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ABSTRACT In this paper, we propose to extract spectral absorptions as the discriminative features to
classify hyperspectral imagery. Different from previous researches that mainly take hyperspectral curves
as high-dimensional inputs, we analyze hyperspectral data more from its physical and chemical origins.
In the proposed approach, the discriminatory information, which is characterized by the observed materials’
constituents, is extracted as a group of absorption features. First, the original hyperspectral spectra are
transformed to a normalized spectra, in which a modified continuum removal algorithm is adopted to
highlight all spectral valleys. Next, a standard peak detection method is applied to the continuum-removed
spectra, and all effective absorptions are found as the candidate features. Then, to obtain the most informative
absorptions to classification, a novel mutual-information based feature selection method is used to search
for the key absorption spectra. Finally, we put forward a matching algorithm to classify the absorption
features using the multi-label learning. To testify the proposed method, both laboratory and remotely sensed
hyperspectral data are used to evaluate the classification performance. Experimental results show that the
proposed method achieves competitive classification accuracy against the state-of-the-art methods, but with
an advantage of more compact feature representation.

INDEX TERMS Hyperspectral imagery classification, absorption features, feature matching.

I. INTRODUCTION
With the advance of remote sensing technology, hyperspec-
tral imaging is becoming more and more important for
earth observation. After success of NASA’s Hyperion mis-
sion, the satellite-borne hyperspectral sensor has proved their
capability to earth observation by providing critical ground
and atmospheric information. Comparing to the conventional
panchromatic imaging, hyperspectral remote sensing is based
on the technology of imaging spectroscopy, dated back to
more than one hundred years ago in the laboratory by physi-
cists and chemists to identify materials according to their
compositions. Actually, it can be considered as a sensor
that combines two individual parts, namely imaging and
spectroscopy, into a single system. Therefore hyperspectral
sensors can simultaneously measure hundreds of contigu-
ous spectral bands with a fine spectral resolution without
complicated image registration. Comparing to the multi-
spectral remote sensing, hyperspectral sensors can be seen
as successors to the multispectral sensors. Specifically, the
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hyperspectral data sets, captured by one spectrometer, are
generally composed of more than 100 spectral bands with
relatively narrow bandwidths (5-10 nm). On the contrary,
multispectral data sets, captured by several radiometers (for
example the Landsat Thematic Mapper, LTM), are usually
composed of about 5 to 10 bands of relatively large band-
widths (70-400 nm) [1], [2]. The increased number of bands
and the narrowed bandwidth make it possible to reduce over-
laps between classes, and give better capability to discrimi-
nate subtle spectral differences. In recent years, hyperspectral
imaging has been found to be a powerful technique in numer-
ous areas, such as mining, geology, agriculture, surveillance,
ecology, oceanography, environmental monitoring, etc.. And
the interest in applying hyperspectral imagery classification
to earth observation is growing continuously [3], [4].

Hyperspectral imagery is typically collected as a data
cube with spatial information in the usual x − y coordi-
nates, and spectral information represented in the another
z coordinate. Sampling each voxel from the x − y plane,
the classification is carried out by analyzing the electromag-
netic reflectance as a function of the wavelength or band,
i.e., z axis. The higher spectral resolution in the z axis
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provides markedly potentials to object classification in earth
observation, but a new range of challenges are also introduced
by the hyperspectral imaging. First, the level of complexity
for data processing is increased significantly comparing to
the traditional panchromatic or the multispectral techniques.
To work with more than 200 narrow spectral bands, it is
necessary to reduce redundancy between spectral bands and
the dimensionality reduction techniques are in great demand.
Second, the need for data storage is rising dramatically for
high-volume data. The facilities to accommodate the high-
volume data cube and enough bandwidth for the space-earth
telecommunication become decisive factors to make the mis-
sion of the hyperspectral-based earth observation success.
Finally, the increased number of the spectral bands causes
an expanded feature space, which makes the feature extrac-
tion or feature selection more difficult and more complicated.
In this paper, we address the last challenge by investigating
effective approaches for hyperspectral feature presentation
and the corresponding classification algorithms.

To use hyperspectral data cubes effectively, the first pri-
ority is to extract appropriate features from the original
high-dimensional data. Ideally, we expect that the extracted
features contain enough discriminatory information and can
characterize the intrinsic distinctness among different mate-
rials. This will help us to meet our main goal of identifying
materials for earth observation. On the other hand, since
atmospheric absorption, particles scattering, sensors noise
and spatial interference from neighboring pixels are almost
inevitable during measurement, we hope that the features
should have a certain level of invariability and are robust to
the aforementioned interference. In recent years, many stud-
ies have been carried out to address this problem. Typically
used features are the complete spectra [5], the spectral bands
from feature selection [6], various transformed features [7],
spectral-spatial features [8], etc. Other newly developed tech-
niques applied to hyperspectral feature extraction are ker-
nel based methods [5], deep-learning based approaches [9],
active learning based approach [10], etc.

Roughly speaking, the above hyperspectral feature extrac-
tion methods are developed by following three main tech-
nical routes, namely pattern analysis, signal processing,
and machine learning. The methods that may be catego-
rized as the pattern analysis route include the Principal
Component Analysis (PCA) [7], [11], [12], Independent
Component Analysis (LDA) [13], Linear Discriminant Anal-
ysis (LDA) [14], feature selection [6], etc. The methods
based on the signal processing are the wavelet transform [15],
Empirical Mode Decomposition (EMD) [16], Maximum
Noise Fraction (MNF) [17], [18], Non-negative Matrix Fac-
torization (NMF) [19], Intrinsic Mode Functions [20], etc.
And the methods based on the machine learning are the
Support Vector Machines (SVMs) [5], Convolutional Neural
Network (CNN) [21]–[23], active learning [10], etc. The
effectiveness of the these methods is mainly derived from
their mathematical foundation and the applied optimization
techniques. In this paper, apart from inheriting the solid

basis from the classic pattern recognition theory, we are con-
sidering the hyperspectral structural feature extraction from
a perspective of spectral absorption [24]–[27]. The idea is
derived from the physical background associated with the
hyperspectral imaging, and is different from the previous
methods that are driven mainly by the pattern analysis theory.

The proposed method consists of the following steps. First,
to avoid the effects from changing illumination the orig-
inal high-dimensional hyperspectral curves are normalized
into magnitude range of [0,1]. Then, a modified continuum
removal algorithm is applied to the normalized spectra, leav-
ing highlighted extrema (i.e., all maximal and minimal) at
the spectra. Next, we use a peak detection algorithm to find
all absorptions, which are served as the feature candidates.
Then, we adopt a mutual-information based feature selection
method to search for the most informative absorptions. The
in-effect absorption feature vector is formed by labeling a
binary vector with positive ones in the elements correspond-
ing to the selected wavelength or bands. Finally, according
to the nature of the binary absorption features, we propose a
modified multi-label classification method.

The main contributions of the paper can be summarized
as follows. First, we proposed an improved absorption valley
detection approach, which consists of a modified contin-
uum removal algorithm and an adaptive valley detection
algorithm. Comparing to the traditional peak detection meth-
ods, the proposed approach can catch absorption valleys
more accurately through the highlighted absorption peaks
with more flexible magnitude comparing. Second, rather than
relying on the uniqueness of the absorption valleys entirely,
we investigated an alternative way for the absorption-based
materials identification. The new scheme is carried out
by comparing a group of selected absorption features col-
lectively, where the absorptions are chosen by a mutual-
information based algorithm. Finally, since in the new scheme
an absorption feature could be associated with multiple mate-
rial classes simultaneously, we proposed a binary feature-
vector matching algorithm, which can handle each absorption
feature individually.

The remainder of this paper is organized as follows.
In Section II-III, several key algorithms regarding the pro-
posed method are presented, including a continuum removal
algorithm and a mutual-information based feature selection
algorithm. Then a binary vector matching scheme is intro-
duced in Section IV, which is used to classify the absorption
features. Experiments are carried out to assess the perfor-
mance of the proposed method, which are discussed in
Section V. Finally, we end this paper with conclusions and
a proposal for future work in Section VI.

II. ABSORPTION FEATURES EXTRACTION
In this research, we first study the absorptions of seven
materials at a laboratory environment. The investigated mate-
rials include ‘Aluminum’, ‘Yellow polyester film’, ‘White
polyester film’, ‘Mono-crystalline silicon’, ‘Titanium’,
‘Silicon dioxide’, and ‘Carbon fiber’. We use an Analytical
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FIGURE 1. Samples of the ASD data set.

FIGURE 2. Detection results of absorption valleys.

Spectral Devices (ASD [28]) to recode the seven materials’
spectra. Figure 1 shows the samples of the spectral curves
from the seven studied materials, where the data are acquired
by the author using the ASD portable spectrometer. Figure 2
shows the absorption valleys of the seven materials, where
the detected absorption valleys are represented as black
lines. These results are obtained by using a peak detection
algorithm.

To use the detected absorptions for material identifica-
tion, we can directly compare the absorptions of each of
the materials against those of all other remaining materials.
In this research, we use ‘eigen-absorptions’ to denote
the absorptions that are different from all other materi-
als that are involved in classification. We search for the
‘eigen-absorptions’ of each class based on their training sam-
ples. In details, the searching is carried out by a pair-wise
comparison. For example, the first class’s absorptions are
compared against the second class’s absorptions, and the dif-
ferent absorptions are remained and the identical absorptions
are removed off. Such a searching is carried on byN−1 times
(N is the number of the classes), and during each round of
the searching the (N + 1)-th class’s absorptions is applied for
comparison. The resulting absorptions are therefore unique
absorptions within the set of compared classes, and can be
used for material identification. This strategy is straightfor-
ward and simple. But when the classification tasks become
more complicated, for example a great amount of mate-
rials are involved for classification, applying this strategy

to classification may no longer work. To avoid the afore-
mentioned situation, we propose an improved hyperspectral
absorption classification method. It is based on three foun-
dations, namely the ‘structural feature extraction’, ‘feature
selection’ and ‘feature matching’, which are discussed as
follows.

To find the suitable absorption features, we are considering
a structural feature extraction method consisting of two steps,
including 1) Continuum removal and 2) Absorption detec-
tion. In the first step, we use continuum removal or envelop
removal techniques to highlight all absorption valleys.
In hyperspectral remote sensing, the continuum is an envelop
that is just above the top of a spectral curve. By removing
the continuum, we can normalize the reflectance or radi-
ance spectral curve. This is helpful to compare different
absorptions by providing a standard baseline. Considering the
characteristics of the absorption features, we develop a con-
tinuum removal algorithm, which is presented at Algorithm 1.
Figure 3 shows the result of Algorithm 1, where the solid
line is the original spectral curve, the dashed line is its
envelop and the dotted line is the continuum removed spectral
curve. It is seen from Figure 3 that after continuum removal
every absorptions are pulled up to the top baseline, and it
becomes possible to compare absorption intensities for dif-
ferent valleys.

In the second step, we are using an adaptive absorption
detection algorithm to avoid those less important absorptions.
Directly using the original spectral curve, it is very difficult
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Algorithm 1 Continuum Removal
Input: Original spectral curve x = (X1,X2, · · · ,Xn), n is the total number of bands
Output: Continuum removed curve xc
1: Calculating the first order of derivative as: x′ =diff(x), diff(x) = {Xm+1 − Xm},m = 1, 2, · · · , n− 1
2: Calculating the second order of derivative as: x′′ =diff(x′), diff(x′) = {X ′m+1 − X

′
m},m = 1, 2, · · · , n− 2

3: Finding the maxim values of x, i.e., xm = (X1
m,X

1
m, . . . ,X

k
m), by solving x′′ = 0

4: Filling the start and the end values to xm, i.e., xm = (X1,X1
m,X

1
m, . . . ,X

k
m,Xn)

5: Using straight-line segments to connect each points of xm, i.e., the local spectra maximal, and getting the envelop xe
6: if (x− xe) < 0 then
7: x′e← x
8: else
9: x′e← xe
10: end if
11: Outputting the continuum removed spectral curve xc = x′e/x

FIGURE 3. Results of continuum removal.

to measure the level of absorption intensity across different
bands. It is seen that both in the ASD (see Figure 1) and the
AVIRIS sensor, the levels of radiance drop significantly from
the band of the visible light (VIS, 400-700 nm) to the band
of the near-infrared light (NIR, 700-1000 nm). Therefore,
without further processingmajority of the absorptions located
at the near infrared band will be omitted or be neglected.
However, after removing the continuum we may compare
individual absorption features from a common baseline (see
Figure 3), and we are able to preclude the absorptions with
the less absorption intensity. Specifically, by setting two
thresholds we can prevent choosing the absorptions caused by
sensors’ noise or transmission interferences, whist preserving
the absorptions that are important to materials identification.
The details are depicted as the following equations.

Aic =


1, if (X i+1c − X ic) ≥ δl and (X

i−1
c − X ic) ≤ δr ,

i = 1, 2, · · · ,L
0, otherwise

(1)

where xc =
(
X1
c ,X

2
c , · · · ,X

L
c
)
is a L-dimensional continuum

removed spectral curve, and the binary scalar Aic indicates
whether an effective absorption feature is found at the i-
th band. Since an absorption valley has two shoulders, two
parameters δl and δr have been used as thresholds to control
abovewhat levels of intensity an absorption can be considered
as an important feature. In our method, the parameters δl and

δr are set up adaptively as in Equation (2). Comparing with
the conventional methods, the proposedmethod has an advan-
tage of adaptivity, achieved by using a common baseline for
intensity comparison and two adaptive thresholds.

δl = (X i−1c − X ic)/2

δr = (X i+1c − X ic)/2 (2)

III. ABSORPTION FEATURES SELECTION
In the absorption features extraction, we were using a contin-
uum removal algorithm and an adaptive absorption detection
algorithm to get a series of absorptions that are qualified
candidates in the sense of the level of the absorption intensity.
But for the purpose of materials identification or objects
classification, the high level of the absorption intensity, or the
magnitudes of the features, is not sufficient to achieve a
better performance. Hence to search for the most informa-
tive absorptions from all the possible candidates, we inves-
tigate a novel mutual-information based feature selection
method [29].

The mutual information is a concept originated from the
area of Information Theory, and is used tomeasure themutual
independence between two random variables. For the case of
continual random variables, it is defined as follows:

I (A,B) = −
∫
a∈A

∫
b∈B

p(a, b) log
p(a, b)
p(a) p(b)

da db (3)
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where p(a), p(b), and p(a, b) are the marginal and the joint
probability density functions of the continual random vari-
ables A and B, respectively. In the case of discrete random
variables, the mutual information can also be defined as:

I (A,B) = −
∑
a∈A

∑
b∈B

p(a, b) log
p(a, b)
p(a) p(b)

. (4)

Previous research has shown that the mutual information
is related with the Bayesian classification error, which is
usually considered as a golden standard inmany classification
applications, by the following inequality:

H (B)− I (A,B)− C1

C2
≤ Pe. (5)

wherePe is the Bayesian classification error, andC1 = H (Pe)
and C2 = log(l − 1) are two constants. H (B) is the entropy
of the random variable B:

H (B) = −
∑
b∈B

p(b) log p(b). (6)

From (5), it is seen that the classification error Pe is lower
bounded by I (A,B) and H (B). In a specific remote sensing
application, given B be a random variable standing for the
ground truth, H (B) is a fixed number due to the same prior
distribution. Therefore, maximization of mutual information
can optimize the lower bound of the classification error.
In this sense, using mutual information for feature selection
is actually based on the criterion of classification accuracy.

The above arguments pave the way of our proposal, namely
using the mutual information as the objective function to
search for the most discriminative absorptions for hyper-
spectral classification. To accomplish the proposed mutual-
information based absorption selection, we have to solve one
major problem in the first place, i.e., how to calculate a
multidimensional mutual information. Formally, the mutual
information between a multidimensional random vector, i.e,
the multiple absorption candidates, and a one-dimensional
random variable, i.e., the ground truth, can be written as:

I (x,Y ) = I ((X1,X2, . . . ,XM ) ,Y ) . (7)

where x = (X1,X2, . . . ,XL) is a random vector representing
multiple features, and Y is a random variable denoting the
ground truth.

In this paper, we extend a multidimensional mutual infor-
mation decomposition scheme put forward by our previous
research [29]. Specifically, we demonstrate that a multidi-
mensional mutual information can be approximated by the
following decomposition formula.

I (a,B) ≈
∑

i
I (Ai,B)−

∑
i

∑
j>i

I
(
Ai,Aj

)
+

∑
i

∑
j>i

I
(
Ai,Aj|B

)
. (8)

where a = (A1,A2, . . . ,AL) is a multidimensional absorp-
tion feature vector with each of the components Ai (i =
1, 2, . . . ,L) standing for one selected absorption feature.

Based on (8), we can select the informative absorption
features by maximizing I (a,B) step by step. In details, i.e., by
maximizing the following cost function:

A01 = argmax
Ai,i=1,2,...L

I (Ai,B) , (9)

where A01 is the first selected absorption feature.
By the same way, the second absorption feature is chosen

as the following maximization:

A02 = argmaxAi|Ai 6=A01,i=1,2,...L
[
I (Ai,B)

−I
(
Ai,A01

)
+ I

(
Ai,A01|B

)]
. (10)

After repeating the above maximization, we get a series of
informative absorption features, such as follows:

A0n = argmaxAi|Ai 6=A0j ,,i=1,2,...L
[
I (Ai,B)

−

∑
j
I
(
Ai,A0j

)
+

∑
j
I
(
Ai,A0j |B

)]
, (11)

where A0j , j = 1, 2, · · · , n− 1 denote the absorption features
that are already selected.

IV. MATCHING OF ABSORPTION FEATURE
Through the above structural feature extraction and selection,
the resulting absorption features are encoded as a binary
vector or a bit array, in which each component of value one
means selected absorption feature and the components of
value zero stand for absent absorption. As mentioned before,
we do not require that the absorption features are unique
among all classes in the revised version of the proposed
approach. Thus, it becomes possible that an absorption fea-
ture is associated with multiple material classes simultane-
ously. For example in theAVIRIS 92AV3C data set, it is found
that the absorption feature at the fourth band is an effective
absorption feature for all 16 classes. The absorption feature
at the band 170 contributes to four different classes. In view
of pattern recognition theory, this is a classification problem
where multiple target labels are assigned to one instance or
feature. Considering the fact, i.e., one absorption feature may
correspond to more than one class, we propose the following
binary feature-vector matching algorithm, which can manage
each absorption feature individually.

First, we decompose the overall matching into N inde-
pendent binary classification problems, where N is the total
number of the classes or labels. Next, we adopt a binary
relevance method depicted as follows.

Given a training set as a group of binary vectors xi =(
X1
i ,X

2
i , · · · ,X

L
i

)
and X ji ∈ {0, 1} representing a binary

absorption feature at the j-th band for the i-th instance or sam-
ple, we use yi ∈ {1, 2, . . . ,N }, i = 1, 2, . . . ,M to denote
the class label of the absorption feature vector xi (L is the
total number of the bands and M is the total number of
the training samples). If we treat each band X j individually,
we can formulate the following multi-label learning data set:

Dk = {(x
j
i , φ(Y

j
i , k)), |1 ≤ i ≤ M}, k=1, 2, · · · ,N (12)
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FIGURE 4. Three measurements of Carbon fiber’s spectral radiance curves.

where x ji ∈ R is the spectral radiance value at the j-th band of
the i-th sample,

φ(Y j, k) =

{
+1, if k ∈ Y j

−1, otherwise,
(13)

and

Y j = ∪yi, if X ji = 1, i = 1, 2, · · · ,M . (14)

In (14), Y j is a subset of the class-label set {1, 2, . . . ,N },
associated with a scenario where the j-th band of the i-th
sample is found to be positive to an effective absorption. In the
new set of training samples Dk , for the relevant label k ∈ Y j,
the reflectance value x ji is regarded as one positive exam-
ple because an absorption feature is found at the j-th band,
and vice verse. By customizing training sets as Dk , (k =
1, 2, · · · ,N ) and following the general procedure of the
binary relevance method [30], N binary classifiers fk can be
trained.

Prediction of an unseen instance x =
(
X1,X2, · · · ,XL

)
is carried out by two steps. First, we query each absorption
feature, i.e., X j, j = 1, 2, · · · ,L and its radiance value
x j individually, by the trained binary classifier fk . Next we
obtain the final prediction result of the feature j by combining
the relevant results from the output of fk , such as follows:

Rj = {k | fk (x j) > 0, 1 ≤ k ≤ N }. (15)

where Rj ⊆ {1, 2, · · · ,N } is the predicted multi-label set
based on the feature at the j-th band individually. Combining
the predictions from all bands j ∈ {1, 2, · · · ,L}, the overall
result is finally reached by a majority voting.

V. EXPERIMENTS AND RESULTS
In order to evaluate the classification performance of the
proposed method, we carry out experiments based on two
hyperspectral data sets, corresponding to a hand-set field test
(see Section V-A) and an air-borne remote sensing test (see
Section V-B), respectively.

A. RESULTS OF LABORATORY DATA
The first data set is acquired by using the ASD (Ana-
lytical Spectral Devices [28]) sensor on a controlled

laboratory environment. Seven materials, including include
‘Aluminum’, ‘Yellow polyester film’, ‘White polyester film’,
‘Mono-crystalline silicon’, ‘Titanium’, ‘Silicon dioxide’, and
‘Carbon fiber’, are studied. In this data set, each sample is
measured in the wavelengths range from the visible light
band to the near-infrared light band, i.e., from 350 nm to
2,500 nm. The spectral resolutions is 1 nm and an overall
2,151 measured bands are given for each of the samples. For
the studied materials, a white board is also used to give a
reference of all reflectance, and three times of measurements
are carried out to obtain three samples for each material.

Figure 4 shows three spectral curves for the material
‘Carbon fiber’, which are measured at three different times.
It is seen from Figure 4 that the magnitudes of the ‘Carbon
fiber’s spectral radiance are varying with different measure-
ment times. This could be caused by the changing intensity of
the illumination or the random shifting by the sensor’s gain.
But it is observed that the positions of the absorption valleys
remain quite stable, with no regard to the changing illumi-
nation. In contrast to the volatile radiance magnitudes, this
finding exhibits the superiority of using the absorptions as the
features for material identification and object classification.

According to the proposed method introduced in IV, for
each of the materials, one sample is used as the training data
to obtain the necessary ‘eigen-absorption’. The remaining
two samples are used as the testing data to assess the clas-
sification accuracy. The proposed method is compared with
two classical hyperspectral classification method, i.e., the
nearest neighbor (k-NN) method [31], and the spectral angle
mapping (SAM) method [32]. Because in this test there is
only one training sample from each of the classes, some mod-
ern learning methods, such as the support vector machines
(SVMs), are not suitable and are not adopted as the bench-
mark approaches.

It is seen from Table 1 that in this relatively simple hyper-
spectral classification task, the traditional k-NN method and
the SAM method achieved similar results to the proposed
method at the six classes from the all seven classes. But for
the class ‘Silicon dioxide’, both the k-NN method and the
SAM method made a wrong identification, which lets their
overall classification accuracies drop to 92.86%. Meanwhile,
the overall classification accuracy of the proposed method
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TABLE 1. Comparison of classification accuracy, ASD data set, 1 training
sample and 2 testing samples for each of the classes.

still remains as 100%, making it goes beyond the two tradi-
tional competitors. Besides this controlled laboratory experi-
ment, we also evaluate the proposed method by an air-borne
remotely sensed data set, which is discussed in the next
section.

B. RESULTS OF REMOTELY SENSED DATA
For the purpose of hyperspectral earth observation, we also
test the proposed method on AVIRIS (airborne visible/
infrared imaging spectrometer) 92AV3C data set, which is
a remotely sensed hyperspectral data set [33]. The AVIRIS
hyperspectral sensor is developed by the Jet Propulsion Lab-
oratory (JPL) for Earth remote sensing. It has been mounted
on various aircraft platforms and can capture hyperspectral
data at approximately 4-20 km height above sea level. The
AVIRIS sensor provides 224 contiguous spectral channels
at 10 nanometer intervals across the electromagnetic spec-
trum, covering a wavelength range from 400 nanometers to
2500 nanometers. The studied 92AV3C data set is acquired
by the AVIRIS sensor in 1992 over the test site of Indian
Pine in northwestern Indiana, USA. The data cube has a
145-pixel swath and 145-pixel scan length, giving a 145 ×
145 × 224 hyperspectral data cube. At the observed scene,
each pixel is labeled as belonging to one of 16 classes of
vegetation, including Alfalfa, Corn, Soybean, Wheat, etc.
Both the data set and the reference map that indicates partial
ground truth can be downloaded from Website [34].

In the test, pixels of all 16 classes vegetation are used
for evaluation. Apart from the aforementioned two conven-
tional hyperspectral classification methods, two machine-
learning based approaches, including the classical support
vector machine (SVM) [5] and the newly developed deep
learning algorithm [9] (Transfer Learning method, TL), are
also adopted for comparison. Both the SVM and TL methods
are the machine-learning based approaches, so about 3%
pixels from each class (or at least one sample if 3% samples is
less than 1)were randomly chosen as the training data set. The
training data are used to validate the models of the machine-
learning based approaches, such as the optimization of the
parameters of the SVM and TL classifiers. The training data
are also used to help the mutual-information based feature
selection. For classification accuracy assessment, the remain-
ing 97% samples are formed as the testing set, on which

the classification performance was assessed. Comparing to
many previous researches that use the bigger size of training
data (such as 20% 50%), we use only 3% training samples
in this research. This is useful to demonstrate the advan-
tage or capability regarding the proposed approach in the
application scenarios where training samples are difficult to
obtain.

During the training, the kernel function of the SVM is
chosen as a Gaussian Radial Basis Function, i.e., G(a,b) =
exp(− ‖a−b‖

2

σ
). The penalty parameter C is tested from 10−2

and 104, and the kernel width γ is tested between 10−2 and
103 using a two folds validation procedure based on only the
training data. The kernel width σ = 15 and penalty C =
110 were finally found as the optimal values for this training
data set. The transfer learning (TL) [9], [10] is based on
Convolutional Neural Networks [21]. The network used is the
CNN-based VGGNet-VD16 (see website [35]) and this net
is pre-trained by the visual data set ImageNet [36]. We use a
transfer learning strategy that is adopted from Shao et al. [21].

Table 2 shows the performance of the proposed method
against four competitive methods. It can be seen that the
overall accuracy of the proposed method is 67.99%, which
is very close to the state of the art methods, including the
SVM’s 68.03% and TL’s 68.26%. It is significantly higher
than those of the traditional methods, such as the k-NN and
the SAM method. As for the two machine-learning based
methods, the TL’s result is similar to that of the SVM. This
result is probably due to that fact that only a small amount
of training samples (3%) are available for training in this
special experiment. The advantages and potentials given by
the deep learning approaches have not been exhibited suf-
ficiently, because they are developed to accommodate and
have to be supported by big data. Similar conclusions are
also be drawn by comparing the Cohen’s kappa coefficients
of each of the methods, where the the proposed method has
a kappa coefficients of 0.62, being very close or equal to
TL’s 0.63 and SVM’s 0.62. From Table 2, it is also noted
that the machine-learning based methods and the proposed
method are biased to the individual classes that have more
training samples. On the contrary, the traditional methods,
such as the k-NN and the SAM method suffers less this bias.
This result reveals one of the limitations of the learning-based
methods. We also compare the proposed method with the
method using the conventional peak detection method (CPD).
It is shown that the performance of the CPD method is lower
than the proposed method, with overall accuracy of 62.71%
and Kappa coefficient of 0.59. This justifies the using the
modified peak detection algorithm in the proposed method.

To further justify the above conclusions, we calculate the
confusion matrices for each of the classification methods.
To save space, we only list two of the confusion matri-
ces in Table (3) and Table (4), corresponding to the SVM
method and the proposed method, respectively. It is seen
that the confusion matrix of the proposed method is very
close to the SVM’s confusion matrix, coinciding with the
comparison results of the overall accuracies shown in Table 2.
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TABLE 2. Classification results on AVIRIS 92AV3 dataset, 3% training set.

TABLE 3. Confusion matrix of the SVM method; Corn1: Corn-notill, Corn2: Corn-mintill, Corn3: Corn, Grass1: Grass-pasture, Grass2: Grass-trees, Grass3:
Grass-pasture-mowed, Soybean1: Soybean-notill, Soybean2: Soybean-mintill, Soybean3: Soybean-clean, Hay: Hay-windrowed, Building:
Buildings-Grass-Trees-Drives, Stone: Stone-Steel-Towers.

TABLE 4. Confusion matrix of the proposed method; for the detailed name of each class, see Table (3).

For visual observing, we also illustrate the classification
maps of the k-NN, the SAM, the SVM, the TL method
and the proposed method in Figure 6. Comparing with the

ground truth map (Figure 5(a)), the distribution map of
the training samples (Figure 5(b)) and the distribution map
of the testing samples (Figure 5(c)), we may examine the
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FIGURE 5. Ground truth (a), distributions of training data (b) and testing data (c), AVIRIS 92AV3C.

FIGURE 6. Comparison of classification maps.

TABLE 5. Comparison of dimensionality for different methods’
feature-vectors, ASD data set.

detailed differences of the classification results for the k-NN
(Figure 6(a)), the SAM (Figure 6(b)), the SVM (Figure 6(c)),
the TL method (Figure 6(d)) and the proposed method
(Figure 6(e)). For example, in the two rectangles surrounded
by black lines in Figure 6(a), we see that the proposed method
indeed corrects some classification errors made by the k-NN
and the SAM methods, which echoes the previous quantita-
tive analysis.

C. COMPARISON OF FEATURE VECTORS
It is shown that the proposed method achieves better classifi-
cation accuracy than the two classical hyperspectral classifi-
cationmethods (i.e., the k-NN and the SAM) in the laboratory
acquired ASD data set. And in the remotely sensed AVIRIS
data set, the classification accuracy of the proposed method is
just below the two state of the art methods (i.e., SVMand TL).
However, the worthmentioning value of the proposedmethod
is its compact feature representation. Table 5 and Table 6

TABLE 6. Comparison of dimensionality for different methods’
feature-vectors, AVIRIS data set.

compare the dimensionality of the feature-vectors for differ-
ent methods based on the ASD data set and the AVIRIS data
set respectively.

Due to different materials or objects have different num-
bers of absorption valleys, so the numbers of the ‘eigen-
absorption’ features calculated for each of the classes in
the ASD data set and AVIRIS data set are different (see
the fourth columns of Table 5 and Table 6). On the other
hand, the conventional hyperspectral classification methods
and the state of the art machine learning based methods use
the complete spectra as their features, so the numbers of their
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features are 2151 and 220 for the ASD data set and AVIRIS
data set respectively (see the second and the third columns of
Table 5 and Table 6).

It is shown that the proposed method has a much sparser
feature representation in contrast to the traditional methods
that take the whole set of reflectance values as their feature
vectors. In the laboratory ASD data set, the average dimen-
sion of the proposed method’s feature-vector is about 95,
much smaller than the 2151 dimensional full spectral vectors
used in the classical k-NN and SAMmethods. In the remotely
sensed AVIRIS data set, the average dimension of the pro-
posed method’s feature vector is about 21, also smaller than
the 220 dimensional full spectral vectors used in the state of
the art SVM and TL methods.

Though the proposed method does not outperform the
competitive machine learning based SVM and TL meth-
ods in the remotely sensed data set, it is observed that the
difference in classification accuracy between them is quite
narrow (i.e., less than 0.3%). Considering its advantage of
the compact and sparse feature representation, the proposed
method could still be useful in the applications where the
storage space or transmission bandwidth are limited and the
labeled training samples are expensive to acquire.

In the controlled laboratory experiment because the data
are acquired with lower noise (both from the sensor and from
the environmental lighting), the statistical variability of the
spectral curves is relatively smaller. So we use one sample
from each of the materials as the gallery signature, and the
other two as the probe curves. Experimental results show
that the classification accuracies of the k-NN method and
the SAM method are inferior to the proposed method. This
could be explained as the k-NNmethod and the SAMmethod
take the whole set of the bands in classification and the
redundant bands therein might deteriorate their performance
(e.g., the ‘Hughes Phenomenon’). In the remotely sensed
AVIRIS data set, we use more training samples. However in
remote sensing applications, the training samples have to be
obtained by expensive field survey or heavy-labored manual
labeling. Comparing to other general image classification
applications, it tends to be more difficult to obtain a large
number of samples for classifiers’ training. So in our experi-
ment, we randomly choose a relatively smaller set of data as
the training samples. It is useful to testify the performance of
the proposed method in a scenario where training samples are
expensive to obtain.

From the above experiments, we show that the proposed
method can outperform many conventional hyperspectral
classification approaches. In contrast to the state of the
art methods, the proposed method needs a size of training
samples much smaller than the deep learning based meth-
ods or support vector machines. In some applications of
materials identification, like the aforementioned ASD test,
it is difficult or costly to obtain enough amount of training
data due to the expensiveness of the materials. This will
hamper the using of the machine learning based approaches,
and make the proposed method useful. So in our experiments,

to demonstrate the advantage of the proposed method for this
scenario of applications we use one sample (in the aboveASD
data set) and a small percentage of the total data (3% in the
AVIRIS data set) as the training data. With more samples
are adopted for training, the machine learning based methods
will surpass the proposed method but at the cost of highly
expensive data acquisition.

VI. CONCLUSION AND DISCUSSION
In this paper, we discuss a hyperspectral classificationmethod
based on a novel feature representation, namely the spec-
tral absorption features. This idea is originated from the
research of spectrometry, but it has not been fully exploited
in the area of remotely sensed hyperspectral classification.
Given the capability of spectral absorptions to characterize
a material’s constituents, the spectral absorptions are found
to be powerful to hyperspectral classification. Aiming at
an effective hyperspectral classification, first we propose to
search for the unique spectral absorptions, i.e., the ‘eigen-
absorptions’, for materials identification. But further research
shows that this straightforward approach may fail due to
the empty set of ‘eigen-absorptions’. It is usually happened
when a large number of objects are involved in the classi-
fication and the increased amount of pair-wise comparisons
dramatically reduce the possibility of finding unique spectral
absorptions. Therefore, we propose an improved approach,
which does not require the distinctiveness or uniqueness
for the absorption features. In this method we designed
three algorithms, including the continuum removal algorithm,
the absorption selection algorithm and the feature match-
ing algorithm. The techniques from the envelop detection,
the mutual-information based feature selection and the multi-
label learning are adopted in our algorithms. To assess the
classification performance, experiments have been carried
out based on a laboratory ASD hyperspectral data set and
a remotely sensed AVIRIS 92AV3C data set. The experi-
mental results show that the proposed method outperformed
the traditional nearest neighbor classifier and the spectral
angle mapping method. Its classification accuracy is also
competitive to the support vector machine method (SVM)
and the deep-learning based transfer learning (TL) method.
Comparing to the state-of-the-art methods, such as the SVM
and the TL, the proposed method has significant advantages
of compact feature representation and shorter training time.
Future research directions regarding this approach include
more accurate extraction of effective absorptions and better
classifying strategies.
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