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ABSTRACT The controlled air-gap of the electromagnetic suspension maglev train is generally 8-10 mm,
which makes the effect of the vehicle-track dynamic coupling significant. It is found that the track
irregularities especially the track step will make the controlled air-gap of the suspension system fluctuate off
the setting air-gap.When the situation is evenworse, the suspension gapwill fluctuate beyond the limit so that
the electromagnet or the supporting slide crashes with the track which results in noise and poor ride comfort.
By analyzing the gap response of the module suspension system caused by the track step, it is found that the
gap fluctuation of the rear point is more significant than the front point. In other words, the suspension gap
of the rear point is affected by the front point and the two suspension points couple with each other. To solve
the coupling problem between the front and back points, the decoupling controller based on the feedback
linearization theory is proposed. The simulation and experiment show that the decoupling controller has
an excellent decoupling effect. At the same time, the simulation shows that the decoupling controller can
weaken the gap fluctuation when the module suspension system through the track step.

INDEX TERMS Mid-low speed Maglev, track step, fluctuation restrain, decoupling control.

I. INTRODUCTION
The EMS-type urban maglev train uses electromagnetic
force to stably suspend the train above the track to achieve
non-contact support. Compared with traditional wheel-rail
trains, maglev trains have the advantages of small mechanical
wear, strong climbing ability, low noise, and small turning
radius and so on [1]. The main representatives of EMS-type
maglev train are the German Transrapid [2], [3], the Japanese
HSST [4], and the Korean UTM [5]. The EMS-type mid-low
speedmaglev train has been in commercial operation in China
after more than 30 years of development [1]. The Chang-
sha Maglev Express Line and the Beijing S1 Line started
commercial operation on May 6, 2016 and December 31,
2017 respectively. At the same time, the Qingyuan Maglev
tourism special line in Guangdong, as China’s third mid-low
speed maglev traffic line, began construction in 2018 and was
expected to start commissioning by the end of 2019. A num-
ber of urban maglev lines are currently being planned [6].

Since the suspension gap of the electromagnetic suspen-
sion system is very small, generally 8-10 mm, which results
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in a limited fluctuation of the controlled air-gap from the
equilibrium point. Generally, the gap fluctuation range for
the low-speed maglev train is ±4 mm from the equilibrium
point, that is, if the equilibrium point is 8 mm, then the gap
is allowed to vary within the range of 4 − 12 mm. If air-gap
exceeds this range, it is highly probable that the electromag-
net or the support slide will crash with the track, generating
noise and reducing ride comfort. Such a requirement for the
maglev train has made the vehicle-track coupling dynamics
problem outstanding. On the one hand, the accuracy of the
track must be strictly maintained, which makes the cost of
the track relatively high. Generally speaking, the track cost
takes up 60%-80% of the initial capital [7]. On the other hand,
the smoothness of the track puts forward the requirements
to the performance of the suspension control system, and it
is necessary to design the corresponding control strategy to
obtain better vehicle safety and stability.

Many scholars have done a lot of work in studying the
dynamic response of the vehicle-track coupling system for
maglev trains in the case of track irregularities.

In [8], aiming at the problem of the maglev train passing
over vertical curve and circular curve of the track, Li et al.
concluded the relationship between the tracking error and
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FIGURE 1. Beijing S1 Line Maglev Train.

the velocity, the radius of the circular curve, the system
control frequency by analyzing the maximum tracking error
and the response characteristics of the suspension control
system. In [9], Zhao et al. developed a 35 degree-of-freedom
curving model of the maglev train to analysis its dynamic
curving behaviors and concluded that the curve negotia-
tion performance of low-speed maglev train on small radius
curves was mainly affected by the vehicle-rail lateral clear-
ance. In [10], Shi et al. proposed a new dynamic model
of a high-speed EMS maglev vehicle/guideway interaction,
considering the vehicle and the guideway as an integral sys-
tem and the vertical and lateral vehicle/guideway interaction
problems. Shi et al. further researched on the response of
the vehicle-track coupling system in the case of random
guideway irregularities. In [11], Pei-Chang et al. established
a coupling model of the electromagnet module suspension
system and the track, further analyzing the effects of the
track irregularity such as sleeper spacing, F-track length and
beam span. Finally, Yu et al. made some explorations on the
suspension control algorithm in the case of considering track
smoothness.

Considering the thermal expansion and contraction, the
F-track are connected by track joints. Because of the structure
of the joint as shown in Figure 3, there is track seam and
track step at the track joint. The step at the track joint will
cause a large fluctuation in the suspension gap which is
generally solved by setting the redundant configuration of the
multi-sensor and the related switching fusion algorithm.

Some scholars have done some research on the signal
fusion of maglev train sensors. In [12], according to the
changing gap signal during the train passed the excessive
track gap, Sung et al. proposed a model-based fuzzy algo-
rithm which made the system ignore the abnormal gap signal
at the joint to weaken the interference to the suspension
system. In [13], by analyzing the signal about the suspension
gap and the vertical velocity of the electromagnet in different
situations, Lin et al. proposed a method for correctly identify-
ing the track step to compensate the set gap. That method can
restrain the disturbance of railway step effectively. In [14],
Zhai and Wu considered the output of the three-probe gap
sensor under the condition of track steps and proposed a new

gap signal fusion algorithm which weakened the disturbance
of the suspension system by the track step. Based on [14],
Zhou et al. [15] proposed a fusion algorithm for identifying
the track step signal and improving the integrated gap signal.
The simulation showed that this method can reduce the dis-
turbance of the step signal to the suspension system.

In order to suppress the influence of track irregularity on
the system, many scholars have done a lot of research on
control algorithms. In [16], Zhang et al. introduced the com-
prehensive acceleration information obtained by using a dis-
crete nonlinear tracking-differentiator to the feedback control
and designed a method based on the acceleration to improve
the performance of the suspension system. In [17], Zhou
proposed the control scheme of positive current feedback
and negative acceleration feedback by studying the difference
between the measured gap (the gap sensor is installed at the
two ends of the electromagnet) and the equivalent gap when
the train passed the track step. This method further reduced
the interference caused by the track step to the suspension
system. In [18], Liu and Zhang proposed a nonlinear feedback
algorithm that applied the accelerometer’s output and second
derivative of the gap to the controls, eliminating the disadvan-
tage brought by the track curve variety. In [19], Zhou et al.
found that the gap vibration of the rear suspension unit in a
suspension module was more significant than that of the front
suspension unit and proposed an adaptive vibration control
method that utilized the information of the front suspension
unit as a reference to suppressing the vibration of the rear
suspension gap. In [20], Li et al. established a linearized
coupled model of the suspension module and the track and
proposed a control strategy using the feedback of magnetic
flux signals in order to solve the large fluctuation of the rear
suspension point.

When the module suspension system passes the track step,
the gap response of the rear point is larger than that of the front
point [11], [19], [20]. The important reason is that the module
suspension system is a two-input and two-output system,
and two separately controlled suspension points are coupled.
The decoupling problem of module suspension systems has
attracted a lot of attention [21]–[23]. These simulations and
experiments did not take into account the effects of the track
irregularity during actual operation.

By analyzing the gap response of the module suspension
system caused by the track step, it is found that the average
gap change caused by the track stepmakes the two suspension
points of the module couple with each other, and the gap
fluctuation of the rear point is more severe than the front
point. A decoupling controller is designed based on the feed-
back linearizationmethod [32] which can reduce the coupling
between the two points of the module suspension system
and reduce the gap fluctuation when the module suspension
system passes the track step.

The rest of the paper is organized as follows. Section 2 pro-
vides the modeling and dynamic analysis of suspension sys-
tems. The design of the feedback linearization decoupling
controller design is introduced in Section 3 followed by
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FIGURE 2. The actual gap response of the suspension module’s two
suspension points through the track II-type joint.

FIGURE 3. The solidworks 3D model of the II-type joint.

simulation analysis and experimental analysis in Section 4.
Section 5 summarizes the paper.

II. THE MODEL OF SUSPENSION MODULE SYSTEMS
A. THE ANALYSIS OF TRACK AND SENSORS
The following figure shows the change of the gap about the
rear and front point of the suspension module during the
actual running of the maglev train in the engineering practice.

It can be seen from the Figure 2 that when the maglev train
passed the track’s II-type joint, the vertical track irregularities
are caused by the seam and the track step at the joint, as shown
in Figure 3. When the front and rear points of the suspension
module pass through the joint in turn, the suspension gap
appears to be offset from the equilibrium point by 9 mm. The
gap error of the front point reaches −3mm, and the gap error
of the rear point reaches −4mm.
The air-gap sensors are installed on both ends of the

electromagnet, so the measured information is only the gap
signal at the two ends of the electromagnet (the half-bogie).
When the bogie passes over the track steps, if the informa-
tion measured by the gap sensors is directly regarded as the
suspension gap, there is a deviation of 0.66m between the
point of the equivalent electromagnetic force and the point at
where suspension gap is measured in the case that the length
of each suspension module is 1.325m. It can be seen that this
measuring method is not accurate.

The equivalent gap refers to the actual air gap between the
electromagnet and the track surface. When the electromagnet
is regarded as a homogeneous long straight rod, the measur-
ing point is the action point of the equivalent electromagnetic
force. When the train is running on the track, the gap of the
sensor can truly reflect the equivalent suspension gap of the
system in the case that the track is entirely straight. When
there exists track step, the equivalent gap of the suspension
system is different from the sensor gap because the bogie
itself rotates around the center of mass in the xOz plane.
The typical process of electromagnet module passing over the
track step is shown in Figure 4.

FIGURE 4. The schematic diagram of the equivalent gap of module
electromagnet passing over a track step.

Since the width of the track seam is usually 10mm to 45mm,
which is much smaller than the length of the electromagnet,
the process of the electromagnet passing through the joint gap
can be approximated as uniform motion. Based on the lower
surface of the track, the height of the joint step is zg, the for-
ward speed of the electromagnet is v, and the initial time is t0.
The two measured gaps are z1 and z3. The half length of the
bogie is L. According to the geometric relationship, the air-
gap value of the center of mass of the bogie is:

z2 =
z1 + z3 − zg

2
. (1)

When the centroid of the bogie does not pass the track step,
the relationship between the measured gap and the equivalent
gap is: 

ze1 =
3z1 + z3 − 3zg

4
+
zgv(t − t0)

L
,

ze2 =
z1 + 3z3 − zg

4
.

(2)

After the center of bogie passes through the step, the equiv-
alent gap is derived from the geometrical relationship:

z2 =
z1 + z3 − zg

2
+ zg. (3)

The relationship between the gap measured by the sensor
and the equivalent gap is:

ze1 =
3z1 + z3 + zg

4
,

ze2 =
z1 + 3z3 − zg

4
.

(4)
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FIGURE 5. The half-bogie cabinet axonometric projection.

FIGURE 6. The half-bogie view of the x-direction.

According to the above derivation, we obtain the equivalent
gap of the suspension system and use it to calculate the
electromagnetic force.

B. MATHEMATICAL MODEL
The half bogie of the mid-low speed maglev train is rigidly
connected. And the module is divided into two suspension
points, as shown in Figure 5. Each point contains two elec-
tromagnets. The suspension force is controlled by controlling
the current of two suspension points [24]. The cross-section
of this module is shown in Figure 6.

Since the bogie is equipped with a transverse tie rod,
the electromagnet is constrained in the y-direction, and its
rolling movement is also limited because of the presence of
the anti-roll beam. Therefore, the movement of the electro-
magnet in the y-axis direction can be neglected in the case
of establishing the double-point suspension model. The com-
plexity of the model is reduced because only the translation
of the x-axes and z-axes and the pitching motion around the
y-axis are considered.

1) OPEN-LOOP MODEL OF THE MODULE
SUSPENSION SYSTEM
Firstly, the certain assumptions about the suspension module
system are made as follows [25]:

1. Winding leakage magnetic flux is ignored;
2. The magnetic resistance of the iron core and the guide rail

is ignored;
3. The track is regarded as a rigid track, regardless of its

elastic coupling vibration. That is to say that the stiffness
coefficient of the track relative to the electromagnet is
considered to be infinite

4. It is assumed that the mass of the suspension module is
evenly distributed, and the whole side of the module is a
straight rod with uniform mass distribution. The centroid
of the straight rod coincides with the geometric center. The
suspension module is divided into two single suspension
points that are coupled to each other.

5. The electromagnetic force at the front and rear points is
regarded as a concentrated force, acting on the geometric
center of the front and rear points.
The above five simplified assumptions can be concluded

by finite element analysis [26]: the error of the calculation
result under the above conditions will not exceed 10%, which
meets the engineering requirements.

Let k = µ0N 2A
4 , Then the following mathematical model

(µ0 is the permeability of vacuum) is established.

a: VOLTAGE-CURRENT EQUATION
Air gap flux in the case of ignoring core reluctance:

φ =
F
Rgap

=
Ni(t)

2z(t)/ (µ0A)
. (5)

Air gap flux linkage:

ψ = Nφ. (6)

According to the electromagnetic equation, the voltage
balance equation can be deduced as:

u1 = R1i1(t)+
dψ1

dt
≈ R1i1(t)+

d
dt
(
N 2i1(t)µ0A

2Z1(t)
)

= R1i1(t)+
N 2µ0A
2Z1(t)

di1(t)
dt
−
N 2µ0Ai1(t)

2Z2
1 (t)

dZ1(t)
dt

. (7)

u2 = R2i2(t)+
dψ2

dt
≈ R2i2(t)+

d
dt
(
N 2i2(t)µ0A

2Z2(t)
)

= R2i2(t)+
N 2µ0A
2Z2(t)

di2(t)
dt
−
N 2µ0Ai2(t)

2Z2
2 (t)

dZ2(t)
dt

. (8)

b: ELECTROMAGNETIC FORCE EQUATION
In the case where the electromagnet has no magnetic flux
leakage, the magnetic field energy storage is wfld = 1

2L(z)i
2

and its inductance is L(z) = µ0N 2A
2z . Magnetic field energy

storage is a state function that is uniquely determined by inde-
pendent variables z (displacement) and ψ (magnetic flux).

According to the partial differential equation
F = − ∂Wfld

∂z |ψ = const , it can be obtained that:
Fe1(i1, z1) =

µ0N 2A
4

(
i1(t)
z1(t)

)2,

Fe2(i2, z2) =
µ0N 2A

4
(
i2(t)
z2(t)

)2.
(9)
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c: CENTROID KINETIC EQUATION
The suspension module system can be regarded as a rigid
body point system. The displacement of the centroid in the
z-axis direction is:

z =
ze1(t)+ ze2(t)

2
. (10)

Centroid acceleration of the half bogie:

ac =
d2

dt2
(z(t)) =

d2

dt2

(
ze1(t)+ ze2(t)

2

)
. (11)

From the above, it has

2mac = 2m
d2

dt2
(z(t)) = 2m

d2

dt2

(
ze1(t)+ ze2(t)

2

)
. (12)

where m is the mass of a single electromagnet module andM
is the mass of the body of the vehicle. When the system is to
be in a state of equilibrium, there are:

Fe10 = Fe20 =
(2m+M )g

2
. (13)

d: CENTROID MOMENT EQUATION
The moment of inertia and angular acceleration of the sus-
pension module around the centroid are respectively Jc and
dω
dt . According to the centroid moment equation, it has:

Jc
dω
dt
=

∑
Mc

(
F (e)
i

)
. (14)

When the fluctuations of the two suspension points are
inconsistent, the bogie will not only be moving vertically
in the z-axis direction but also roll around the centroid in
the xOz plane. If the direction of counterclockwise rotation
is the positive direction, the moment of inertia and angular
acceleration of the suspension module around the centroid
can be obtained.
Jc =

1
12

(2m)(2l)2 =
2
3
ml2,

dω
dt
=

d
dt
((ż1(t)− ż2(t))\(l

/
2) =

2
l
((z̈1(t)− z̈2(t)).

(15)

Since the gravity acts to the centroid of the module,
the moment caused by gravity:

Mc[(2m+M )g] = 0. (16)

The torque of electromagnetic force:

Mc (Fe1,Fe2) =
l
2
(Fe1 − Fe2) . (17)

From the moment of momentum equation, it has:

8
3
m (ż1(t)− ż2(t)) = Fe1 − Fe2. (18)

The meaning of each variable in the above equations is
shown in the following table:

In summary, let X = [x1, x2, x3, x4, x5, x6]T =

[z1(t), z2(t), ż1(t), ż2(t), i1(t), i2(t)]T , R1 = R2 = R. The

TABLE 1. Variables in the above equation.

FIGURE 7. The current loop diagram.

mathematical model of the double electromagnet suspension
system can be obtained:

ẋ1 = x3,
ẋ2 = x4,

ẋ3 =
2m+M

2m
g−

5k
4m

(
x5
x1

)2

+
k
4m

(
x6
x2

)2

,

ẋ4 =
2m+M

2m
g−

5k
4m

(
x6
x2

)2

+
k
4m

(
x5
x1

)2

,

ẋ5 =
x1
2k
u1 −

x1x5
2k

R+
x3x5
x1

,

ẋ6 =
x2
2k
u1 −

x2x6
2k

R+
x4x6
x2

.

(19)

2) TRADITIONAL CONTROL SCHEME
For the unstable suspension module system, the dual-loop
PID control which includes the current loop and the position
loop is used [27]. The voltage-current equation in the model
is subjected to a Laplace transform. The transfer function is:

i(s)
u(s)
=

1

R(s)+ s
(
µ0N 2A

2z

)
−

(
µ0N 2Aż

2z2

) = 1
R′(s)+ sL ′(s)

.

(20)

In the actual system, due to the existence of the inductance,
the current cannot respond quickly to the change of the volt-
age, so that the response of the suspension system is delayed.
The system’s delay can be effectively reduced by introducing
the current loop. The control flow graph is shown in Figure 7.

The closed-loop transfer function of the current loop is:

Gic(s) =
KcKr

sL ′(s)+ R′(s)+ KcKr
. (21)
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There is Gic ≈ 1 in the case of KcKr >> R′ and
KcKr >> L ′, and the current loop can be regarded as a pro-
portional link with a gain of about 1.

Introduce feedback vectors K = [Kp,Kd ,Ki] in the case
where the gain of the current loop is approximately 1. The
position loop control rate is:

iexp = Kp1z+ Kd1ż+ Ki

∫
1zdt. (22)

III. STEP INTERFERENCE ANALYSIS BASED ON
DECOUPLING CONTROL
Based on the model of the suspension module system,
the feedback linearization decoupling method is used to
decouple the nonlinear module suspension system into two
independent SISO systems.

A. FEEDBACK LINEARIZATION THEORY
A general nonlinear system can be represented by the follow-
ing equation:

∑
:

{
ẋ = f (x)+ g(x)u x (t0) = x0,
y = h(x, u).

(23)

where: x ∈ M ⊂ Rn is the state vector, x ∈ Rm is the output
vector, y ∈ Rr is the output vector, f and h is the analytic
function vector of the independent variable about x and u.

The following theorem can be used to judge the decoupling
of the system [28].
Theorem 1: For a given system, the following three propo-

sitions are true:

1. The relative order of the system
∑
: α(6) ≤ n.

2. The system
∑

is controllable (reversible)
3. The system

∑
can be transformed into an integral decou-

pling system under state feedback and dynamic compen-
sation conditions.

If a MIMO system is decoupled according to the above
theorem, the following decoupling control algorithm can be
used for control:

1. Solve its α-order integral inverse system from the equation
of state of the original system.

2. The original system is compensated according to the
solved α-order integral inverse system, which is trans-
formed into a standard integral decoupling system con-
forming to the definition in this section.

3. The subsystems of the decoupled system are regarded
as controlled objects. The appropriate poles are config-
ured according to predetermined performance indicators,
so that the performance of each subsystem meets the
expected requirements.

B. DECOUPLING CONTROLLER DESIGN
The model of the suspension module is rewritten as:{

ẋ = f (x)+ g(x)u,
y = h(x, u) x (t0) = x0.

(24)

where

f (x) =



x3
x4

2m+M
2m

g−
5k
4m

(
x5
x1
)2 +

k
4m

(
x6
x2
)2

2m+M
2m

g−
5k
4m

(
x6
x2
)2 +

k
4m

(
x5
x1
)2

−
x1x5
2k

R+
x3x5
x1

−
x2x6
2k

R+
x4x6
x2


. (25)

g(x) =


0 0
0 0
0 0
0 0
x1
2k 0
0 x2

2k

 u =
[
u1 u2

]
. (26)

h(x) =
[
h1(x)
h2(x)

]
=

[
x1
x2

]
. (27)

According to the Lie derivative [29], [33], the output of the
suspension system is derived as follows:

The rear point of the suspension module:

L0f h1(x) = x1,

Lg1L0f h1(x) = 0,

Lg2L0f h1(x) = 0,

Lf h1(x) = x3,
Lg1Lf h1(x) = 0,
Lg2Lf h1(x) = 0,

L2f h1(x) = −
5k
4m

(
x5
x1
)2 +

k
4m

(
x6
x2
)2 +

2m+M
2m

g,

Lg1L2f h1(x) = −
5x5
4mx1

,

Lg2L2f h1(x) =
x6

4mx2
,

L3f h1(x) =
5x25R

4mx1
−

x26R

4mx2
.

(28)

The front point of the floating module:

L0f h2(x) = x2,

Lg1L0f h2(x) = 0,

Lg2L0f h2(x) = 0,

Lf h2(x) = x2,
Lg1Lf h2(x) = 0,
Lg2Lf h2(x) = 0,

L2f h2(x) = −
5k
4m

(
x6
x2
)2 +

k
4m

(
x5
x1
)2 +

2m+M
2m

g,

Lg1L2f h2(x) =
5x5
4mx1

,

Lg2L2f h2(x) = −
5x6
4mx2

,

L3f h2(x) = −
x25R

4mx1
+

5x26R

4mx2
.

(29)

From the above derivation, it has LgjL2f h1(x0) 6= 0 at
the equilibrium point of the suspension system for the first
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output h1(x). Similarly, for the second output h2(x), the
derivation is similar, namely LgjL2f h2(x0) 6= 0.

Therefore, the relative order vector of the suspension sys-
tem is [r1(x0), r2(x0)] = [3, 3], which satisfies r1(x0) +
r2(x0) ≤ n. Therefore, according to Theorem 1, the system is
decouplable and can be converted into an integral decoupling
system by state feedback and dynamic compensation.

The decoupling matrix:

E =

[
Lg1L2f h1(x) Lg2L2f h1(x)
Lg1L2f2(x) Lg2L2f h2(x)

]

=

−
5x5
4mx1

x6
4mx2

x5
4mx1

−
5x6
4mx2

 . (30)

This decoupling matrix is non-singular, so you can set the
feedback control rate u = E−1(x) [−b(x)+ v], where

b(x) =
[
L3f h1(x) L3f h2(x)

]T
=

[
5x25R

4mx1
−

x26R

4mx2

−x25R

4mx1
+

5x26R

4mx2

]T
. (31)

Let
...
y = ϕ, find the functions u1 and u2 :

u =
[
x5R−

(5ϕ1 + ϕ2)mx1
6x5

x6R−
(5ϕ2 + ϕ1)mx2

6x6

]T
.

(32)

where x1, x2 are the measured gap of the front suspension
point and the rear suspension point respectively. x5 and x6 are
the current through the front and rear coil pair respectively.

After that, the two subsystems become two independent
3-order integral systems. The state variable of the first integral
system is z =

[
x1 ẋ1 ẍ1

]
, and the input variable is v = ϕ1.

The state variable of the first second integral system is z =[
x2 ẋ2 ẍ2

]
, and the input variable is v = ϕ2. Then both

integral systems can be represented by the following state
equation: {

ż = Az+ Bv
y = Cz.

(33)

where:

A =

 0 1 0
0 0 1
0 0 0

 , B =

 0
0
1

 , C =
[
1 0 0

]
.

The rank of the controllability matrix:

Rank (Rc) = Rank
([
B AB A2B

])
= 3. (34)

Based on the above calculation, the system is entirely
controllable.

The feedback control law is designed for (33).

v = −
(
kz+ vref

)
. (35)

where vref =
(
zref 0 0

)T .

Substituting the feedback control law into the integral
system obtains the characteristic equation of the closed-loop
system.

s3 + k3s2 + k2s+ k1 = 0. (36)

Set the following system performance indicators:
1. System overshoot: σ ≤ 5%;
2. The time when the system rises to the peak: tσ < 0.1s;

It has: {
σ = e

−ζπ/
√

1−ζ 2 ≤ 5%,
tσ = π/(ωn

√
1−ζ 2) ≤ 0.1.

(37)

The solution of (37) is ξ ≥ 0.69 and ωn ≥ 43.4. Let
ζ = 0.707, so the expected dominant pole is s1,2 =

−40 ± 40j. According to the principle of pole placement,
the distance between the non-dominant pole and the imagi-
nary axis is ten times that of the dominant pole, so the third
pole is taken as s3 = −400.
According to the pole, the characteristic equation of the

third-order pure integral system can be obtained:

s3 + 480s2 + 64000s+ 1280000 = 0. (38)

Therefore, the input variable in the finalized inverse system
is:

ϕ = −1280000
(
z1 − zref

)
− 64000z2 − 480z3. (39)

C. STABILIZATION OF DECOUPLING SYSTEMS
The feedback linearization in this paper is based on the
inverse system method to transform the original system into
a pseudo linear system, and then the system is dynamically
integrated. Moreover, the model in this paper is far compli-
cated. It is quite complicated to directly analyze the complete
stabilization of the decoupling system. The conclusion can be
drawn from the analysis of the pseudo linear system structure.
The state equation for a pseudo linear system is generally
expressed as [30]:

żj = Ajzj + Bjvj j ∈ q,

ẋ = f (x, φ(x, z, v)),
y = h(x, φ(x, z, v)).

(40)

where x = (x1, x2, · · · , xn)T ∈ Rn represents the
state variable of the system, v =

(
v1, v2, · · · , vq

)T
=(

y(ne1)1 , y(n22)2 , · · · , y(
naq)
q

)T
is the input vector of the pseudo

linear system, nej is the natural order of the output yj (j ∈ q),

y =
(
y1, y2, · · · , yq

)T
∈ Rq represents the output vector

of the system, z =
(
z1, z2, · · · , zq

)T indicates the state
variable of the decoupled system, each component is zj =(
zj1, zj2, · · · , zjλj

)T (λj = nej − αj), αj is the relative order
vector of the system.

Therefore, the internal variable of the pseudo linear com-
posite system is (zT , xT )T , the dimension of (zT , xT )T is
n+ dim(z) =

∑q
j=1 nej −

∑q
j=1 α + n. For the pseudo linear
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system described above, the following state transitions can be
constructed: {

x∗ = x∗(x, z),
z∗ = z∗(x, z).

(41)

According to the paper [31], by the inverse function theo-
rem, there is an inverse function:{

x = x(x∗, z∗),
z = z(x∗, z∗).

(42)

where the dimensions of x∗ and z∗ are dim (x∗) = n +
dim(z) −

∑q
j=1 nej = n −

∑q
j=1 αj and dim (x∗) =

∑q
j=1 nej

respectively.
Substituting (42) into (40) for state transformation, it can

be proved that the transformed system can be expressed as:
ż∗j = A∗j z

∗
j + B

∗
j v
∗
j j ∈ q,

ẋ∗ = f ∗
(
x∗, z∗, v

)
),

y = C∗z∗.

(43)

Equation (43) shows that the state equation of the pseudo
linear composite system can be decomposed into two parts:
the linear part and the nonlinear part. The first and third
equations in equation (43) are linear part, which is counted
as subsystem61 and is a controllable and observable system.
The second formula in equation (43) is a nonlinear part, which
is counted as a subsystem 62 and is an unobservable system.

Since 61 is controllable, it can always be robust stability
by full state feedback. Therefore, whether or not a stable
decoupling system can be obtained will depend entirely on
whether the subsystem 62 is stable. It is pointed out in the
paper [31] that dim (x∗) = 0 is obtained in the case of∑q

j=1 αj = n, so the second formula in equation (43) is 0 and
the nonlinear system can be completely linearized. In other
word, the pseudo linear composite system does not contain
the nonlinear part. As long as the linear part is guaranteed to
be robust stability, the whole system is robust stability.

According to the analysis of the DECOUPLING CON-
TROLLER DESIGN, the relative order of the suspension
system is

∑q
j=1 αj = 3+3 = 6 and n in the suspension system

is 6. This is very obvious that the formula
∑q

j=1 αj = n is
established. From the above argument, the suspension system
in this paper can be completely linearized. According to the
Lyapunov method [28], for the linear time-invariant systems,
every equilibrium state of the system is stable in the sense
of Lyapunov if and only if all the eigenvalues of system
matrix have non-positive (negative or zero) real parts and the
eigenvalues of zero real parts are single roots of the smallest
polynomial. And for the linearized subsystem, the eigenval-
ues of the systemmatrix in the closed loop subsystem all have
a negative real part, so the subsystem is progressively stable.
At the same time, according to Chapter 13 of literature [28],
the closed-loop system has certain robust stability to model
uncertainty by the Lyapunov analysis. So, from the above
argument, the entire nonlinear suspension system can also
guarantee robust stability.

IV. SIMULATION AND EXPERIMENT
In order to evaluate the performance of the proposed decou-
pling control, the simulation and the half bogie maglev plat-
form were used for testing. The suspension module system
has suspension point 1 and suspension point 2, as shown
in Figure5.

The simulation is based on the suspension module system,
and the parameters are determined by the actual maglev train.
The sampling and control frequency is set to 4000Hz in
the program. In the simulation test, the shape and related
parameters of the II-type joint are shown in Figure 3.

A. SIMULATION RESULTS
The simulation parameters are shown in Table 2. The ‘track
gap’ in Table 2 is the clearance of the track joint, as shown
in Figure 3.

TABLE 2. Parameters in the Simulation.

According to the forward direction of the suspension mod-
ule, we set the suspension point 2 as the front point and the
suspension point 1 as the rear point, as shown in Figure 5.
The module system continuously passes through two track
steps, which are respectively 2.7mm upper step and 2.7mm
lower step. The simulation results of the PID algorithm and
decoupling control algorithm are shown in Figure 8 and
Figure 9.

According to the data from Figure 8 and Figure 9, when
the system adopts the PID algorithm, the maximum suspen-
sion gap error of the rear point is 4.3mm and the maximum
suspension gap error of the front point is 3.847mm under the
case of the equilibrium point of 9mm.When the system adopts
decoupling control algorithm, the maximum suspension gap
error of the rear point is 3.855mm and the maximum suspen-
sion gap error of the front point is 3.774mm under the case
of the equilibrium point of 9mm. So, the fluctuations of the
front and rear points are obtained, as shown in Table 3.

By comparing the simulation results of Figure 8 and
Figure 9, it can be seen that when the suspension sys-
tem adopts the decoupling control algorithm, the maximum
suspension gap error of the front and rear points becomes
smaller. In other words, the degree of coupling between the
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FIGURE 8. The suspension gap of the module using the PID algorithm.

FIGURE 9. The suspension gap of the module using the decoupling
control algorithm.

TABLE 3. The maximum suspension gap error of two algorithms in
simulation.

front and back points is reduced. Therefore, the decoupling
control algorithm is more effective than the PID control when
the module passes through the track step.

B. EXPERIMENTAL RESULTS
This paper takes the small-scale half bogie experimental
platform developed by the Magnetic Suspension Center of
National University of Defense Technology as the experi-
mental object, as shown in Figure 10. The parameters of the
platform are summarized in Table 4.

Experiment scheme: After the platform is stably sus-
pended, the front point (the suspension point 1) is set to track
a square wave with an amplitude of 0.5mm and a frequency

FIGURE 10. The small-scale half bogie experiment platform.

TABLE 4. The parameters of the small-scale half bogie experiment
platform.

FIGURE 11. The suspension gap of the module in the experimental
platform with PID algorithm.

of 0.5Hz which observes the control effect of the decoupling
algorithm and the PID control algorithm.

For the suspension system, a fast response to track distur-
bances is critical to good dynamic performance, which means
less overshoot, fewer fluctuations and shorter transition times
for the system. Therefore, this paper evaluates the system
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FIGURE 12. The suspension gap of the module in the experimental
platform under decoupling control algorithm.

TABLE 5. The ITAE of the suspension gap at the front and rear point
under the two algorithms.

TABLE 6. The maximum suspension gap error of the rear point under two
algorithms in the experiment.

performance of the control system by calculating the inte-
gral of the time-weighted absolute error. The integral of the
time-weighted absolute error [ITAE] is defined as

ITAE =
∫
∞

0
t|e(t)|dt. (44)

The time span selected when calculating the ITAE is one
period of the square wave applied to the front point. The ITAE
calculation result is shown in Table 5.

According to the data from Figure 11 and Figure 12, when
the system adopts the PID algorithm, the suspension gap at
the rising edge of the step is 6.664mm and the suspension gap
at the falling edge of the step is 6.375mm. When the system
adopts the decoupling control algorithm, the suspension gap
at the rising edge of the step is 6.591mm and the suspension
gap at the falling edge of the step is 6.437mm. Therefore,
the suspension gap error of the front and rear points under the
case of the equilibrium point of 6.5mm is obtained, as shown
in Table 6.

According to the experimental data, compared with the
PID algorithm, when the decoupling control algorithm is

adopted in the suspension system and the disturbance is
received at one point, the suspension gap error of the other
point is reduced by a maximum of 49.6%. ITAE indicators
focus on assessing system transition times and fluctuations,
which reflects the ability of the system to operate stably
over the long term. So, From the results of ITAE in Table 5,
it can be seen that the system adopted the decoupling control
algorithm has a great improvement in transition time and
fluctuation. It is verified that the decoupling control algorithm
can effectively solve the control problem when two points
are coupled to each other. At the same time, the decoupling
control algorithm needs further experimental verification on
the running medium speed vehicle.

V. CONCLUSION
In this paper, based on the engineering reality that the suspen-
sion system fluctuates too much when the low-speed maglev
train passes over the track steps, the fluctuation of the gap
when the maglev train passed over the step is analyzed. Based
on the module suspension system, the decoupling control
algorithm based on the feedback linearization is proposed.
By adopting the decoupling control algorithm based on feed-
back linearization, the mutual influence of the two mutual
coupling points is effectively solved, further enhancing the
passenger’s ride comfort. Both simulation and experiment
prove that after the improved method, the impact of the step
on the suspension system is reduced, and the suspension per-
formance is further improved. Simulation and experimental
results verify the effectiveness of the improved method. And
the next step is to go to the Tangshan test line to conduct
relevant experiments to further verify the effectiveness of the
proposed method.

REFERENCES
[1] L. Yan, ‘‘Development and application of the maglev transportation sys-

tem,’’ IEEE Trans. Appl. Supercond., vol. 18, no. 2, pp. 92–99, Jun. 2008.
[2] B. Sands, ‘‘The German magnetic levitation train (transrapid),’’ Built

Environ., vol. 19, no. 3, p. 244, 1993.
[3] G. Wahl, ‘‘The maglev system transrapid—A future-orientated technology

for track-bound transportation systems,’’ in Proc. 18th Int. Conf. Magn.
Levitated Syst. Linear Drives, 2004, p. 32.

[4] Y. Yasuda,M. Fujino,M. Tanaka, and S. Ishimoto, ‘‘The first HSSTmaglev
commercial train in Japan,’’ in Proc. 18th Int. Conf. Magn. Levitated Syst.
Linear Drives (MAGLEV), 2004, pp. 76–85.

[5] N. Lee, H. Han, J. Lee, and B. Kang, ‘‘Maglev vehicle/guideway dynamic
interaction based on vibrational experiment,’’ in Proc. Int. Conf. Electr.
Mach. Syst. (ICEMS), Oct. 2007, pp. 1999–2003.

[6] G. Lin and X. Sheng, ‘‘Application and further development of maglev
transportation in China,’’ Transp. Syst. Technol., vol. 4, no. 3, pp. 36–43,
2018.

[7] S. Ren, A. Romeijn, and K. Klap, ‘‘Dynamic simulation of the maglev
vehicle/guideway system,’’ J. Bridge Eng., vol. 15, no. 3, pp. 269–278,
2009.

[8] Y.-G. Li, W.-S. Chang, and D. Zhang, ‘‘The analysis of levitation control
system’s restriction on the grade ability of EMS maglev,’’ J.-Nat. Univ.
Defense Technol., vol. 27, no. 4, p. 106, 2005.

[9] C. F. Zhao, W. M. Zhai, and Q. C. Wang, ‘‘Simulation analysis of the
dynamic response of low-speed maglev vehicle curve negotiation,’’ China
Railway Sci., vol. 26, no. 3, pp. 94–98, 2005.

[10] J. Shi, Q. Wei, and Y. Zhao, ‘‘Analysis of dynamic response of the high-
speed EMS maglev vehicle/guideway coupling system with random irreg-
ularity,’’ Vehicle Syst. Dyn., vol. 45, no. 12, pp. 1077–1095, 2007.

VOLUME 7, 2019 130361



P. Leng et al.: Decoupling Control of Maglev Train Based on Feedback Linearization

[11] Y. Pei-Chang, L. Jin-hui, L. Jie, and W. Lian-Chun, ‘‘Influence of
track periodical irregularities to the suspension system of low-speed
maglev vehicle,’’ in Proc. 34th Chin. Control Conf. (CCC), Jul. 2015,
pp. 8479–8484.

[12] H. K. Sung, J.-M. Jho, D.-K. Bae, K.-S. Rho, J. M. Lee, M.-H. Yoo,
and Y.-Y. Nam, ‘‘A fuzzy based treatment to reduce air-gap distur-
bance at the rail joints with step-wise rail joint,’’ in Proc. 19th Int.
Conf. Magn. Levitated Syst. Linear Drives (MAGLEV). Dresden, Ger-
many: Technische Univ. Dresden, 2006, p. 4. [Online]. Available:
https://trid.trb.org/view/795654

[13] K. Lin, S. Lei, and L. She, ‘‘Algorithm on maglev system running across
railway step,’’ Ordnance Ind. Automat., to be published.

[14] Y. Zhai and J. Wu, ‘‘Algorithm for gap compensating signal of maglev
levitation sensor to suppress disturbance from guide way step,’’ J. China
Railway Soc., vol. 38, no. 7, pp. 77–83, 2016.

[15] S. Zhou, J. Li, and Y. Li, ‘‘Research of algorithm for railway step compen-
sation of mid-low speed maglev,’’ in Proc. Chin. Automat. Congr. (CAC),
Oct. 2017, pp. 1276–1280.

[16] K. Zhang, P. Cui, and J. Li, ‘‘Accelerometer feedback control algorithm for
maglev system,’’ Control Theory Appl., vol. 26, no. 9, pp. 988–992, 2009.

[17] F. Zhou, ‘‘Research on levitation control considering some guideway
factors,’’M.S. thesis, Nat. Univ. Defense Technol., Changsha, China, 2009.

[18] H.-K. Liu and X. Zhang, ‘‘Maglev control algorithm adapted to variety of
track curve,’’ J. Syst. Simul., vol. 22, no. 5, pp. 1101–1105, 2010.

[19] D. Zhou, P. Yu, L. Wang, and J. Li, ‘‘An adaptive vibration control method
to suppress the vibration of theMaglev train caused by track irregularities,’’
J. Sound Vib., vol. 408, pp. 331–350, Nov. 2017.

[20] Y. Li, P. Yu, D. Zhou, and J. Li, ‘‘Magnetic flux feedback strategy to
suppress the gap fluctuation of low speed maglev train caused by track
steps,’’ in Proc. 37th Chin. Control Conf. (CCC), Jul. 2018, pp. 983–989.

[21] K. Zhang, ‘‘Research on digital control technology of MAGLEV vehi-
cle’s suspension system,’’ Ph.D. dissertation, Nat. Univ. Defense Technol.,
Changsha, China, 2004.

[22] G. He, J. Li, and P. Cui, ‘‘Decoupling control design for the module sus-
pension control system in maglev train,’’Math. Problems Eng., vol. 2015,
Dec. 2014, Art. no. 865650.

[23] W. Q. Zhang, J. Li, K. Zhang, and P. Cui, ‘‘Decoupling suspension
controller based on magnetic flux feedback,’’ Adv. Mater. Res., vol. 709,
pp. 462–469, Jun. 2013.

[24] Y.-B. Zheng, ‘‘Research on decoupling control of EMS type low-mid
speed maglev train suspension module,’’ Ph.D. dissertation, National Univ.
Defense Technol., Changsha, China, 2006.

[25] K.-W. Lin, ‘‘Research on suspension control of low-speed maglev train
running on step railway,’’ M.S. thesis, National Univ. Defense Technol.,
Changsha, China, 2010.

[26] Z.-Y. Jin, S.-Y. Yang, and G.-Z. Ni, ‘‘A time-stepping FEM for transient
electromagnetic filed analysis and levitation and propellant force study of
an EMS maglev train,’’ Proc. CSEE, vol. 24, no. 10, pp. 133–137, 2004.

[27] Y.-G. Li, Z.-X. Ke, and H. Cheng, ‘‘Analyzing and optimizing design
of current-loop in the magnetic levitation controller on maglev vehicle,’’
J.-Nat. Univ. Defense Technol., vol. 28, no. 1, p. 94, 2006.

[28] H. K. Khalil, Nonlinear Systems, 3rd ed. Beijing, China: House of Elec-
tronics Industry, 2017.

[29] S. Y. Zhang, J. C. Wang, and X. P. Liu, ‘‘Differential geometry method and
nonlinear control system,’’ Inf. Control, vol. 21, no. 5, pp. 288–294, 1992.

[30] C. W. Li and Y. K. Feng, Inverse System Method for Multivariable Nonlin-
ear Control. Beijing, China: Tsinghua Univ. Press, 2000.

[31] B. Y. Zhang, ‘‘Research on the decoupling control for multivariable non-
linear systems using inverse method,’’ M.S. thesis, Northeastern Univ.,
Shenyang, China, 2010.

[32] J. D. J. Rubio, ‘‘Robust feedback linearization for nonlinear processes
control,’’ ISA Trans., vol. 74, pp. 155–164, Mar. 2018.

[33] S.-Z. Chen, F. Lu, Z.-C.Wu, L. Yang, and Y.-Z. Zhao, ‘‘Vibration state esti-
mation of nonlinear suspension system based on feedback linearization,’’
J. Vib. Shock, vol. 34, no. 20, pp. 10–15, 2015.

PENG LENG received the B.S. degree in mechan-
ical engineering from Beihang University, Beijing,
China, in 2017. He is currently pursuing the
M.S. degree with Maglev Engineering Cen-
ter, National University of Defense Technology,
Changsha, China. His current research interests
include magnetic levitation control technologies
and vehicle-guideway coupling dynamics.

YAJIAN LI received the B.S. and M.S. degrees
in automation from the National University
of Defense Technology, Changsha, China,
in 2013 and 2015, respectively, where he is cur-
rently pursuing the Ph.D. degree with Maglev
Engineering Center. His current research interests
include magnetic levitation control technologies
and vehicle-guideway coupling dynamics.

DANFENG ZHOU received the Ph.D. degree
in automation from the National University of
Defense Technology, Changsha, China, in 2010,
where he is currently an Associate Researcher with
Maglev Engineering Center. His current research
interests include active control of magnetic lev-
itation and maglev vehicle-bridge self-excited
vibration.

JIE LI received the Ph.D. degree in automation
from the National University of Defense Technol-
ogy, Changsha, China, in 1999. He held a postdoc-
toral position with The Hong Kong University of
Science and Technology, Hong Kong. He is cur-
rently a Professor with Maglev Engineering Cen-
ter, National University of Defense Technology.
His current research interests include magnetic
levitation technologies and robotics.

SIYANG ZHOU received the B.S. and M.S.
degrees in automation from the National Uni-
versity of Defense Technology, Changsha, China,
in 2015 and 2017, respectively. He is currently
an Assistant Engineer with the Xichang Satel-
lite Launch Center of China. His current research
interests include magnetic levitation control tech-
nologies and power electronics technology.

130362 VOLUME 7, 2019


