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ABSTRACT In recent decades, robot-assisted rehabilitation therapy has been widely researched and
proven to be effective in the motor function recovery of disabled individuals. In this paper, an adaptive
backstepping sliding mode control approach combined with neural uncertainty observer is developed for
upper-limb exoskeleton, which can help the human operator perform repetitive rehabilitation training.
Firstly, a comprehensive overview about the therapeutic exoskeleton hardware and real-time control system
is introduced. Then, the neural adaptive backstepping sliding mode controller (NABSMC) is developed
based on radial basis function network (RBFN) to improve the trajectory tracking accuracy with external
disturbances and dynamics errors. Next, the closed-loop stability of the proposed controller is demonstrated
according to the Lyapunov stability theory. Finally, further experimental investigation are conducted on three
volunteers to compare the control performance of NABSMC strategy with an optimal backstepping sliding
mode control (OBSMC) strategy. The comparison results show that the proposed NABSMC algorithm
is capable of achieving higher trajectory tracking accuracy and better step response characteristic during
repetitive passive rehabilitation training.

INDEX TERMS Upper-limb exoskeleton, rehabilitation training, adaptive backstepping sliding mode
control, neural uncertainty observer, Lyapunov stability theory.

I. INTRODUCTION
Loss of motor ability in upper extremity is a serious problem
faced by many individuals, such as stroke patients, elderly
people, and the patients with spinal cord or orthopedic injury.
The statistical data from theWorld Health Organization show
that there are over 15 million individuals surviving a stroke
in the world, and 80% of the survivors may experience hemi-
paresis. These people present an urgent need for the expanded
rehabilitation training and prolonged motion assistance in
activities of daily living (ADL). According to the clinical
research results of neurological rehabilitation, appropriate
repetitive motion of affected extremity shows positive effects
on realizing functional improvements and optimizing body
balance [1]–[3]. Traditionally, the one-to-one assisted reha-
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bilitation training manually conducted by physiotherapists
has been widely applied in the clinical hemiplegia therapy.
However, there are many inherent disadvantages in the man-
ual rehabilitation training, such as high labor intensity, long
time consumption, high treatment cost, poor sustainability
and weak repeatability. In addition, the therapy efficacy is
dependent on the personal experience and treatment skill of
physiotherapist. Therefore, the application of robotic devices,
known as rehabilitation robots in physiotherapy assistive
areas, has captured increasing attention from around the
world in recent decades. The employment of robot-based
treatment has demonstrated a high capacibility to improve
the motor function of affected limb of patients. Compared
with the manual training, the robotic training is able to deliver
high-intensity and high-efficiency training with pertinence
control algorithms and, furthermore, monitor the therapy
progress of patients with integrated sensing system [4]–[6].
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Currently, a vast variety of rehabilitation robots have been
developed to improve the motor functions of disabled people.
The existing therapeutic robots for upper limb rehabilitation
training can be divided into two types based on structural
characteristics, i.e., end-effector-based rehabilitation robot
and exoskeleton-based rehabilitation robot [7]. The motions
of end-effector system are generated from the distal seg-
ment of impaired extremity with single connection, in which
no alignment between robot joints and biological joints is
required. Some typical end-effector robots for upper limb
training are MIME [8], GENTLE/s [9], TA-WREX [10],
WFFS [11], PARM [12], DIAGNOBOT [13], CARR [14],
and so on. Comparatively, exoskeleton system has a more
complex structure imitating the anatomy of human skele-
ton and ensuring the alignment of human and robot joint
axis. Some examples of upper-limb rehabilitation exoskele-
ton are NEUROExos [15], CAREX-7 [16], IntelliArm [17],
BONES [18], RUPERT [19], RECUPERA [20], UL-
EXO7 [21], and so on. The rehabilitation exoskeleton can
be worn on the affected extremity of patient with multiple
contacted points and, therefore, is capable of regulating the
interactive forces of each joint separately.

The effectiveness of robotic rehabilitation training is
directly dependent upon the control strategies applied in
therapeutic devices. For the hemiplegia patients at acute
phase, the patient-passive training contributes to stimulate
muscle contraction and avoid motor degeneration, and it
requires the affected limb passively perform repetitive reach-
ing tasks along predefined trajectories [22]. However, due
to the highly nonlinear robot dynamics, the unknown exter-
nal disturbance and the movement-varying viscoelastic char-
acteristics of biological joints, the accurate control of the
rehabilitation training system shows additional complexity
over the conventional manipulator. So far, different control
strategies have been developed for rehabilitation robots to
enhance the position control performance during repetitive
reaching training. For example, a neuron proportion-integral
feedforward controller with capacities of learning, adapta-
tion, and tackling nonlinearity was proposed in [23] to reduce
the position control error of a pneumatic-muscle-driven upper
limb rehabilitation robot. A nonlinear sliding mode controller
combined with an exponential reaching law was developed
in [24], which can reduce chattering problem and deliver bet-
ter tracking performance of an upper limb exoskeleton named
MARSE-7. In [25], an adaptive control strategy capable of
guaranteeing the safety and fault-tolerance during trajectory
tracking operation was proposed for a wearable exoskeleton.
In [26], a model-based fuzzy sliding mode controller with a
proportional-integral-derivative sliding surface was proposed
to ensure robust and optimal position control performance.

Since the exact dynamic model parameters of human-
robot interaction system are difficult to obtain, many control
techniques have been proposed to compensate the dynamic
uncertainties. Li et al. [27] proposed an approximation-based
iterative fuzzy backstepping controller for an exoskeleton to
estimate dynamic uncertainties and compensate time-varying

disturbances during forearm movement assistance. In [28],
a sliding mode tracking controller with a nonlinear distur-
bance observer was developed for a wire-driven rehabili-
tation robot to deal with the unpredictable disturbances in
passive training. An adaptive time-delay estimation method
was developed by Brahim et al. [29] to estimate the unknown
dynamics of an exoskeleton and perform accurate passive
repetitive training. In [30], an adaptive integral terminal slid-
ing mode controller was proposed to deal with the bounded
dynamic uncertainties of exoskeleton and achieve passive
rehabilitation training. In [31], an adaptive controller was
developed for an exoskeleton with input saturation, and it
can approximate the uncertain robotic dynamics and suppress
unknown disturbances.

Neural network technology is one of the effective methods
in modeling the unknown system dynamics. Until now, to the
largest of our knowledge, few researches on integrating the
adaptive neural-network-based approximation strategy into
the backstepping sliding mode control for the rehabilitation
robots have been developed. This paper is well motivated
for the accurate position control of an upper limb therapeutic
exoskeleton with dynamics errors and unknown disturbances.
Compared with the previous works, the novel contribution
of this study focuses on developing a new neural adaptive
backstepping sliding mode controller (NABSMC) for an
upper extremity exoskeleton, which is capable of assisting
the individuals with motor disorder in accurately performing
passive repetitive training. To tackle the dynamic uncertainty
and guarantee the control robustness, a feedforward neural
adaptive uncertainty observer is developed based on a radial
basis function network (RBFN) to estimate and compensate
the lumped effects of disturbances and modeling errors. The
closed-loop stability of the proposed control scheme with
proper parameters is demonstrated via the Lyapunov stability
theorem, and the practical control performance is validated
via experimental comparative research.

The rest of this paper is arranged as the following form.
The overall structure of the rehabilitation exoskeleton is
introduced in the Section II. The backstepping sliding mode
controller, the neural adaptive uncertainty observer, and the
stability analysis are presented and discussed in Section III.
The experimental methods and results are provided and ana-
lyzed in Section VI. Section V draws the conclusion and
future works of this paper.

II. THE UPPER-LIMB EXOSKELETON
A. MECHANICAL DESIGN
The design of the upper-limb exoskeleton for rehabilitation
training is depicted in Fig. 1. The proposed exoskeleton
can provide assistance to the shoulder, elbow and wrist of
the right arm of wearer. There are seven actuated degrees
of freedom (DOFs) to match the biological revolute joints
and achieve full range of movement in ADL, i.e., shoul-
der internal/external rotation, shoulder abduction/adduction,
shoulder flexion/extension, elbow flexion/extension, forearm
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FIGURE 1. Mechanical design of the upper-limb rehabilitation
exoskeleton.

pronation/supination, wrist flexion/extension and wrist
ulnal/radial deviation. Besides, the exoskeleton ismounted on
a self-aligning platform with two passive translational DOFs,
which can compensate themisalignment of shoulder joint and
improve human-robot interaction coordination. To guarantee
the coincidence of robot and human joint axes, the lengths of
upper arm and forearm, as well as the shoulder height, can be
adjusted in accordance with the anthropometry parameters
of wearer with a body height ranging from 1.6 m to 1.9 m.
The actuated robot joints at shoulder and elbow are driven
by the servo motors (RH-400, RENHOU) combined with
flexible Bowden-cable transmission components, which are
mounted on a support frame separated from exoskeleton [32].
The robotic wrist joints are driven by two coreless servo
motors (JG-37, ASLONG). A passive gravity compensation
mechanism, consisting of auxiliary parallel links and free-
length springs, is installed in the exoskeleton to achieve
the gravity-balance of the whole robotic system [33]. High-
precision rotary potentiometers (WDJ22A-50K, OMTER)
are encapsulated into the robot joints to measure the con-
figuration of exoskeleton. In order to obtain the human-
robot interaction forces and torques, two six-axis force/torque
sensors (NANO-25, ATI) are installed on the upper arm and
distal end-effector of exoskeleton. For safety consideration,
mechanical end stops and dead-man buttons are integrated
into the exoskeleton to avoid excessive movement and shut
down the system in emergency situation.

B. ELECTRICAL CONTROL SYSTEM
Fig. 2 presents the schematic of the closed-loop real-time
control system of exoskeleton, which is developed in the
MATLAB/Simulink/xPC environment (2016a, Mathworks)
with the real-time-workshop (RTW) core. Two industrial
personal computers (IPC-610, Advantech) are utilized as
the host computer and target computer of the RTW

FIGURE 2. The architecture of the MATLAB/Simulink/xPC real-time
control system.

system, respectively. The host computer takes the charge of
establishing Simulink control models and converting these
models into corresponding executable C codes. The target
computer is capable of executing the embedded target codes
and controlling the movement of exoskeleton in real time.
The communication between host and target layers is realized
via RS232 serial port. Three industrial analog-to-digital cards
(PCL-818, Advantech) are installed into the target computer
to acquire the analog feedback signals from rotary poten-
tiometers and force/torque sensors. To reduce readout noise
and enhance control performance, the analog signals are
filtered through a second order low-pass Butterworth filter
with a cutoff frequency of 30 rad/s. In addition, two digital-
to-analog cards (PCL-726, Advantech) are installed into the
target computer for the purpose of converting the digital
control instructions into analog output signals. The output
analog signals are sent to the servo drivers to regulate the
operation of servo motors. The sample frequency of the real-
time control system is set to 0.1 kHz.

III. DEVELOPMENT OF NABSMC ALGORITHM
Wearable exoskeleton is a typical human-robot interaction
system with highly coupling properties, as it needs to work
in parallel with human limb during rehabilitation training or
motion assistance. The dynamic model of the entire system,
including the exoskeleton robot and biological limb, has been
established in our previous research as follow [26]:

τ=M (θ )θ̈+V (θ, θ̇ )θ̇+τf (θ, θ̇ )+ Du−JT1 (θ )01−J
T
2 (θ )02

(1)

Here, θ, θ̇ , and θ̈ ∈ R7 are the joint variable vectors
of positions, velocities, and accelerations. M (θ ) ∈ R7×7 is
the symmetric positive-defined inertia matrix of exoskeleton.
V (θ, θ̇ ) ∈ R7 is the centrifugal/Coriolis matrix of exoskele-
ton. 01 ∈ R6 and 02 ∈ R6 represent the Cartesian interaction
forces and torques applied on the upper arm and end-effector
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of exoskeleton. J1(θ ) ∈ R6×7 and J2(θ ) ∈ R6×7 are the
Jacobian matrixes that maps the human-robot interaction
forces into the torques acting at robot joints. τf ∈ R7 is the
resultant friction from Bowden cable transmission compo-
nent, motor reducers, and robot joints. Du ∈ R7 denotes the
lumped effects of dynamic uncertainties including external
disturbances andmodeling errors. τ ∈ R7 represents the input
vector of driving torques generating by servo motors.

SinceM (θ ) is symmetric positive definite, according to (1),
the acceleration of exoskeleton joint can be expressed as
follow:

θ̈=M (θ )−1
[
τ−V (θ, θ̇ )θ̇−τf (θ, θ̇ )−Du+JT1 (θ )01

+ JT2 (θ )02
]

(2)

The main objective of the proposed NABSMC algorithm
is to track the reference trajectory in presence of modeling
error and undesirable disturbance. The position tracking error
e1 ∈ R7 and velocity tracking error ė1 ∈ R7 are defined as
follows:

e1 = θd − θ (3)

ė1 = θ̇d − θ̇ (4)

where θd and θ̇d ∈ R7 represent the reference trajectory and
velocity of exoskeleton joint.

The stabilizing function can be defined as follow:

α1 = Ce1 (5)

Here, α1 ∈ R7 is the stable coefficient; C ∈ R7×7

represents a positive diagonal matrixes.
Then, the virtual control term e2 ∈ R7 is defined as follow:

e2 = ė1 + α1 = θ̇d − θ̇ + α1 (6)

Taking the derivative of e2 with respect to t , we can have

ė2 = θ̈d − θ̈ + α̇1

= θ̈d + α̇1 −M (θ )−1
[
τ − V (θ, θ̇ )θ̇ − τf (θ, θ̇ )− Du
+JT1 (θ )01 + JT2 (θ )02

]
(7)

The system stability is demonstrated based on the Lya-
punov stability theory [34], [35]. The first Lyapunov function
candidate is chosen as

V1 =
1
2
eT1 e1 (8)

Differentiating V1 with respect to time t and combining (4)
and (6), we can get

V̇1=eT1 ė1=e
T
1 (θ̇d − θ̇ )=e

T
1 e2 − e

T
1 α1=e

T
1 e2−e

T
1Ce1 (9)

It can be seen that if e2 = 0, V̇1 = −eT1Ce1 =

−

7∑
i=1

Cie21i ≤ 0. Thus, it is necessary to further design the

control law.
The switching function of the sliding surface s ∈ R7 is

defined as follow:

s = λe1 + e2 (10)

where λ ∈ R7×7 represents the positive diagonal matrixes
of proportional gain. From (7) and (10), the deviation of the
sliding variable s with respect to time t can be shown as
follows:

ṡ= λė1 + ė2

= λė1+θ̈d+α̇1 −M (θ )−1
[
τ − V (θ, θ̇ )θ̇ − τf (θ, θ̇ )

−Du + JT1 (θ )01 + JT2 (θ )02

]

= (λ+C)ė1+θ̈d−M (θ )−1
[
τ − V (θ, θ̇ )θ̇ − τf (θ, θ̇ )

−Du + JT1 (θ )01 + JT2 (θ )02

]
(11)

In the design of the proposed NABSMC scheme, the con-
trol law U is composed of three terms, i.e., the equivalent
control termUeq, the hitting control termUhit , and the distur-
bance compensation control term Udis, and can be presented
in the general form as follow:

U = Ueq + Uhit + Udis (12)

The equivalent control term determines the dynamic per-
formance of control system on the sliding surface, and it can
be obtained by recognizing ṡ = 0 without considering exter-
nal disturbances and modeling errors. Therefore, according
to (11), we can have

Ueq = M (θ )
[
(λ+ C)ė1 + θ̈d

]
+ V (θ, θ̇ )θ̇ + τf (θ, θ̇)

− JT1 (θ )01 − JT2 (θ )02 (13)

The hitting control term, which is developed to drive the
system toward the reference trajectory, is chosen as follow:

Uhit = M (θ ) [e1 + Ksat(s)] (14)

where K ∈ R7×7 denotes a positive diagonal matrixes; sat(s)
denotes a saturation function with a dead-zone compensation
expressed as follow:

sat(si) =

sign(si) if |si| > ϕ
(1− ρ)si + ρϕ

ϕ
if |si| ≤ ϕ

(15)

Here, ϕ is a positive constant defining the boundary layer
thickness of the saturation function; ρ represents the constant
dead-zone compensation value.

The second Lyapunov function candidate is chosen as
follow:

V2 = V1 +
1
2
sT s (16)

Differentiating V2 with respect to time t and combining (9)
and (11), we can get

V̇2= V̇1 + sT ṡ

= eT1 e2 − e
T
1Ce1 + s

T

×


(λ+ C)ė1 + θ̈d

−M (θ )−1
[
U − V (θ, θ̇ )θ̇ − τf (θ, θ̇ )
−Du + JT1 (θ )01 + JT2 (θ )02

] (17)
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FIGURE 3. The diagram of the proposed neural adaptive backstepping sliding mode control strategy.

Inserting (13) and (14) into (17) yields

V̇2= eT1 e2 − e
T
1Ce1 + s

T
[
−e1 − Ksat(s)+M (θ )−1Du

]
= (eT2 − s

T )e1 − eT1Ce1 − s
T
[
Ksat(s)−M (θ )−1Du

]
=−eT1 λe1 − e

T
1Ce1 − s

TKsat(s)+ sTM (θ )−1Du (18)

Since the lumped uncertainty of the exoskeleton system
is unknown in practical application, it is difficult to deter-
mine the boundary of the term M (θ )−1Du. For simplifica-
tion, we define β = M (θ )−1Du. Then, a neural adaptive
uncertainty observer is developed based on radial basis func-
tion network (RBFN) to adapt the estimated value of β̂.
The RBFN has been widely applied in nonlinearity approx-
imation due to its simple architecture and fast convergence
characteristic.

The structure of the three-layer RBFN, with the Gaussian
function as the receptive field unit, is shown in Fig. 3. Assum-
ing that there areM hidden nodes in the proposed RBFN, and
φ(ξ ) =[φ1(ξ ), φ2(ξ ), · · ·, φM(ξ )]T is the selected Gaussian
function. The output value of the Gaussian RBFN can be
calculated via the weighted sum approach defined as follows:

βi =

M∑
j=1

Wijφj(ξ ), i = 1, 2, · · · , N (19)

φj(ξ ) = exp

[
−

(
ξ − mj

)T (
ξ − mj

)
2b2j

]
(20)

Here, βi is the value of the ith output node. N denotes
the number of output nodes. ξ =

[
θ, θ̇ , e1, ė1

]T is the input
vector of RBFN. φj(ξ ) is the Gaussian function value for the
jth neural net in the hidden layer. Wij represents the weight
connecting the jth hidden node to the ith output node.mj is the
center vector of the receptive field. bj is the standard deviation
of the jth neuron unit.

For the purpose of developing the adaption algorithm of
the neural uncertainty observer, the minimum approximation

error εm ∈ R7 is defined as follow:

εm = β − β̂(W ∗) (21)

where W ∗ represents an optimal weight matrix that achieves
the minimum approximation error.

Then, the disturbance compensation control term is chosen
as follow:

Udis = M (θ )
[
ε̂m + β̂(W )

]
(22)

Here, ε̂m represents the estimated value of the minimum
approximation error.

From (12), (14) and (22), the total control law can be given
as follow:
U =M (θ )

[
(λ+ C)ė1 + θ̈d

]
+V (θ, θ̇ )θ̇+τf (θ, θ̇)−JT1 (θ )01

− JT2 (θ )02+M (θ ) [e1 + Ksat(s)]+M (θ )
[
ε̂m+β̂(W )

]
(23)

Then, the third Lyapunov function candidate is chosen as

V3=V2+
1
2η

(εm−ε̂m)T (εm−ε̂m)+
1
2
tr(W̃F−1W̃ T ) (24)

where η denotes a positive constant; F is a positive definite
and diagonal matrix; W̃ = W ∗ − W represents the weight
estimation error of RBFN; tr (·) denotes the trace operator.

Differentiating V3 with respect to t and combining (17),
(18) and (23), we can get

V̇3= V̇2−
1
η
(εm − ε̂m)T ˙̂εm + tr(W̃F−1 ˙̃W T )

=−eT1 λe1−e
T
1Ce1−s

TKsat(s)+sT
[
β−β̂(W )−ε̂m

]
−

1
η
(εm−ε̂m)T ˙̂εm + tr(W̃F−1 ˙̃W T )

=−eT1 λe1−e
T
1Ce1−s

TKsat(s)+sT
[
β − β̂(W ∗)−ε̂m

]
+ sT

[
β̂(W ∗)−β̂(W )

]
−
1
η
(εm−ε̂m)T ˙̂εm

+ tr(W̃F−1 ˙̃W T ) (25)
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The adaptation laws for ˙̂εm and Ẇ are provided by

˙̂εm = ηs (26)

Ẇ = sφ(ξ )TFT (27)

Then, inserting (21), (26) and (27) into (25), we can get

V̇3 = −eT1 λe1 − e
T
1Ce1 − s

TKsat(s)+sT (εm−ε̂m)

+ sT (W ∗−W )φ(ξ )−
1
η
(εm−ε̂m)T ˙̂εm+tr(W̃F−1 ˙̃W T )

= −eT1 λe1−e
T
1Ce1−s

TKsat(s)+sT (εm−ε̂m)

+ sT W̃φ(ξ )− (εm − ε̂m)T s+ tr(W̃F−1 ˙̃W T )

= −eT1 λe1−e
T
1Ce1−s

TKsat(s)+sT W̃φ(ξ )

+ tr(W̃F−1 ˙̃W T )

= −eT1 λe1−e
T
1Ce1−s

TKsat(s)

+ tr
[
W̃φ(ξ )sT−W̃F−1Ẇ T

]
= −eT1 λe1 − e

T
1Ce1 − s

TKsat(s)

≤ −

7∑
i=1

(λii + Cii) |e1i| − sTKsat(s)

≤ −

7∑
i=1

[(λii + Cii) |e1i| + Kiiρ |si|]

≤ 0 (28)

Here, it can be found that V3 is positive definite while V̇3 is
negative definite. Therefore, the proposed controller satisfies
the Lyapunov stability criteria and is uniformly asymptot-
ically stable. The position tracking error is bounded, and
it gradually converges to zero and approaches the sliding
surface (i.e., s = 0) in finite time. The external disturbances
and modeling errors can be compensated via the proposed
controller system. The overall block diagram of the proposed
NABSMC algorithm is presented in Fig. 3.

IV. EXPERIMENTAL VERIFICATION
For the purpose of evaluating the performance and effec-
tiveness of the developed NABSMC algorithm in passive
rehabilitation training, three kinds of position tracking exper-
iments were carried out by three healthy volunteers with
different anthropometric parameters and ages (subject S1:
male, height/1.72 m, weight/63 kg, age/31 years; subject
S2: male, height/1.82 m, weight/72 kg, age/36 years; sub-
ject S3: female, height/1.61 m, weight/50 kg, age/26 years).
The experiments include the sinusoidal trajectory tracking
experiments with constant frequency and amplitude, the
sinusoidal trajectory tracking experiments with time-varying
frequency and amplitude, and the step response experi-
ments with disturbance. During the experiments, the vol-
unteers were required to comfortably sit on a wheelchair
with his/her right arm equipped with exoskeleton via Vel-
cro straps and hand grasping the end-effector. A graphi-
cal guidance screen was applied in experiments to facil-
itate the volunteers in understanding their real-time con-
figuration and training condition. The scenarios of a vol-

FIGURE 4. Upper-limb rehabilitation exoskeleton prototype with a
healthy subject wearing the exoskeleton and performing trajectory
tracking experiments.

unteer conducting passive rehabilitation training with the
proposed exoskeleton system is presented in Fig. 4. The
experimental results of the developed NABSMC strategy are
compared with those of the optimal backstepping sliding
mode control (OBSMC) strategy [36]. The inertia matrix
and the Coriolis/centrifugal matrix of dynamic model were
obtained via the computer-aided virtual prototype established
in the SolidWorks environment (Dassault Systems, Concord).
The kinematic parameters and the dynamic parameters of the
human-exoskeleton system have been introduced in detail in
our previous researches [37], [38]. All participants received a
detail explanation about the test procedures in advance. The
ethical approval of the proposed experimental schemes has
been obtained from the Institutional Review Board of the
Nanjing University of Aeronautics and Astronautics.

A. TRAJECTORY TRACKING EXPERIMENTS WITH
CONSTANT FREQUENCY AND AMPLITUDE
In the first experiments, the volunteers needed to perform
repetitive passive training on the shoulder internal/external
joint and shoulder flexion/extension joint simultaneously.
The referenced trajectories of the actuated exoskeleton joints,
whose servo motors were set to run in torque control mode,
were defined to follow a sinusoidal trajectory with constant
frequency and amplitude. Meanwhile, the other exoskeleton
joints, whose servo motors were set to run in position control
mode, were controlled to remainmotionless during operation.
The desired sinusoidal trajectory of shoulder internal/external
rotation joint has a frequency of 0.5 Hz and an ampli-
tude of 50 degrees. For the shoulder flexion/extension joint,
the desired sinusoidal trajectory has a frequency of 0.5 Hz,
an amplitude of 90 degrees, and a phase offset of 0.5 π . The
duration of each tracking experiment was set to 10 seconds,
i.e., five repetitive motion cycles.

The trajectory tracking experiments were conducted by
subjects S1, S2, and S3 respectively. The results of differ-
ent exoskeleton joints and control schemes are compared
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FIGURE 5. Tracking results of shoulder internal/external rotation for a sinusoidal trajectory with constant frequency and amplitude. (a) The referenced and
actual trajectories of OBSMC and NABSMC. (b) Comparison of tracking errors. (c) Phase plane of s versus ṡ. (d) Control actions of OBSMC and NABSMC.

FIGURE 6. Tracking results of shoulder flexion/extension for a sinusoidal trajectory with constant frequency and amplitude. (a) The referenced and actual
trajectories of OBSMC and NABSMC. (b) Comparison of tracking errors. (c) Phase plane of s versus ṡ. (d) Control actions of OBSMC and NABSMC.

and analyzed. The appropriate controller parameters of
OBSMC and NABSMC were optimally tuned by the trial-
and-error approach to enhance control performance and guar-
antee system stability. For the quantitative analysis of the
control performance of different controllers, the mean abso-
lute error (MAE), maximum absolute error (MAXE), and
percentage root mean squared error (PRMSE) are defined as
the following equations:

MAE =
1
N

N∑
i=1

|Ei| (29)

MAXE = max |Ei| (30)

PRMSE =

√
1
N

N∑
i=1

E2
i

max (θd )−min (θd )
× 100% (31)

where Ei denotes the ith position tracking error data; N
represents the number of data sets.

The results of the trajectory tracking experiments con-
ducted by S1 are shown in Figs. 5 and 6.More specifically, the

comparison results between the referenced trajectory and
the actual trajectories are shown in Figs. 5 (a) and 6 (a).
The tracking errors of OBSMC and NABSMC are presented
in Figs. 5 (b) and 6 (b).

It can be clearly seen that the referenced trajectory nearly
overlapped the actual ones, and the tracking errors are
bounded and stable. Besides, the control performance of
NABSMC, which exists smaller tracking errors, is better
than that of OBSMC. For the tracking results of shoulder
internal/external joint, the MAE declines from 5.56 degrees
(OBSMC) to 2.57 degrees (NABSMC). Regarding the
MAXE, the NABSMC algorithm gives a smaller value
(i.e., 6.64 degrees) in comparison with that of OBSMC
(i.e., 9.28 degrees). In addition, the PRMSE of NAB-
SMC (i.e., 2.88%) is smaller than that of OBSMC (i.e.,
6.21%). For the tracking results of shoulder flexion/extension
joint, the MAE declines from 5.38 degrees (OBSMC)
to 2.64 degrees (NABSMC), the MAXE declines from
9.45 degrees (OBSMC) to 5.24 degrees (NABSMC), and the
PRMSE declines from 5.99% (OBSMC) to 2.96% (NAB-
SMC), respectively. Figs. 5 (c) and 6 (c) show that the sliding
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TABLE 1. Statistical results of the trajectory tracking experiments with constant frequency and amplitude.

FIGURE 7. Tracking results of shoulder internal/external rotation for a sinusoidal trajectory with time-varying frequency and amplitude. (a) The
referenced and actual trajectories of OBSMC and NABSMC. (b) Comparison of tracking errors. (c) Phase plane of s versus ṡ. (d) Control actions of OBSMC
and NABSMC.

function s and its differential value ṡ are well convergent
in the phase plane. The controller outputs of OBSMC and
NABSMC are compared in Figs. 5 (d) and 6 (d), respectively.
We can observer that the chattering level of NABSMC is
lower than that of OBSMC. The statistical results of the
first experiments conducted by subjects S1, S2 and S3 are
all tabulated in Table 1. The experimental results reveals
the superiority of NABSMC over OBSMC in enhancing the
trajectory tracking accuracy of passive rehabilitation training.

B. TRAJECTORY TRACKING EXPERIMENTS WITH
TIME-VARYING FREQUENCY AND AMPLITUDE
In the second experiments, the volunteers were required
to perform sinusoidal trajectory tracking experiments with
time-varying frequency and amplitude on the shoulder inter-
nal/external and flexion/extension joints simultaneously. The
duration of each tracking experiment was set to 10 seconds.
The referenced sinusoidal trajectories for the shoulder inter-
nal/external rotation joint was defined to follow a frequency
of 0.25 Hz and an amplitude of 60 degrees for the first
four seconds, which then changed to 0.5 Hz and 45 degrees
from the fourth second to the eighth second. In the last two
seconds, the frequency and amplitude turned to 1 Hz and

30 degrees, respectively. On the other side, the referenced
sinusoidal trajectories for the shoulder flexion/extension joint
was defined to follow a frequency of 0.25 Hz and an ampli-
tude of 100 degrees for the first four seconds, which then
changed to 0.5 Hz and 80 degrees from the fourth second to
the eighth second. In the last two seconds, the frequency and
amplitude turned to 1 Hz and 60 degrees, respectively.

The results of the experiments under different control
algorithms and conducted by different subjects are analyzed.
Figs. 7 and 8 present the results of trajectory tracking exper-
iments performed by S1. The referenced trajectory and the
actual trajectories of OBSMC and NABSMC are compared
in Figs. 7(a) and 8(a), while the corresponding tracking
errors are shown in Figs. 7(b) and 8(b), respectively. For the
tracking results of shoulder internal/external joint, the MAE
declines from 4.86 degrees (OBSMC) to 3.05 degrees (NAB-
SMC). Regarding the MAXE, the NABSMC algorithm gives
a smaller value (i.e., 6.85 degrees) in comparison with that
of OBSMC (i.e., 10.75 degrees). In addition, the PRMSE of
NABSMC (i.e., 3.93%) is smaller than that of OBSMC (i.e.,
5.58%). For the tracking results of shoulder flexion/extension
joint, the MAE declines from 4.98 degrees (OBSMC)
to 2.81 degrees (NABSMC), the MAXE declines from
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FIGURE 8. Tracking results of shoulder flexion/extension for a sinusoidal trajectory with time-varying frequency and amplitude. (a) The referenced and
actual trajectories of OBSMC and NABSMC. (b) Comparison of tracking errors. (c) Phase plane of s versus ṡ. (d) Control actions of OBSMC and NABSMC.

TABLE 2. Statistical results of the trajectory tracking experiments with time-varying frequency and amplitude.

11.30 degrees (OBSMC) to 7.46 degrees (NABSMC), and
the PRMSE declines from 5.77% (OBSMC) to 3.68% (NAB-
SMC), respectively. Figs. 7 (c) and 8 (c) indicate that the
sliding function s and its differential value ṡ are well conver-
gent in the phase plane. Furthermore, from the controller out-
puts of different algorithms presented in Figs. 7(d) and 8(d),
it can be clearly found that the chattering level of NABSMC is
lower than that of OBSMC. The statistical results of the sec-
ond experiments conducted by subjects S1, S2 and S3 are
all tabulated in Table 2. Therefore, it can be observed that,
for the trajectory with time-varying frequency and amplitude,
the position tracking control performance of NABSMC is
better than that of OBSMC during rehabilitation training.

C. STEP RESPONSE EXPERIMENTS WITH
EXTERNAL DISTURBANCE
In the third experiments, the volunteer needed to passively
follow step response trajectory with their shoulder inter-
nal/external and flexion/extension joints separately. The dura-
tion of each tracking experiment was set to 12 seconds. The
step input function was defined to rotate the shoulder to the
angular position of 60 degrees at the time of 2 s. In addi-
tion, to evaluate the robustness of each control strategy with
external disturbance, an impulse force with a value about
20 N was applied to the end-effector at the time around 10 s.

The direction of impulse force was set to be opposite to
the direction of step action. The value of impulse force was
measured via the force/torque sensor.

The step response experiments were performed by
subjects S1, S2 and S3 respectively. The results of the
step response experiments conducted by S1 are shown
in Figs. 9 and 10. More specifically, the referenced trajectory
and the actual trajectories of OBSMC and NABSMC are
compared in Figs. 9(a) and 10(a), while the corresponding
tracking errors are shown in Figs. 9(b) and 10(b). The relation
between sliding function s and its differential value ṡ are
presented in Figs. 9(c) and 10 (c). The measured impulse
force are shown in Figs. 9 (d) and 10 (d). For the purpose
of quantitatively evaluating the performance of step response
experiments under different controllers, the rise time (RT),
the setting time (ST), the overshoot of step response (OSR),
the overshoot caused by disturbance (OSD), and the duration
of disturbance transient phase (DTP) are calculated for the
analysis and comparison of experimental results.

For the step response results of shoulder internal/external
joint, the RT of NABSMC (i.e., 0.29 s) is smaller than that of
the OBSMC (i.e., 0.39 s). Regarding the ST, the NABSMC
algorithm gives a smaller value (i.e., 0.39 s) in comparison
with that of OBSMC (i.e., 1.42 s). In addition, the OSR of
NABSMC (i.e., 7.33%) is also smaller than that of OBSMC
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FIGURE 9. Tracking results of shoulder internal/external rotation joint for a step response trajectory with external disturbance. (a) The referenced and
actual trajectories of OBSMC and NABSMC. (b) Comparison of tracking errors. (c) Phase plane of s versus ṡ. (d) Measured forces of OBSMC and NABSMC.

FIGURE 10. Tracking results of shoulder flexion/extension rotation joint for a step response trajectory with external disturbance. (a) The referenced and
actual trajectories of OBSMC and NABSMC. (b) Comparison of tracking errors. (c) Phase plane of s versus ṡ. (d) Measured forces of OBSMC and NABSMC.

TABLE 3. Statistical results of the step response experiments with external disturbance.

(i.e., 15.1%). The OSD (i.e., 6.65%) and DTP (i.e., 0.46 s) of
NABSMC obtain smaller values in comparison with the OSD
(i.e., 11.4%) and DTP (i.e., 1.39 s) of OBSMC. The results
of shoulder flexion/extension joint experiment are similar to
those of shoulder internal/external joint. The RT of NABSMC
(i.e., 0.30 s) is equal to that of the OBSMC. Meanwhile,
the ST (i.e., 0.46 s) and OSR (i.e., 6.42%) of NABSMC

obtain smaller values in comparison with the ST (i.e., 1.35 s)
and OSR (i.e., 9.26%) of OBSMC. In addition, the OSD
(i.e., 8.30%) and DTP (i.e., 0.40 s) of NABSMC are also
smaller than those of OBSMC (OSD: 14.7%, DTP: 0.86 s).
The statistical results of the first experiments conducted by
subjects S1, S2 and S3 are all tabulated in Table 3. Therefore,
it can be concluded from the experimental results that the step
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response characteristics of NABSMC algorithm are better
than those of the OBSMC algorithm. Moreover, the proposed
RBFN-based uncertainty observer can reduce the effect of
external disturbance and improve control robustness during
passive training.

V. CONCLUSION
In this paper, a novel neural adaptive backstepping sliding
mode control strategy has been developed for the upper-
limb exoskeleton performing rehabilitation training tasks.
The lumped nonlinear uncertainty and external disturbance
of the human-robot interaction system are estimated via a
neural adaptive observer. By employing the Lyapunov stabil-
ity theorem, the stability and boundedness of the proposed
closed-loop system are proved. With the aim of validating
the effectiveness of the proposed control algorithm, three
typical trajectory tracking experiments were conducted on
three volunteers wearing the exoskeleton. The control per-
formance of NABSMC algorithm is compared with that of
OBSMC algorithm. The experimental results indicate that the
proposed NABSMC algorithm can achieve higher position
control accuracy, better step response property, and higher
robustness during repetitive passive training.

Future works will be devoted to integrating the recognition
strategy of patient’s motion intention into the control scheme
and realizing the cooperative rehabilitation training suitable
for the patients at the recovery period of hemiplegia. Besides,
a visualization evaluation system will be proposed to monitor
the therapy progress of patients and optimize control strategy.
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