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ABSTRACT Video frame interpolation aims at synthesizing new video frames in-between existing frames to
generate higher frame rate video. Current methods usually use two adjacent frames to generate intermediate
frames, but sometimes fail to handle challenges like large motion, occlusion, and motion blur. This paper
proposes amulti-frame pyramid refinement network to effectively use spatio-temporal information contained
in multiple frames (more than two). There are three technical contributions in the proposed network. First,
a special coarse-to-fine framework is proposed to refine optical flows in-between multiple frames with
residual flows at each pyramid level. Therefore, large motion and occlusion can be effectively estimated.
Second, a 3D U-net feature extractor is used to excavate spatio-temporal context and restore texture, which
tend to disappear at course pyramid levels. Third, a multi-step perceptual loss is adopted to preserve more
details in intermediate frame. It is worth mentioning that our approach can be easily extended to multi-frame
interpolation. Our network is trained end-to-end using more than 80K collected frame groups (25 frames per
group). Experimental results on several independent datasets show that our approach can effectively handle
challenging cases, and perform consistently better than other state-of-the-art methods.

INDEX TERMS Video frame interpolation, multiple frames, spatio-temporal information, optical flow,
coarse-to-fine framework, deep learning.

I. INTRODUCTION
Video frame interpolation is a classic computer vision task
and has a wide range of applications, such as novel view syn-
thesis, frame rate up-conversion [1], and slow-motion video
generation [2]. The traditional solution to these problems
is to first estimate optical flow between frames, and then
synthesize intermediate frames along with optical flow [3].
The performance of these approaches heavily depends on the
quality of optical flow. In recent years, deep learning has been
gradually applied to optical flow estimation and video frame
interpolation tasks.

Existing CNN-based methods usually use two adjacent
frames with strong correlation to generate intermediate
frames [2], [4]–[9]. However, thesemethods sometimes fail to
produce satisfactory results in some challenging cases, such
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as large motion, occlusion, motion blur, motion boundary,
and texture-less area. Since object motion in more than two
consecutive frames is generally continuous, spatio-temporal
information contained in these frames can be used to further
handle the above challenges. Then, how to make full use
of these spatio-temporal information within these multiple
frames?

A straightforward way is to train a neural network to
directly generate video frames [10]–[13]. For example,
Beyond MSE [12] takes four frames as input and directly
hallucinate pixel values for video prediction. However, these
methods fail to detect motion and result in blurry frames.
While synthesizing intermediate frames through sampling
pixels from source frames can effectively avoid blurring
and produce high quality intermediate frames [2], [4]–[8].
Thus, we focus on applying this type of methods to multi-
frame information excavation. This type of CNN-basedmeth-
ods need an intermediate motion estimation step before
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frame interpolation. The more precise the motion estimation,
the better results can be obtained. Recently, the combination
of domain knowledge of optical flow, such as feature extrac-
tion and coarse-to-fine strategy, with deep learning [14], [15]
has made great progresses, which gives inspiration to frame
interpolation.

Inspired by recent advances in video frame interpolation
and optical flow estimation, a multi-frame pyramid refine-
ment network (MPRN) for high-quality video frame inter-
polation is presented in this paper. The proposed approach
mainly contains three technical contributions.

First, a multi-frame pyramid refinement (MPR) frame-
work is proposed to effectively excavate the motion and
occlusion information in-between multiple frames, through
predicting residual flows to refine optical flows from coarse
to fine. At the top level of the pyramid, the motion can
reasonably assumed to be locally linear and small around the
low-resolution frames. Thus, collinear optical flows can
be predicted to symmetrically sample pixels from multiple
downsampled frames to synthesize intermediate frames in
low resolution. The assumption above can provide a good
base for the lower pyramid levels and help facilitate fast con-
vergence. At lower levels of the pyramid, residual flows are
predicted to update the upsampled flows from the previous
pyramid level to gradually solve nonlinear flows in-between
multiple frames. Intermediate frames are synthesized through
asymmetrically sampling pixels from multiple frames along
these flows in each resolution. Occlusion masks at each pyra-
mid level are also predicted to handle occlusions. A multi-
scale method is also mentioned in DVF [4], while their
method uses CNNs to directly integrate motion informa-
tion from different scales to the output flow. Our MPR
framework can iteratively utilize motion information from
previous scales to better estimate large motions. Moreover,
our framework can utilize spatio-temporal information in-
betweenmore frames to address challenges like occlusion and
non-linear motion.

Second, our network employs a 3D U-net [16] to extract
spatio-temporal features from multiple frames. These fea-
tures are downsampled by average pooling and passed to each
pyramid level. It can improve robustness of our network by
restoring more texture information, which easily disappear at
course pyramid levels.

Third, different from original perceptual loss [17]–[19],
a multi-step perceptual loss is adopted to further improve the
subjective and objective quality of the interpolated frame. It is
worth mentioning that our approach can be extended to multi-
frame interpolation, by directly changing the channel size of
last layer at each pyramid level to predict multiple optical
flows for different time locations.

Our network is trained end-to-end using more than 80K
collected frame groups (25 frames per group). Experimental
results verify each part of our network and our network
outperforms state-of-art approaches [1], [4], [7], [20]–[22]
on several independent datasets, including Middlebury [3],

UCF101 [23] and Thumos15 [24] test data (high-resolution
videos). Note that our MPR framework with only two frames
as input still achieves state-of-the-art results, especially in
high-resolution videos.

II. RELATED WORK
Traditional frame interpolation approaches have two
steps: optical flow estimation, and frame interpolation
[3], [25], [26]. The quality of frame interpolation depends
heavily on the accuracy of optical flow. In recent years,
despite the great progresses in optical flow estimation
[14], [15], [27]–[33], there are still some difficulties, such
as obvious occlusion, motion boundary, large motion and
motion blur. Mahajan et al. [34] compute paths in the input
frames and copy pixel gradients along them to the interpo-
lated frame, and then synthesize the intermediate frame via
Poisson reconstruction. Meyer et al. [1] develop a phase-
based approach for interpolation by propagating phase infor-
mation across oriented multi-scale pyramid levels, but it is
easy to loss high-frequency details in case of large motion.

As deep learning has achieved significant success in many
computer vision tasks [35], [36], more researchers begin to
focus on using deep learning to interpolate high quality video
frames. There are a number of papers that use CNNs to
directly generate intermediate frames. However, it is hard to
generate high-quality intermediate frames in this way. For
example, Long et al. [11] train a CNN that takes two con-
secutive original frames as input and outputs an intermediate
frame which tends to be blurry.

Synthesizing intermediate frames through sampling pix-
els from source frames can effectively avoid blurring.
Zhou et al. [37] develop an method that employs a convo-
lutional neural network to estimate appearance flow and then
warp input pixels to create a novel view. The deep voxel flow
(DVF) approach [4] samples coherent regions of pixels from
existing frames according to the voxel flow, but it sometimes
still produces unsatisfactory results due to inaccuracies in
voxel flow estimation. Niklaus et al. [6], [7] employ a CNN
to learn a spatially-adaptive convolution kernel for each pixel
and then convolve them with input frames to generate an
intermediate frame. But their methods are limited by the
size of adaptive kernels and can not handle large motion.
Bao et al. [22] recently integrate the flow-based and kernel-
based approaches into an end-to-end network to inherit the
benefit from both sides. Niklaus and Liu [5] also propose a
context-aware frame synthesis approach. This method esti-
mates bidirectional flow to warp not only the input frames but
also their pixel-wise contextual information, and uses them
to interpolate an intermediate frame. Jiang et al. [2] first use
a U-Net to estimate the bidirectional flow and linearly fuse
two flow fields to approximate the intermediate flow fields.
They then use another U-Net to refine the approximated flow
fields for interpolation at multiple time steps. Ahn et al. [38]
propose a hybrid task-based CNN for fast and accurate frame
interpolation of 4K videos. Liu et al. [39] propose a cycle
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FIGURE 1. Overview of the MPRN, which contains a 3-level MPR framework and a 3D U-net feature extractor. The P0 take 4 (or more) smallest
frames as input and compute optical flow to synthesis the intermediate frame at the lowest resolution. Residual flows are predicted at lower levels
of the pyramid to refine upsampled optical flow from coarse levels and output the intermediate frame at higher resolution.
3D-multi-frame-context feature extracted by a 3D U-net is downsampled by average pooling and passed to each level of MPR framework.

consistency loss to reconstruct input frames with synthe-
sized frames, which makes synthesized frames more reliable.
Deng et al. [40] introduce a novel self-reproducing mech-
anism to further substantially improve the consistency and
performance of video frame interpolation.

Deep learning is also used in recent optical flow algo-
rithms. Dosovitskiy et al. [28] develop two network architec-
tures: FlowNetS and FlowNetC, which show the feasibility
of estimating optical flow from raw frames using a
U-Net [41] architecture. Wang et al. [33] presents a semantic-
guided interpolation scheme (SemFlow) to handle motion
boundaries and occlusions in large displacement optical flow.
Recently, the combination of classical principles of optical
flow with the network architecture [14], [15] achieves better
results and requires less computation. Inspired by this, our
network use pyramid refinement strategy to estimate motion
for frame interpolation.

III. PROPOSED APPROACH
Our proposed multi-frame pyramid refinement network
(MPRN) is summarized in Figure 1. Given four input frames
I = {I0, I1, I2, I3}, our goal is to synthesize the intermedi-
ate frame It at the temporal arbitrary location t in-between
I1 and I2. t , (t ∈ (0, 1)) refers to the time interval between
the I1 and the I2 with the I1 as the starting position. Let
us assume F = {Ft→0,Ft→1,Ft→2,Ft→3} to represent the
predicted optical flows from It to I0 ,I1, I2 and I3, respec-
tively. The intermediate frame It can be synthesized through
warping four frames along these flow and fusing them as
follows.

It =
1
4

3∑
i=0

w(Ii,Ft→i), (1)

where w(·, ·) denotes a backward warping function, which
can be implemented using bilinear interpolation [4], [8], [14]
and it is differentiable. Occlusion often results in artifacts in
the warped frames. To address this issue, some interpolation
algorithms [2], [4], [8] estimate occlusion masks and only
use pixels that are not occluded in interpolation. Hence,
occlusion masks are also utilized in this paper. Let M =

{Mt←0,Mt←1,Mt←2,Mt←3} denote occlusion masks of the
four warped frames. The intermediate frame It then can be
described as follows.

It =
3∑
i=0

Mt←i ⊗ w(Ii,Ft→i), (2)

where
3∑
i=0

Mt←i(p) = 1, Mt←i(p) ∈ [0, 1], and ⊗ denotes

element-wise multiplication.

A. MPR FRAMEWORK
As illustrated in Figure 1, the multi-frame pyramid refine-
ment (MPR) framework is a coarse-to-fine structure.
It adopts the U-Net architecture [28], [41] at each pyra-
mid level with separate weights to learn residual flow
f = {ft→0, ft→1, ft→2, ft→3} which propagates to higher
resolution layers of the pyramid until high-quality optical
flows are obtained at full resolution. In this way, motion
can be accurately estimated, which is crucial for frame
interpolation.

Let u(·) be the upsampling function using bilinear interpo-
lation. Let the MPR framework has d + 1 levels. Ik denotes
low-resolution frames downsampled 2d−k times from raw
input frames I at the k-th pyramid level. Let {P0..Pk} denotes
U-nets at the different levels of pyramid. Mk , Fk and fk
denote occlusion masks M , optical flow F and residual
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flow f , respectively. Note that theMk ,Fk and fk have the same
resolution with Ik .
At the top level of the pyramid (k = 0), the P0 takes four

downsampled frames Ik=0 as input, and outputs an optical
flow Ft→1,k=0 and four occlusion masks Mk=0. The other
three collinear optical flows in Fk=0 at the top pyramid level
can be described as follows.

Ft→0,k=0 = Ft→1,k=0 × (1+ t)/t

Ft→2,k=0 = −Ft→1,k=0 × (1− t)/t

Ft→3,k=0 = −Ft→1,k=0 × (2− t)/t (3)

By downsampling original frames to sufficient low res-
olution, the motion of objects correspondingly becomes
small and smooth. Optical flow can be reasonably assumed
to be locally linear and temporally symmetric around the
in-between four downsampled frames Ik=0, which can pro-
vide a good base for the lower levels of the pyramid and facili-
tate fast convergence of the network. Hence, the intermediate
frame It,k=0 can be calculated through symmetrically sam-
pling pixels from Ik=0 according to Equation (2), as shown
in Figure 2 (Left).

FIGURE 2. Two different interpolation ways. Left.: Interpolation with
symmetrically sampling pixels. Right : Interpolation with asymmetrically
sampling pixels.

At the k-th level of the pyramid, different from current
methods [2], [4], the MPR framework outputs residual flow f
to further refine optical flow (rather than using CNN to output
refined flow directly). We upsample flows from the previ-
ous pyramid level to get upsampled flows u(Fk−1), and use
them to warp downsampled frames Ik to get warped frames
w(Ik , u(Fk−1)). The Pk takes Ik , u(Fk−1) and w(Ik , u(Fk−1))
as input, outputs four residual flows fk and four occlusion
masks Mk . Fk at the k-th pyramid level can be described as
follows.

Fk = u(Fk−1)+ fk (4)

The assumption that optical flow is locally linear in-between
four frames is hard to be correct when the resolution of the
frame increases. Hence four residual flows are predicted at
the k-th pyramid to update optical flows from the previous
level of the pyramid. The intermediate frame It,k is then
calculated through asymmetrically sampling pixels from Ik
according to Equation (2), as shown in Figure 2 (Right).
By refining optical flows with residual flows at each pyramid
level, large motion can be accurately estimated. Moreover,
by taking four frames as input, our MPR framework can also

effectively use spatio-temporal correlation between succes-
sive frames to better handle challenges, such as non-linear
motion and occlusion.

In our experiments, we use a 3-level (d = 2) pyra-
mid, as shown in Figure 1. But note that our framework
can use more levels of pyramid, and take arbitrary even
number of frames as input. Considering that the correlation
between frames will decrease as the distance between frames
increases, four frames are used in this paper by balancing
the motion continuity and more motion information. MPR
framework with only two frames as input can also achieve
state-of-the-art results, especially in high resolution videos.

FIGURE 3. (a) Four 1/4 downsampled consecutive frames with different
degrees of texture loss are used for the coarsest layer of a 3-level MPR
framework. (b) and (c) are the final interpolation result and the flow from
the target time position to the frame marked in red box.

B. 3D U-NET FEATURE EXTRACTOR
More spatio-temporal information are contained in four
consecutive frames. 3-Dimensional convolutional networks
[42], [43] is well-suited for spatio-temporal feature learning
on videos. Thus, we use a 3D U-net [16] feature extractor
to extract spatio-temporal feature within multiple consecutive
frames, called 3Dmulti-frame-context feature. The 3D-multi-
frame-context feature can further help MPR framework to
estimate motion and restore texture. As shown in Figure 3,
texture information easily disappears at course pyramid levels
due to downsampling operations, especially the small or thin
objects that move quickly. This has a serious impact on
the MPR framework for solving optical flow, because the
quality of each layer’s optical flow depends on the the result
of previous layers. However, the texture lost in consecu-
tive frames is inconsistent because of the change of video.
Therefore, the texture can be complemented by each other
in consecutive frames, reducing the risk that texture dis-
appears simultaneously in two adjacent frames. 3D U-net
can excavate this spatio-temporal context to restore texture
better, which makes it an important complement to the MPR
framework. In Figure 3, the needle can be clearly seen in
only one downsampled frame. But the MPR framework with
3D U-net can better solve optical flow from the target time
position to the framemarked in red box, which loss the texture
of the needle at course pyramid levels, and generate sharper
result.

Our extractor takes a 4 × h × w × 3 (depth × height ×
width× channel)volume as input and outputs a 4×h×w×8
feature map. And then the output is converted to a h×w×32
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FIGURE 4. The first row are the input four frames and the second row
shows predicted flows from t = 0.5 to the four frames. The occlusion
masks are shown in the third row, the white area indicate such pixels
contribute more to the synthesized frame.

3D-multi-frame-context feature through splitting the output
in the depth dimension and stacking them in the chan-
nel dimension. As shown in Figure 1, the 3D-multi-frame-
context feature is downsampled by average pooling and
stacked with the first layer of U-net at the each level of MPR
framework. Note that the pooling layers of the 3D U-net are
carefully designed with the intention of not to merge the
temporal signal too early. The detailed configuration of the
network is described in the APPENDIX.

Visual results of final predicted flows and occlusion masks
are shown in Figure 4. Our network can effectively learn
additional information and predict optical flows in-between
multiple frames. Occlusion mask can better handle motion
boundaries and tend to sample from frames with strong
spatio-temporal correlation. This indicates that nonlinear
motion information between multi-frames can be helpful to
refine interpolated frame from two frames. However, sam-
pling from two frames is not always the best choice. Video
frames always change over time, and the process of this
change can be represented by multiple frames. This is the rea-
son that the proposed method utilizes more neighbor frames
although the most adjacent two frames have stronger spatio-
temporal correlation.

C. LOSS FUNCTION
Various loss functions are considered to measure the differ-
ence between the interpolated frame Ît,k and its ground truth
It,k at each level of the pyramid framework, to make sure
residual flows have been learned at each level. Among these,
we adopt a multi-step perceptual loss, which is helpful for
subjective and objective quality. Let the network has d + 1
level. Our total loss function is a linear combination of three
terms:

l = λr lr + λclc + λsls (5)

Reconstruction loss lr [2], [4], [5] is a color-based loss
function, where pixel values are normalized into the range
[−1, 1]. The lr models reconstruction of intermediate frame
at each pyramid level:

lr =
d∑
k=0

αk ·
∥∥It,k − Ît,k∥∥1 (6)

Multi-step perceptual loss lc is a feature-based loss that
measures perceptual difference for pyramid framework. Usu-
ally, perceptual loss [17] utilizes the feature maps or response
from pretrained network (VGG16, VGG19) [44] to extract
features of final result and ground truth. More visually pleas-
ing results can be obtained by minimizing their differences.
Different from original perceptual loss, feature maps from
different layers of pretrained VGG19 are used at different
level of pyramid. Generally, the low-level layers of CNN
tend to learn low-level semantics from frames, like cor-
ners, edges and color conjunctions. As the number of lay-
ers increases, CNN will gradually learn advanced semantic
information, like texture and complex feature [45]. In our
pyramid framework, the result at each level depends on the
result of its previous level. At top pyramid levels, we pay
more attention to motion estimation, so low level layers
of pretrained VGG19 are utilized to extract local feature
to better capture motion. At the bottom pyramid levels we
prefer the quality of interpolation results, so high level layers
of VGG19 are adopted to preserve more details and refine
visual results. Multi-step perceptual loss makes our network
gradually obtain higher quality. Let ϕk denotes the feature
maps of an ImageNet pretrained VGG19 model used in the
k level, multi-step perceptual loss lc is define as follows.

lc =
d∑
k=0

βk ·
∥∥ϕk (It,k )− ϕk (̂It,k )∥∥2 (7)

We will discuss and compare impact of multi-step perceptual
loss and original perceptual loss in Section IV-B.
Smoothness loss ls [2], [4]. We add spatial coherence reg-

ularizations to encourage neighboring pixels to have similar
flow values, which is helpful to reduce artifacts:

ls =
d∑
k=0

(γk ·
3∑
i=0

∥∥∇Ft→i,k
∥∥
1) (8)

Parameters sensitivity analysis. The pyramid framework
parameters (αk , βk , γk ), should be set larger as the resolution
of the pyramid layer increases.

For the parameters of the reconstruction loss (αk ) and
multi-step perceptual loss (βk ), there are two main reasons.
First, the last layer of the network is responsible for outputting
the final result, which should be given larger weight. Second,
as the resolution increases, it is more difficult to solve high
quality optical flow, while the smaller resolution layer is eas-
ier to converge. Therefore, smaller parameter can be used for
small resolution layers, while larger resolution layers should
use larger parameter. Moreover, the results of each layer of
the pyramid depend on the previous layers. This setting can
effectively avoids the subsequent layers from being difficult
to converge due to frequent changes in the output of the
previous layers.

For the parameters of the smoothness term (γk ), its purpose
is to control the smoothness of the optical flow at each
pyramid level. Small-resolution images are generally rough,
and their optical flow is more discontinuous. Therefore, it is
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not suitable for assigning strong smoothing restrictions to the
optical flow of small-resolution images. As the resolution of
the image increases, we can gradually enhance the smoothing
restrictions, and utilize the temporal correlation of the optical
flow to make the network converge faster. This also helps to
solve the optical flow in the flat region of the final result.

The parameters λr , λc and λs control the contribution
between the three loss terms. The λs should be two orders of
magnitude smaller than the other two parameters, otherwise
it will cause most pixels to have the same flow values. The
reconstruction loss and multi-step perceptual loss, as the
main penalty, are equally important, which is demonstrated
in Section IV-B.

In our experiments, we use a 3-level pyramid framework.
So ϕ0 are conv2_2 features, ϕ1 are conv3_2 features and ϕ2
are conv4_3 features. And the weights are empirically set to
be λr = 1, λc = 0.8, λs = 0.025, α0 = 0.5, α1 = 0.5,
α2 = 1, β0 = 0.5, β1 = 0.5, β2 = 1, γ0 = 0.1, γ1 = 0.25,
γ2 = 0.5 using validation set.

IV. EXPERIMENTS
A. TRAINING
1) TRAINING DATASET
For training, we collect 240-fps videos with a resolution of
1280×720 fromYouTube and hand-held cameras [46], which
contain various scenes. And then videos are split into frame
groups (25 frames per frame group), among them the 1st ,
9th, 17th and 25th frame serve as input, while the 8th ∼ 16th

frames serve as ground truth. The input of each frame group
is a 30fps frame sequence. This dataset allows us to train
network to interpolate frames at 7 time steps in-between
two frames. Following Niklaus et al. [6], [7], we extract
patches with a size of 480×480 from these frame groups and
only select patches with useful information. So we calculate
optical flow between 9th and 17th frame using DIS flow [47]
to drop samples with no or little motion. In order to acquire
high-quality sample, we use Laplace operator to discard bury
samples and compute the entropy of patches in each sample to
discard samples with little texture. Moreover, color histogram
between patches is used to detect shot boundaries. Finally,
85,000 samples (frame groups) are selected. Among them,
7500 samples are used for validation and 7500 samples are
used for ablation experiments.

We also include various types of data augmentation dur-
ing training. The samples are cropped to patches with size
of 352 × 352. Each patch is then randomly flipped ver-
tically or horizontally, and its temporal order is randomly
swapped.

2) IMPLEMENTATION DETAILS
To train our network, we initialize the weights using Gaussian
distribution with standard deviation of 0.01. The network is
solved via Adam [48] optimization with β1 = 0.9, β2 =
0.999, and the batch size is set to 8. The learning rate is
initialized to be 0.0001 and decreased by a factor of 10 every

15 epochs. Batch normalization [49] is adopted for acceler-
ating convergence. We train our model on an NVIDIA Tesla
V100 GPU card, which takes about 1.5 days to converge.

We train our network on our dataset and evaluate our net-
work on several independent datasets, including Middlebury
benchmark [3], UCF101 [23] and Thumos15 [24] test data
(high resolution videos). In order to compare our methodwith
representative state-of-the-art methods, we train our network
to interpolate intermediate frame at t = 0.5 temporal location
in comparative experiments. We also verify effectiveness of
multi-frame intermediate of our network. Note that a 3-level
pyramid framework is used in experiments. In section IV-C,
our approach is compared with the state-of-the-art methods
published on Middlebury benchmark. For all these methods,
we use the code or trained models from the original papers.
To further verify the impact of different components in our
network, a number of ablation experiments are performed
in section IV-B. PSNR, SSIM [50] and the interpolation
error (IE) [3] are used to evaluate the quality of interpolated
video frame.

B. ABLATION EXPERIMENTS
In this section, we perform ablation studies to analyze our
network. For these experiments, our testing dataset and two
quality assessments of PSNR and SSIM are used.

1) IMPACT OF DIFFERENT COMPONENTS OF MULTI-FRAME
PYRAMID REFINEMENT (MPR) FRAMEWORK
In this part, we train four variants of multi-frame pyra-
mid refinement framework (MPR framework): whole MPR
framework, MPR framework with 2 frame as input (MPR-2
frames), MPR framework without warped frames as input at
each level of pyramid, and multi-frame pyramid framework
(MP framework) which directly predicts optical flow rather
than residual flow at each level of pyramid. Above models do
not use feature extractor and perceptual loss.

TABLE 1. Ablation study of MPR framework.

As reported in Table 1, with the same number of frames
as input, MPR outperforms the MP by 1.19dB. This verifies
that residual flow prediction at each resolution can effectively
excavatemulti-frame information. ComparingMPR-2 frames
andMPR, we can find that the use of multiple frames brings a
large performance gain, which indicates that multiple frames
facilitates the frame interpolation tasks. Note that our frame-
work which only takes two frames as input (MPR-2 frames)
can still obtain high-quality images, outperforming the MP
by 0.23dB. Moreover, the performance degradation of MPR
framework without warped frames as input at each pyramid
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FIGURE 5. Illustration of 3D feature pyramid extractor.

level demonstrates that it is crucial for each level of pyramid
to take sufficient information as input to predict residual
flows.

2) EFFECTIVENESS OF 3D-MULTI-FRAME-CONTEXT FEATURE
To examine the effectiveness of 3D-multi-frame-context fea-
ture, we compare MPR with MPR using 3D-multi-frame-
context feature extracted by 3D U-net feature extractor.
In addition, we also test the performance of feature pyramid
extractor mentioned in [15]. However, their method uses the
same 2D Siamese CNN to generate feature for each frame.
We therefore construct feature pyramid extractor using 3D
ConvNets, called 3D feature pyramid extractor, to generate
a 3-level pyramid of feature representations for four input
frames, as shown in Figure 5. The output at the each pyramid
level would be split in the depth dimension and warped by
optical flow [15]. And then it is converted to features like
3D-multi-frame-context feature and passed to the same level
of MPR. Here we use MPR as the baseline model. The above
models do not use perceptual loss.

TABLE 2. Impact of different feature extractors.

We can observe from Table 2 that both 3D U-net feature
extractor and 3D feature pyramid extractor can provide per-
formance gain. And 3D U-net feature extractor performs bet-
ter. Although 3D-multi-frame-context feature only improves
the interpolation performance slightly in PSNR, it can effec-
tively help to improve the robustness of interpolation in some
difficult cases by providingmore spatial and temporal context
information, as shown in Figure 6.

3) IMPACT OF MULTI-STEP PERCEPTUAL LOSS
We consider three different loss functions to train our frame
synthesis neural network, as detailed in Section III-C. The
previous two ablation experiments only use reconstruction
loss lr and smoothness loss ls. Here we add original per-
ceptual loss lc_original and multi-step perceptual loss lc to
network respectively and discuss their impacts on subjective
and objective quality. MPR+3D U-net is used as the baseline
model here. As reported in Table 3, the objective quality

FIGURE 6. Examples for the effectiveness of 3D-multi-frame-context
feature. (a) Small or thin objects that move quickly or suddenly appear in
the next frame easily disappear at coarse pyramid levels, making it hard
to capture their motion. (b) The edge region of a moving blurred object
are usually severely distorted in predictions. 3D-multi-frame-context
feature can help to restore these texture information.

TABLE 3. Impact of different perceptual loss.

FIGURE 7. Examples of using different perceptual loss functions.
(a) MPR + 3D U-net w/o any perceptual loss. (b) MPR + 3D U-net with
original perceptual loss. (c) MPR + 3D U-net with multi-step perceptual
loss.

of the baseline model is similar to the baseline model with
original perceptual loss (conv4_3 features of VGG19 are
used here). However, we find that the perceptual loss tends
to produce visually better results, as shown in Figure 7.
Multi-step perceptual loss can improve the subjective and
objective quality at the same time and preserve more details
of the interpolated frames compared to original perceptual
loss.

4) IMPACT OF THE NUMBER OF PYRAMID LAYER
We retrain MPRN with 2-4 layers on the same train data.
As reported in Table 4, the performance of MPRN is increas-
ing as the number of pyramid layers increases. However, the
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TABLE 4. Impact of the number of pyramid level.

gain from the increase in the number of pyramid layers
gradually reduces. MPRN (3 layers) outperforms the MPRN
(2 layers) by 1.25dB while MPRN (4 layers) only improved
0.42dB further. This indicates MPRN with three layers is
sufficient for our dataset which is made from 720P video
frames. When faced with larger resolution cases, we recom-
mend more pyramid layers.

5) IMPACT OF THE NUMBER OF INPUT FRAMES
UNDER DIFFERENT FRAME RATE
In general, the motion between multiple frames of high frame
rate video is small, while it is large for low frame rate video.
Especially in areas with complexmotion, there are significant
differences between multiple frames of low frame rate video.
In this part, we re-create train data and valid data with 41 con-
secutive frames per group, respectively. Our new dataset is
still 240fps. And then we extract the sequences of 30fps from
new train data to retrain MPRN with six frames as input,
and test two version MPRN on 30fps and 60fps sequences
extracted from new valid data with the same groundtruth.
As reported in Table 5, for the 30fps sequence, the correlation
between frames that are far apart is low, which makes it
difficult to further improve performance significantly. For
the 60fps sequence, more frames with strong correlation
can effectively improve the interpolation quality. Therefore,
we recommend to use more frames for high frame rate
video, and use four frames for videos with frame rate under
30fps by balancing the motion continuity and more motion
information.

TABLE 5. Impact of the number of input frames under different frame
rate.

6) EFFECTIVENESS OF MULTI-FRAME
VIDEO INTERPOLATION
Our network can be easily extended to multi-frame interpola-
tion, by directly changing the channel size of last layer at each
pyramid level to predict multiple optical flows for different
t-location. We trained a multi-frame interpolation network
to interpolate three frames at a time, and compared it with
our single-frame interpolation network, which interpolates
three frames iteratively. As reported in Table 6, predicting

TABLE 6. Effectiveness of multi-frame video interpolation.

a set of in-between frames together can enforce the network
to generate temporally coherent sequences, and avoid error
propagation caused by iterative interpolation.

C. COMPARISON WITH STATE-OF-THE-ART METHODS
In this section, we compare our approach with state-of-the-
art methods including MDP-Flow2 [21], DeepFlow [20],
phasebased interpolation approach fromMeyer et al. [1], sep-
arable adaptive convolution (SepConv) [7], deep voxel flow
(DVF) [4] and MEMC-Net [22]. MDP-Flow2 and DeepFlow
are optical flow algorithms which rank the top in the Middle-
bury interpolation benchmark. For these optical flow meth-
ods, we apply the interpolation algorithm presented in [3].
SepConv, DVF and MEMC-Net [22] are recent CNN-based
approaches, which produce excellent interpolation results as
well. A multi-scale DVF is also proposed in [4]. In order to
compare different multi-scale methods, we take multi-scale
DVF and MPR-2 frames model (without 3D multi-frame-
context feature and multi-step perceptual loss) into consid-
eration. Pretrained models of DVF and multi-scale DVF are
not publicly available, so they are retrained using our training
dataset. In addition to PSNR and SSIM, the interpolation
error (IE) [3], which is defined as root-mean-square differ-
ence between the ground-truth and the prediction, is cal-
culated to compare our approach with other state-of-the-art
methods.

1) MIDDLEBURY BENCHMARK
Since the interpolation category of the Middlebury optical
flow benchmark is typically used for assessing frame inter-
polation methods, we submit our frame interpolation results
of eight sequences to its website. The IE scores from Mid-
dlebury [3] interpolation section are shown in Table 7. Our
method performs well in the whole frame (all), discontinuous
motion regions (disc) and textureless regions (unt), in which
it is hard to predict motion. Particularly, the Teddy sequence
only provides two frames as input, so we duplicate frames and
pass them into our network. In spite of this, we still achieve
satisfactory interpolation result. Both of these validate the
robustness and generalization ability of our approach. It also
validates our hypothesis that two frames with strong corre-
lation are able to generate a reasonable result, while four
frames can further improve the performance. Our approach
performs well and is stable in various situations while
the performance of other methods fluctuate significantly
in some special regions. For example, SepConv does not
perform well in textureless regions of the Teddy sequence.
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TABLE 7. Evaluation on the Middlebury benchmark. disc.: Regions with discontinuous motion. unt.: Textureless regions.

FIGURE 8. Sample interpolation results from UCF101: Our MPRN produces less artifacts around the brush and the mouse in (a). Small or thin objects
that move quickly can effectively detected by our MPRN in (b). Row (c) shows our MPRN can better restore details of legs of the gymnast. Please see
supplementary material for video results.

TABLE 8. Interpolation results comparison on the UCF101 dataset.

MDP-Flow2 and Deepflow perform poorly in regions with
discontinuous motion of the Evergreen sequence. Further-
more, according to the feedback from the Middlebury bench-
mark organizer, our interpolation results outperform most
published methods on the Middlebury benchmark website.

2) UCF101
Videos fromUCF101 are in low resolution and relatively easy
to interpolate intermediate frames. So we select samples with
obvious motion using DIS optical flow [47], and evaluate
these methods by computing PSNR, SSIM and IE. The quan-
titative results are shown in Table 8. Our MPRN has similar

TABLE 9. Interpolation results comparison on the Thumos15 dataset.

performance to MEMC-Net [22] on UCF101, consistently
outperforming other both non-neural [1], [20], [21] and CNN-
based approaches [4], [7]. Moreover, the MPR-2 frames
model also achieves high performance with just two frames
as input. Sample interpolation results from UCF101 can be
found at Figure 8.

3) Thumos15
To compare our approach with other methods in high-
resolution videos, we select videos with a resolution of
1280× 720 from Thumos15 test data, which contains videos
in various resolutions. These high-resolution videos contain
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FIGURE 9. Sample interpolation results from Thumos15 (720P videos): Top two rows show our models can better handle
occlusions, motion and motion edges in high-resolution videos. Bottom two rows show a challenging example with large
motion. Both our models can effectively deal with this situation while MPRN perform better. Please see supplementary material
for video results.

TABLE 10. Impact of different train data.

TABLE 11. Comparisons with other methods on parameter and runtime.

a variety of situations, such as small and large movement,
motion blur, global motion, and occlusion. Experiments
here do not contain MDP-Flow2 as it is too time consum-
ing to compute optical flow between two high-resolution
frames. MDP-Flow2 is not very suited for high-resolution
video frame interpolation. As reported in Table 9, both of
our models, MPRN and MPR-2 frames, outperform other
state-of-art methods. Compared with other frame interpo-
lation approaches, our MPR framework is better in han-
dling challenging large-motion and occlusion, which makes
our networks to be more advantageous in high-resolution
frame interpolation tasks. Qualitative comparisons are shown
in Figure 9.

4) IMPACT OF DIFFERENT TRAIN DATA
To discuss the impact of different train data, we retrain
our network on the UCF101 dataset and then test it on the
UCF101 dataset as well as Thumos15 dataset. As reported
in Table 10, MPRN trained on our dataset perform well on
both datasets, while the performance of MPRN trained on

FIGURE 10. Illustration of the 3D U-net feature extractor. Blue boxes
represent feature maps with size of depth× height ×width× channel .
Dotted lines represent skip connection. 3D convolution and pooling
kernels have size of d × k × k , where d is kernel temporal depth and k is
kernel spatial size. The last number in each convolutional layer denotes
the number of kernels.

UCF101 is not satisfactory on Thumos15. We can observe
that the MPRN trained on UCF101 does not handle high
resolution videos well, because the motion of objects in
UCF101 is generally small. Therefore, it is essential to make
a dataset that covers vivid natural and different amplitude
motions for this task.
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FIGURE 11. Illustration of each pyramid level in a 3-level pyramid
framework. 7× 7 convolutional kernels are used in the first two and the
last two hierarchies at each level. For layers in the rest of each level,
5× 5 kernels are used.

5) COMPUTATIONAL EFFICIENCY
The size of U-net at each pyramid level is adjusted according
to the resolution. And the channel size and number of layers
of 3D U-net is carefully designed to control the amount of
parameters in an acceptable range, as shown in Figure 10 and
Figure 11. Our approach is implemented with unoptimized
Tensorflow code. We list the number of model parameters
and execution time (test on a 640 × 480 image with a
Tesla V100 GPU) of each method in Table 11. Compared
with representative state-of-the-art methods, the MPRN can
achieve better performance with similar execution time and
fewer parameters, which is 46% less than SepConv [7] and
83% less than MEMC-Net [22]. When faced with low com-
plexity requirements, MPRN without 3D U-net can furhter
use fewer parameters and run faster than other method. It is
worth mentioning that our multi-frame interpolation model
can interpolate 3 frames at a time in only 0.17s, which is more
efficient with 0.056s per frame.

V. CONCLUSION AND DISCUSSION
In this paper, we propose a multi-frame pyramid refinement
network to excavate information in-between multiple frames
for video frame interpolation. First, we propose a multi-
frame pyramid refinement (MPR) framework which utilizes
coarse-to-fine refinement framework to make full use of
the correlations among multiple consecutive frames. Second,
3D-multi-frame-context features extracted from 3D U-net
feature extractor are embedded in the MPR framework to
improve the performance and robustness of interpolation.
Third, we adopt a multi-step perceptual loss to further

improve the subjective and objective quality. As demon-
strated in our experiments, the proposed method can produce
high-quality video frame interpolation results and outperform
state-of-the-art methods.

It has been shown in recent research on image synthesis
that a proper adversarial loss can help to produce high quality
visual results. In the future, we think it is promising to use it
to further improve the quality of frame interpolation.

We highly recommend the reviewers to check the slow
motion videos generated by MPRN in the supplementary
material.

APPENDIX
NETWORK DETAILS
Figure 10 shows details of the 3DU-net feature extractor used
in our experiment. Figure 11 shows detailed configuration of
each pyramid level in a 3-level pyramid framework.
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