt
, g (x, u) =

√
Ps− x3 sign (u), yd

is the input signal.

III. DESIGN FOR CONTROL LAWS
Hypothesis 1: the input signal yd of the reference angle is

continuous, n-order derivable and bounded.
Hypothesis 2: the supply pressurePs of the hydraulicmotor

pitch system is a constant, and the friction torque Tf always
hinders the system from moving.
Lemma 1 [27]: Suppose V (x) is a smooth positive definite

function on C1 (defined U ⊂ Rn) and
·

V (x) + λV α (x) is a
negative semidefinite function on U ⊂ Rn, α ∈ (0, 1). There
is a region of U0 ⊂ Rn, in which any V (x) can reach zero
within a finite time. If the time required to reach V (x) ≡ 0 is
Tr , then Tr ≤ V 1−α(x0)

λ(1−α) .
where V (x0) is the initial value of the V (x).
Lemma 2 [28]: For any real numbers λ1 > 0,

λ2 > 0, 0 < γ < 1, the condition of the finite time

stable Lyapunov is
·

V (x) + λ1 V (x) + λ2 V (x)γ ≤ 0, and
the stable time is estimated by Tr ≤ t0+

[
1
/
λ1 (1− γ )

]
ln
[(
λ1 V 1−γ (t0)+ λ2

)
/ λ2

]
.

The first-order Levant differentiator is further expressed as
follows [29], [30].

·
ϕ1 = v1
v1 = − r1 |ϕ1 − αr |

1
2 sign (ϕ1 − αr )+ ϕ2

·
ϕ2 = − r2 sign (ϕ2 − ν1)

(10)

where αr is the input signal. The following lemma is obtained
when the parameters r1 and r2 are both appropriate.
Lemma 3 [29]: If the parameters r1 and r2 are chosen

reasonably, the following formula is valid after a finite time
transient process without noise interference. And the corre-
sponding solution of the dynamic system is stable within a
finite time. {

ϕ1 = αr0

v1 =
·
αr0

(11)
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Lemma 4 [31]: If the inequality |αr −αr0| ≤ k is valid
in the case of containing input noise, then the following
inequalities exist within a finite time.{

|ϕ1−αr0| ≤ µ1 k = $1∣∣∣v1− ·αr0∣∣∣ ≤ λ1 k 1
2 = $2

(12)

where $1 and $2 are both positive normal numbers and
their sizes depend on the design parameters of the first-order
Levant differentiator.

Based on the formula (10), the design of the finite time
command filter is expressed as follows.

·
ϕi,1 = vi,1

vi,1 = − ri,1
∣∣ϕi,1 − αi∣∣ 12 sign (ϕi,1 − αi)+ ϕi,2

·
ϕi,2 = − ri,2 sign

(
ϕi,1 − αi

)
i = 1, · · · , n− 1

(13)

where αi is the input of the virtual control signal,
xi+1,c = ϕi,1 and

·
x i+1,c = vi,1 are both the outputs of the

finite time command filter.
The tracking error of the hydraulic pitch systems are as

z1 = x1− yd , z2 = x2− x2,c, z3 = x3− x3,c, which are fur-
ther defined based on the outputs of the finite time command
filter. yd is the desired angle input signal, x2,c and x3,c are
both the virtual control signals from the finite time command
filter.

The error compensation signal can be expressed as
vi = zi− δi, i = 1, 2, 3, δi is the error compensation value.

Define Lyapunov function as follows.

V1 =
1
2
v21 (14)

The derivative of function V1 is as follows.
·

V 1 = v1
·
v1

= v1
(
·
z1 −

·

δ1

)
= v1

(
z2+

(
x2,c−α1

)
+ α1−

·
yd −

·

δ1

)
(15)

Construct the virtual control variable α1 as follows.

α1 = − k1 z1+
·
yd − s1 v

γ

1 (16)

where k1 and s1 are both the positive parameters to be
designed, γ is a normal number whose range is 0 < γ < 1.

Define the error compensation signal as δ1, then
·

δ1 = −k1 δ1+
(
x2,c−α1

)
+ δ2− h1 sign (δ1) (17)

where h1 is the parameter to be designed, δ1 (0) = 0.
Substitute the formulas (16) and (17) into formula (15),

then
·

V 1 = v1
(
z2+ x2,c−

·
yd −

·

δ1

)
= v1

(
z2+x2,c−

·
yd +k1 δ1−

(
x2,c+k1 z1−

·
yd+s1 v

γ

1

)
− δ2+ h1 sign (δ1)

)
= v1

(
−k1 v1+ v2− s1 v

γ

1 + h1 sign (δ1)
)

(18)

Define Lyapunov function V2 as follows.

V2 = V1+
1
2
v22 (19)

The derivative of function V2 is as follows.
·

V 2 =
·

V 1 + v2
(
·
x2 −

·
x2,c −

·

δ2

)
=
·

V 1 + v2
(
− b2 x2− b3+ b1

(
z3+ x3,c

)
−
·
x2,c −

·

δ2

)
=

.

V 1 + v2 (− b2 x2− b3+ b1 z3)

+ v2
(
b1
(
x3,c−α2

)
+ b1 α2−

·
x2,c −

·

δ2

)
(20)

where b3 = −
Tl +Tf
Jig ,

in which load torque Tl and friction

torque Tf are both variables. Therefore, the range of b3 is
limited within b3min ≤ b3 ≤ b3max.
·

V 2 ≤
·

V 1 + v2 (− b2 x2− b3min+ b1 z3)

+ v2
(
b1
(
x3,c−α2

)
+ b1 α2−

·
x2,c −

·

δ2

)
(21)

The virtual control signal α2 is as follows.

α2 =
1

b1

(
−k2 z2+

·
x2,c + b2 x2+ b3min− z1− s2 v

γ

2

)
(22)

where k2 and s2 are both the parameters to be designed,
·
x2,c

is the differential of α1 from the finite time command filter.
Define the error compensation signal δ2 as follows.
·

δ2 = − k2 δ2+ b1
(
x3,c−α2

)
+δ1+ b1 δ3− h2 sign(δ2) (23)

where h2 is the parameter to be designed, δ2 (0) = 0.
Substitute formulas (22) and (23) into formula (21) as

follows.
·

V 2 = − k1 v21− k2 v
2
2− s1 v

γ+1
1 − s2 v

γ+2
2

+ v1 h1 sign (δ1)+ v2 h2 sign (δ2)+ b1 v2 v3

=

2∑
i=1

[
− ki v2i − si v

γ+1
i + vi hi sign (δi)

]
+ b1 v2 v3 (24)

Define Lyapunov function V3 as follows.

V3 = V2+
1
2
v23 (25)

The derivative of function V3 is as follows.
·

V 3 =
·

V 2 + v3
·
v3

=

2∑
i=1

[
− ki v2i − si v

γ+1
i + vi hi sign (δi)

]
+ b1 v2 v3+ v3

(
·
x3 −

·

δ3 −
·
x 3,c

)
=

2∑
i=1

[
− ki v2i − si v

γ+1
i + vi hi sign (δi)

]
+ b1 v2 v3+v3

(
− b5 x3−b6 x2+b4 g(x, u)u−

·

δ3−
·
x3,c
)

(26)
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where g (x, u) =
√
Ps− x3 sign (u) is an uncertain variable,

further analysis is as follows.

Ps−Pl sign (u) = (P1+P2)− (P1−P2) sign (u)

2 P2 ≤ Ps − Pl sign (u) ≤ 2P1 (27)

In practical engineering applications, P1 and P2 are both
much greater than 0, g (x, u) is greater than 0 and is bounded.
Then, we can defined an inequality as follows.

0 < pmin ≤ g (x, u) ≤ pmax (28)

According to formula (28), the following expression can
be gained.
·

V 3

≤

2∑
i=1

[
− ki v2i − si v

γ+1
i + vi hi sign (δi)

]
+ b1 v2 v3+v3

(
− b5 x3−b6 x2+b4 pmax u−

·

δ3−
·
x3,c+dt

)
(29)

The final output control law u is as follows.

u =
1

b4 pmax

(
− k3 z3+

·
x3,c + b5 x3+ b6 x2− b1 z2− s3 v

γ

3

)
(30)

where k3 and s3 are both constants which greater than zero,
·
x3,c is the differential of α2 from the finite-time command
filter.

In the process of algorithm design, it is not necessary to cal-
culate the derivatives of the hydraulic state variables, which
not only reduces the calculation amount but also improves
the operating efficiency of the algorithm, furthermore, avoids
the noise of the hydraulic system being amplified for taking
derivatives. Therefore, the tracking accuracy and stability of
the hydraulic systems can be improved.

Define the error compensation signal δ3 as follows.
·

δ3 = − k3 δ3− b1 δ2− h3 sign (δ3) (31)

where h3 is the parameter to be designed, δ3 (0) = 0.
Substitute formulas (30) and (31) into formula (29) as

follows.
·

V 3 =

3∑
i=1

[
− ki v2i − si v

γ+1
i + vi hi sign (δi)

]
(32)

Based on Young’s inequality, the expression can be gained
as follows.

vi hi sign (δi) ≤
1
2
hi v2i +

1
2
hi [sign (δi)]2 ≤

1
2
hi v2i +

1
2
hi

(33)

Then

·

V 3 ≤ −

3∑
i=1

(
ki−

1
2
hi

)
v2i −

3∑
i=1

si v
γ+1
i +

3∑
i=1

1
2
hi

≤ −mV3−n V
γ+1
2

3 +r (34)

where m = min (2 ki− li) , n = min (si) · 2
1+γ
2 , r =

n∑
1

hi
2 ,

i = 1, 2, 3.
If 2 ki− hi > 0, we can determine that the range of vi is

|vi| ≤ min

{√
2r

(1−θ0)m
,

√
2
(

r
(1−θ0) n

) 2
γ+1

}
.

With 0 < θ0 < 1, zi = vi+ δi, to prove that zi con-
verges to a small region, it is necessary to prove that δi is
bounded within a finite time. The bounded proof of δi is as
follows.

V ′3 =
1
2

3∑
i=1

δ
2
i (35)

·

V ′3 = δ1
·

δ1 + δ2
·

δ2 + δ3
·

δ3

= − k1 δ21 + δ1
(
x2,c−α1

)
+ δ1 δ2− δ1 h1 sign (δ1)

− k2 δ22 + b1 δ2
(
x3,c−α2

)
− δ1 δ2+ b1 δ2 δ3− δ2 h2 sign (δ2)

+

(
− k3 δ23 − b1 δ3 δ2− δ2 h2 sign (δ2)

)
= −

3∑
i=1

ki δ2i −
3∑
i=1

δi hi sign (δi)+ δ1
(
x2,c−α1

)
+ b1 δ2

(
x3,c−α2

)
= −

3∑
i=1

ki δ2i −
3∑
i=1

hi |δi| + δ1
(
x2,c−α1

)
+ b1 δ2

(
x3,c−α2

)
(36)

According to Lemma 3,
∣∣(xi+1,c−αi)∣∣ ≤ $i1 can

be obtained. With b4 being a bounded constant, define
η ≤ b4 g (x, u) ≤ ρ, we can gain an expression as follows.

·

V ′3 ≤ −
3∑
i=1

ki δ2i + |δ1|
∣∣(x2,c−α1)∣∣+ |b1| |δ2| ∣∣(x3,c−α2)∣∣

−

3∑
i=1

hi |δi| + |δ3|$31 ρ

≤ − k0 V ′3− h0 V ′
1
2
3 +
√
2× 3$ ′1 ρ V ′

1
2
3

≤ − k0 V ′3−
(
h0−
√
2× 3$ ′1 ρ

)
V ′

1
2
3 (37)

where k0 = 2min (ki), h0 =
√
2min (hi),$ ′1 = max {$i1}.

According to Lemma 2, it can be proved that δi converges
to zero within a finite time if h0−

√
2× 3$1 ρ > 0. Let

δ1 = 0 and v1 is bounded. Then, we can know z1 ≤ v1+ δ1.
Thus, the pitch angle tracking error z1 of the hydraulic pitch
system converges to a small region.

IV. COMPARISON OF EXPERIMENTAL RESULTS
In this paper, the hydraulic components of the SimHydraulics
module library in Matlab are used to build the experimental
platform for hydraulic pitch systems, as shown in FIGURE 2.
In the hydraulic pitch systems, the measurement noise with a
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FIGURE 2. Hydraulic pitch system simulation platform.

TABLE 1. Parameters designed of hydraulic motor pitch systems.

power spectral density of 10−4W
/
Hz is added to the feed-

back loop, with a sampling time of 1 ms. Hydraulic system
piping is used to convey hydraulic oil, which parameters are
shown as: the radius is 0.03 m, the length is 5 m, the polymer
equivalent length of local resistance is 2 m, the geometry
shape factor is 64. Hydraulic oil parameters are shown as:
the model is Skydrol LD-4, the oil density is 947kg

/
m3. The

TABLE 2. Parameter variation ranges of hydraulic motor pitch systems.

electro-hydraulic proportional valve parameters are shown as:
the maximum opening area of valves is 8×10−5m2, the max-
imum opening of valves is 0.03m, the critical Rayleigh num-
ber is 12, the gear ratio is 12, the simulation sampling time of
hydraulic systems is 1ms.
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FIGURE 3. (a) Comparison of pitch angle tracking with input signal amplitude of 2; (b)Comparison of pitch angle tracking error with input
signal amplitude of 2; (c)Comparison of pitch angle tracking with input signal amplitude of 0.5; (d)The comparison of tracking angle error
with input signal amplitude of 0.5.

A. DESIGN OF PID CONTROLLER BASED ON ARTIFICIAL
BEE COLONY ALGORITHM (ABCPID)
The PID controller is mainly composed of a proportional
coefficient P, an integral coefficient I and a differential coef-
ficient D. By adjusting three parameters of the PID con-
troller, the output displacements of hydraulic systems can be
controlled. And the desired position signals can be tracked.
To reduce the adjustment time of the PID controller param-
eters, we implement artificial bee colony algorithm to off-
line optimize the parameters of the PID controller, which are
kp = 25, ki = 4.2, kd = 1.5 respectively. The control law
expression is as follows.

u = kp (x1− yd )+ kd
x1 − yd
dt

+ ki

∫
(x1− yd ) dt (38)

B. FINITE TIME EXPANSION DIFFERENTIATOR
BACKSTEPPING CONTROL (FTEDBC)
In [24], a new backstepping control method based on
extended differentiator was proposed. By applying a second-
order differentiator with finite time convergence, the differ-
ential estimations of system state variables were obtained.
The differential estimator was used to address the related

information with uncertainty. At the same time, the deriva-
tives of the virtual control variables in the backstepping
design process are also approximated by the second-order
differentiator with finite time convergence to avoid directly
calculating derivatives of the virtual control variables.

The main design procedure of this algorithm is expressed
as follows. 

z1 = x1− yd
z2 = x2−α1
z3 = x3−α2

(39)

where yd is the input reference signal, which α1, and α2 are
both the virtual control variables.

α1 =

(
k1+

1
2

)
z1+

·
yd

α2=−
z2
b1

(
k2+1+

b21
4 η21
+

1

4 η22

(
yx2−

·
α1

)2
+

1

4 η23
b21 x

2
3

)
u =

1

b4 pmin

(
−

(
k3+

1
2
+ η21

)
z3+ b5 x3+ b6 x2+ yα2

)
(40)
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where yx2 is the approximate differential of x2, yα2 is the
approximate differential of α2, u is the control law of the
system.

The main parameters are k1 = 15, k2 = 15, k3 = 15,
η1 = 0.3, η2 = 0.2, η3 = 0.2.

C. FINITE TIME COMMAND FILTERED BACKSTEPPING
CONTROL (FTCFBC)
The control law in this paper is as shown in formula (30).
The main design parameters are k1 = 15, k2 = 15, k3 = 40,
γ = 0.6, h1 = 5, h2 = 5, h3 = 10, s1 = 25, s2 = 30,
s3 = 30. The design parameters of the finite time command
filter are r1 = 400, r2 = 100.
According to the hydraulic module in simHydraulics,

the experimental platform of hydraulic pitch systems is built
to test the control performance of the algorithm proposed in
this paper.

The tracking performance of the three control algorithms
is tested in the environment without external interference
and friction. The pitch angle input signals are shown in for-
mula (41). FIGURE 3. (a) and (c) are both the comparison of
the tracking results of the three control algorithms at different
pitch angles. According to FIGURE 3. (b), the error of the
PID control algorithm based on bee colony optimization is
larger than that of the other two algorithms. The error curve
of this proposed algorithm in this paper is smoother than that
of the finite-time differentiator control algorithm. FIGURE 3.
(d) is the tracking error of three control algorithms under
low amplitude of 0.5, which show that PID controller based
on bee colony optimization algorithm has better tracking
performance in tracking low amplitude pitch angle signals
except for about contrary trend pitch angle.

yd =

{
2 (sin(0.8t)+ sin(0.4t)+ sin(0.2t)) 0 < t ≤ 50
0.5 (sin(0.8t)+ sin(0.4t)+ sin(0.2t)) 0 < t ≤ 50

(41)

Under the action of input noise and friction torque,
yd = 2 (sin(t)+ sin(0.8t)+ sin(0.6t)) is used as the input
reference angle signal to test the tracking performance of the
proposed algorithm and other two algorithms. The expression
of the friction torque is shown in formula (42). It is well
known from FIGURE 4.(b) that the pitch angle based on the
PID control algorithm has large deviations under the action of
the interference of noise and friction, which shows the lack of
adaptive capability of the PID control algorithm. According
to FIGURE 4. (b), the error of the other two algorithms is
both only 20% of that of the PID control algorithm, which
proves that the backstepping control based on the finite-time
extended differentiator and the algorithm proposed in this
paper both have good adaptive capability under the action
of noise and friction interference. Compared with the finite-
time extended differentiator backstepping control, the error
of the proposed algorithm in this paper is about 60% of the
former. On the one hand, the control accuracy is improved
by the error compensation mechanism. On the other hand,

FIGURE 4. (a)Comparison of pitch angle tracking under the combined
action of friction and noise; (b)Comparison of pitch angle tracking error
under the combined action of friction and noise.

the system state noise is not amplified for not calculating the
derivatives of the state variables. Thus, the stability of the
hydraulic system is enhanced.

Tf =

{
400 wp = 0
320sign(wp)+ 1.2wp wp 6= 0

(42)

In order to further test the response speed and track-
ing accuracy of the proposed algorithm, the pitch angle
input signal of the faster frequency is adopted as
yd = 2 (sin(8t)+ sin(4t)+ sin(2t)), 0 < t ≤ 50. We can
know from FIGURE 5. (a) that the pitch angle outputs from
the PID controller are completely out of the trajectory of
the input pitch angle when the pitch angle changes fast,
indicating that the PID control algorithm has slow response
speed and insufficient self-adjusting capability. It can be
concluded from FIGURE 5. (a) and (b) that the error range
is [−0.2 0.15] based on the proposed control algorithm in
this paper while the error range is [−0.8 0.4] based on finite-
time differential backstepping control algorithm, which the
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FIGURE 5. (a)Comparison of pitch angle tracking under the condition of
fast change of input signal frequency; (b) Comparison of pitch angle
tracking error under the condition of fast change of input signal
frequency.

error of the former is about 29.2% of the latter. Accordingly,
the the former has faster response speed and higher tracking
accuracy than the latter. Furthermore, we can know from
FIGURE 3.(b), FIGURE 4.(b) and FIGURE 5.(b) that the
tracking accuracy of the algorithm based on the finite-time
expansion differential backstepping is significantly reduced,
however, the proposed algorithm in this paper still has high
tracking accuracy.

Based on the above experiments, the physical simulation
models and control algorithms of the hydraulic motor pitch
systems are applied in a 3MW wind turbine system for sim-
ulation test. FIGURE 6. (a) is the simulation wind speed
curve with a maximum wind speed of 16m/s, a minimum
wind speed of 14m/s and a rated wind speed of 12m/s.
FIGURE 6.(b) and (c) show that the hydraulic motor pitch
systems can track the pitch angle change on time, and the out-
put power of the wind turbine is stable about the rated value.

FIGURE 6. (a)Sinusoidal wind speed curve; (b)Pitch angle tracking curve
under sinusoidal wind speed; (c)Power output curve under sinusoidal
wind speed.

Thus, the effectiveness of the proposed control algorithm is
further verified.

V. CONCLUSION
A novel finite-time command filtered backstepping control
method is proposed for wind turbine hydraulic pitch sys-
tems to improve the position tracking performance. By using
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the command filtered technique and the error compensation
mechanism in backstepping design, the problem of ‘‘differ-
ential expansion’’ caused by continuous derivative in back-
stepping control is overcome. The state trajectories of the
system are bounded by means of adopting the finite-time
convergence method, thus ensuring that the tracking error of
the pitch angle converge to a small region. Through simula-
tion experiments, the tracking performance of the proposed
algorithm is respectively verified under the conditions of no
interference, noise and friction working together, and the
variation of the pitch angle frequency from FIGURE 3 to
FIGURE 5. Further-more, comparing the tracking perfor-
mance based on the proposed control algorithm in this paper
with those of the other two control algorithms, the results
show that the new algorithm has the best performance in
tracking control in the more complicated case.
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