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ABSTRACT With the development of deep learning technology, speech synthesis based on deep neural
networks has gradually become the mainstream method in the field of speech synthesis. In this paper, we
explored the Tacotron2model for Lhasa-Tibetan dialect speech synthesis by constructing a feature prediction
network with a seq2seq structure which maps the character vector to Mel spectrum, and combining with
the WaveNet model trained in a semi-supervised way to synthesize the Mel spectrum into a time domain
waveform. The model avoids processing front-end text analysis that requires extensive prior knowledge in
Lhasa-Tibetan dialect and reduces the need of a large amount of transcribed speech data. Experimental results
show that the proposed method is effective and has higher clarity and naturalness than other related synthesis
models for Lhasa-Tibetan dialect.

INDEX TERMS End-to-endmodel, Lhasa-Tibetan speech synthesis,WaveNetmodel, sequence-to-sequence
structure.

I. INTRODUCTION
In recent years, with the rise of artificial intelligence, deep
learning has been applied to fields including object recog-
nition, signal processing, social network and others [1]–[6].
Recent applications of deep learning to speech synthesis
(also known as Text-to-Speech (TTS)) have also advanced
the performance contrasted to the exsiting hidden Markov
model-based one. However, building speech synthesis system
often requires extensive domain expertise, which is the bottle-
neck preventing rapid development of low-resource language
speech synthesis system.

The traditional speech synthesis system usually includes
twomodules: front-end and back-end [7]. The front-endmod-
ule mainly analyses the input text and extracts the linguistic
information needed by the back-end module. For Tibetan
synthesis system, the front-end module generally includes
sub-modules such as text regularization, word segmentation,
part-of-speech prediction, polysyllabic disambiguation and
prosody prediction. The back-end module generates speech
waveform by certain methods according to the results of
front-end analysis. The back-end system is generally divided
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into speech synthesis based on statistical parameter modeling
(or parameter synthesis) [8] and speech synthesis based on
unit selection and waveform splicing (or splicing synthesis)
[9]–[11].

Traditional speech synthesis systems are relatively com-
plex systems. For example, front-end systems need a strong
linguistic background, and the linguistic knowledge of dif-
ferent languages is also significantly different, so they need
the support of experts in domain. The parameter system in
the back-end module needs to have a certain understanding
of the voice mechanism. Because of the information loss
in modeling the conventional parameter system, the further
improvement of the synthetic performance is limited. The
splicing system of the same back-end system requires higher
quality for speech database, and requires manual intervention
to formulate a lot of selection rules and parameters. All
these promote the emergence of end-to-end speech synthesis
technology.

The end-to-end synthesis system inputs text or phonetic
characters, and the system outputs speech waveform directly.
End-to-end system reduces the requirement of linguistic
knowledge, and can be easily replicated in different lan-
guages. End-to-end speech synthesis system also shows a
strong and rich pronunciation style and prosodic expression.
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Tibetan is one of minority languages in China. Compared
with some large languages such as Chinese and English,
Tibetan lacks of linguistic knowledge and corpus data.
At present, the works on Tibetan speech synthesis system
mainly explored waveform splicing technology [12], [13],
statistical parameter speech synthesis technology based on
Hidden Markov model [14]–[18], and deep learning speech
synthesis technology [19], [20]. Considering that the wave-
form splicing technology requires high storage capacity and
the synthesis effect of statistical parameter technology and
deep learning is unstable and low nature degree, in this
paper, an end-to-end Lhasa-Tibetan speech synthesis method
is presented, in which Sequence-to-Sequence Architecture
[21]–[23] with attention mechanism is used as feature predic-
tion network, then followedwith aWaveNet network which is
trained in a semi-supervised way. Differently from the works
[19], [20] which used phonemes and Tibetan letters as the
input of model respectively, our work adopts Wylie transliter-
ation scheme to convert Tibetan characters into English letters
as the input text.

Our main contributes are: (i) presenting to train WaveNet
vocoder in a semi-supervised way, which reduces the require-
ment of a large amount of transcribed samples. (ii) presenting
that the synthesis units are English letters converted from
Tibetan characters by Wylie transliteration scheme, which
avoid using linguistic knowledge to construct lexicon, sub-
word set and phones, as well as analyzing the language-
specific text.

II. SPEECH SYNTHESIS MODEL STRUCTURE
The end-to-end speech synthesis model is divided into two
parts. The first part is a feature prediction network based
on seq2seq, which introduces attention mechanism, and is
used to predict the frame sequence of Mel spectrogram from
the input character sequence. The second part is to learn the
vocoder that generates time-domain waveform samples based
on the predicted Mel spectrogram of frame sequence.

A. ENCODER-DECODER FRAMEWORK
To solve the problem of sequence-to-sequence, an encoder-
decoder framework has been proposed in [24]. Sequence-
to-sequence problem mainly refers to the mapping problem
from sequence to sequence. Sequence can be understood as
a sequence of strings. When we give a sequence of strings,
we hope to get another sequence of strings corresponding to
it. This task is called sequence-to-sequence (seq2seq). The
encoding is to transform the input sequence into a fixed length
vector; decoding is to convert the fixed vector generated
before into the output sequence. In this paper, the framework
of encoder-decoder is applied to Lhasa-Tibetan speech syn-
thesis. Its network structure is shown in Fig. 1.

For speech synthesis, the goal is to generate the tar-
get speech signal through the encoder-decoder framework
given the input sentence. For the input sentence, it is a text
sequence, and the output signal is a speech sequence, which is
represented by Input andOutput respectively. It can bewritten

FIGURE 1. Encoder-decoder.

in the form as (1) and (2).

Input = (x1, x2, . . . , xm) (1)

Output = (y1, y2, . . . , yn) (2)

Encoder encodes input sentences and transforms them into
intermediate semantics through non-linear transformation.

C = f (x1, x2, . . . , xm) (3)

For the decoder, its task is to output the current speech
signal according to the intermediate semantics of the input
sentence and the historical information that has been gener-
ated before:

yi = g(C, y1, y2, . . . , yi−1) (4)

The advantage of this encoder-decoder architecture is that
its input sequence length does not need to be consistent with
the output sequence length.

B. ATTENTION MECHANISM
Although the encoder-decoder model solves the problem
of sequence-to-sequence, it also has great limitations. The
encoder-decoder model compresses the information of the
whole sequence into a fixed length vector C . There are two
drawbacks in this way. First, for a long sequence, the fixed-
length semantic vector C can not fully represent the informa-
tion of the whole sequence. Second, the information carried
by the early input will be covered by the latter information
input, which will lose more information and is not conducive
to decoding.

To solve this problem, attention model is proposed. This
model produces an ‘‘attention range’’ when it produces out-
put, which means that the next output should focus on which
parts of the input sequence, and then produce the next output
according to the region of interest, so to repeat. The schematic
diagram of the model is as Fig. 2.

After introducing the attention mechanism, the formula for
calculating the semantic encoding Ct is as equation (5).

Ct =
∑S

s=1
α
(s)
t h(s)e (5)

where h(s)e is the feature vector of the encoder output and α(s)t
is the weight. Weight vectors are differen in each prediction
of the decoder at time t . The α(s)t calculation method is as (6).

α
(s)
t =

exp(Score(hdt , h
(s)
e ))∑S

s=1 exp(Score(hdt , h
(s′)
e ))

(6)
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FIGURE 2. Attention model.

It represents the matching degree between the sth input of
the encoder and the t th character embedded output of the
decoder. hdt is the feature vector of the decoder at time t .
Score(.) is a energy function, which is implemented by MLP
in this work.

Compared with the previous encoder-decoder model,
attention model is different in that it does not require the
encoder to encode all input information into a fixed length
vector. On the contrary, the encoder needs to encode the input
into a sequence of vectors. After the encoder converts the
input characters into the representation of vectors, the output
of the encoder is given different weights for each prediction,
and then the weighted sum is input to the decoder. In decod-
ing, each step selects a subset with the largest weight from
the vector sequence to decode. In this way, when producing
each output, we can make full use of the information carried
by the input sequence.

C. VOCODER
The encoder-decoder model converts characters into Mel
spectrogram, and then Mel spectrogram is reverted to wave-
form by a vocoder. Some systems use Griffin-Lim algo-
rithm to recover phase from Linear-Spectrum, and then use
short-time Fourier transform to recover waveform. Using
Griffin-Lim algorithm as vocoder is simple to implement, but
it is slow and difficult to achieve real-time synthesis. More-
over, the waveform generated by Griffin-Lim is too smooth,
with more voids and poor hearing. In this paper, WaveNet
model is used as vocoder to remedy some shortcomings of
Griffin-Lim algorithm.

The main component of WaveNet is the dilated causal con-
volution neural network. In Fig. 3, it is a schematic diagram of
a dilated causal convolution neural network. Causal convolu-
tion can ensure the order of data output, that is, the prediction
of model output at t time does not depend on any data in
future. When modeling long sequences, causal convolution
trains faster than recurrent neural networks because they
have no cyclic connections. But causal convolution needs to
enlarge the convolution kernel to enlarge the receptive field,

FIGURE 3. Dilated causal convolution.

and the computational cost is very high.WaveNet uses dilated
convolution to increase the receptive field of causal convo-
lution by several orders of magnitude without significantly
increasing the computational effort [25].

Dilated convolution is a convolution method in which the
convolution kernel jumps over data larger than itself. This
method is similar to enlarging the convolution kernel by zero
edge compensation. This method is efficient. Compared with
normal convolution, dilated convolution can effectively make
the network perform coarse-grained convolution operations
and the output remains the same size as the input. As a
special case, dilated convolution with dilated factor= 1 is the
standard convolution. Stacked dilated convolution makes the
network have a very large receptive field through only a few
layers, while retaining the input resolution and computational
efficiency.

WaveNet consists of the stacked dilated causal convolu-
tion, which can be used to generate audio signals directly. By
inputting the predicted audio information into the network
and utilizing the autoregressive characteristics of WaveNet
architecture, the speech waveform can be obtained after
recovering the detailed phase information which losts in con-
ventional vocoders. In the previous works, traditional MFCC
features and linguistic features were used as input in speech
synthesis using WaveNet. In this paper, Mel spectrogram
is used as input of audio signal features. Compared with
other linguistic and acoustic features used in conventional
vocoders, Mel spectrogram is trained more conveniently.

For a high-quality WaveNet vocoder, a large training
dataset is required. However, paired speech and text is lim-
ited for the reference speaker for Lhasa-Tibetan dialect, but
unlabeled speech is easy to obtain. We can use the unlabeled
data to pretrain WaveNet, then fine-tune the WaveNet using
labeled data. The WaveNet vocoder can be trained in a semi-
supervised way.

In the phase of WaveNet training, first, an initialization
WaveNet is trained with untranscribed speech data by using
ground truth Mel spectrogram, and then it is fine-tuned with
the predicted Mel spectrogram of the transcribed data which
is used to train the encoder-decoder. The learnt WaveNet
vocoder is used for reconstructing time-domain waveform
from Mel spectrogram.
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FIGURE 4. End-to-end speech synthesis model based on Tacotron 2.

FIGURE 5. The structure of Tibetan syllable.

III. END-TO-END LHASA-TIBETAN SPEECH SYNTHESIS
The existing Tibetan speech synthesis based on deep neural
network takes the phonemes of Lhasa-Tibetan dialect as the
synthesis unit [20]. The front-end text processing is very
heavy and requires extensive domain expertise of Tibetan
linguistics to construct syllable lexicon, intials and finals,
phoneme set. The process is time-consuming. However, one
of the advantages of end-to-endmodel is to train Tibetan char-
acters and synthesize speech signals directly. Considering the
large number of Tibetan characters and the two-dimensional
planar character structure, we used English letters converted
from Tibetan characters as input text.

In this paper, the end-to-end speech synthesis model is
based on Tacotron 2 [26], in whichWaveNet model is used as
the vocoder to solve the problems of Griffin-Lim algorithm
in Tacotron producing unique artificial traces and low fidelity
of synthetic speech. Fig. 4 is the end-to-end speech synthesis
model used in this paper.

A. FRONT-END PROCESSING
Tibetan characters are written in Tibetan letters from left
to right, but there is a vertical superposition in syllables
(syllables are separated by delimiter ‘‘.’’.), which is a two-
dimensional planar character shown as Fig. 5.

A Tibetan sentence is shown in Fig. 6, where the sign
‘‘|’’ is used as the end sign of a Tibetan sentence. Tibetan
syllable may be used as synthesis unit for end-to-end model,
but the number of single syllable used commonly in Tibetan
language is about 5600 [27], so the bits of one-hot vector will
be large, and a large amount of speech data will be needed to

FIGURE 6. A Tibetan sentence.

FIGURE 7. A Tibetan sentence after Wylie transliteration.

train. In the work [19], Tibetan letters were used as the input
text, but it still need to analyze the spelling rules of Tibetan
characters and transform the two-dimensional character into
one-dimensional letter sequence.

In this work, we converted the Tibetan characters into
English letters, shown as in Fig. 7, usingWylie transliteration
scheme.

The advantage of this method is that the synthesis unit is
very small, which results in computation efficiency and good
performance.

B. FEATURE SELECTION
In this paper, the spectral features of speech are extracted
as the input of WaveNet vocoder. The main spectral charac-
teristics of speech are Mel spectrogram and linear spectro-
gram (the amplitude of short-time Fourier transform). Mel
spectrogram is a non-linear transformation applied to the
frequency axis of short-time Fourier transform. It is smoother
than waveform sample by compressing and transforming the
frequency range with fewer dimensions. Because each frame
is phase invariant, it is easier to train with mean square error
loss (MSE) using Mel frequency spectrogram.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DATA
Lhasa-Tibetan speech data used in this paper is from
https://pan.baidu.com/s/14CihgqjA4AFFH1QpSTjzZw. We
used 4-hour transcribed data and 2-hour untranscribed data
of a single speaker. The data set contains 4572 sentences.
The average length of each sentence is 14 Tibetan single
syllable with an average length of 5 seconds. Speech data
files are converted to 22050 Hz sampling frequency, 16bit
quantization accuracy.

B. EXPERIMENTAL SETTING
Some hyperparameters of our model based Tacotron 2 are
provided in Table 1.

C. EXPERIMENTAL EVALUATION
In order to evaluate the accuracy of the experimental results,
subjective evaluation and objective evaluation are adopted
in this paper. The fitting degree is objectively measured
by the error loss function of model training. The smaller
the loss value is, the better the fitting degree of the model
is. Fig. 8(a) shows that the error of our model training is
gradually minimized, which shows that the model fits well
and converges quickly. At the same time, Fig. 8(b) and 8(c)
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TABLE 1. Model hyperparameters in our model.

FIGURE 8. Feature prediction.

are the comparisons between the output Mel spectrogram
and the target Mel spectrogram for our method and the one
using single syllable of Tibetan characters as synthesis unit,
respectively.

Subjectively, we conducted a Mean Opinion Score (MOS)
test. In the MOS test, the listener scores 5 points on the
clarity and naturalness of the synthesized speech after lis-
tening to each synthesized speech. The experimental results
for our method with semi-supervised learning are shown in
Table 2. It can be seen that the mean opinion scores of the
clarity and naturalness of synthesized speech for our method
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TABLE 2. MOS values of Lhasa-Tibetan synthetic speech based on our
method with Semi-supervised learning.

TABLE 3. MOS values of Lhasa-Tibetan synthetic speech based on our
method without semi-supervised learning.

TABLE 4. MOS values of Lhasa-Tibetan synthetic speech based on the
method with single syllable of Tibetan character as input text.

with semi-supervised learning are 3.94 and 4.06 respectively,
which are higher than the method without semi-supervised
learning (shown in Table 3) and the one with single syllable
of Tibetan characters as synthesis unit (shown in Table 4).
WaveNet vocoder is benefited from using unlabeled speech
data and effectively training in a semi-supervised way.

D. METHOD COMPARISON EXPERIMENT
In order to further verify the practicability of the end-to-end
Lhasa-Tibetan speech synthesis system, we also compared
the ‘‘Mel spectrum + WaveNet’’ model with the ‘‘lin-
ear prediction amplitude spectrum + Griffin-lim’’, ‘‘linear
prediction amplitude spectrum + WaveNet’’ speech syn-
thesis model. The MOS results of models are shown in
Table 5, Table 6 for ‘‘linear prediction amplitude spectrum+
Griffin-lim’’ and ‘‘linear prediction amplitude spectrum +
WaveNet’’ respectively. The MOS comparison results of
models are shown in Table 7.

As shown in Table 7, WaveNet performs better than
Griffin-Lim in restoring Lhasa-Tibetan speech phase

TABLE 5. MOS values of Lhasa-Tibetan synthetic speech based on linear
predictive amplitude spectrum+Griffin-lim.

TABLE 6. MOS values of Lhasa-Tibetan synthetic speech based on linear
predictive amplitude spectrum+WaveNet.

TABLE 7. MOS comparison of different feature for Lhasa-Tibetan speech
synthesis.

information and produces much higher quality of speech. It
also shows that linear prediction amplitude spectrum has a
competitive performance compared with Mel spectrogram
for the feature prediction network. However, Mel spectro-
gram is more effective feature since it is a more compact
representation.

V. CONCLUSION
In this paper, a Tibetan speech synthesis system based on
end-to-end model is implemented by using attention-based
encoding-decoding network and semi-supervised learning
WaveNet. In the end-to-end model, the input is a series of
English letters converted from Tibetan character sequences,
which are trained by encoding-decoding network and output
as acoustic spectrogram. Then the corresponding speech is
generated usingWaveNet network. Compared with the model
without using semi-supervised learning way, the model using
single syllable of Tibetan character and the model using
Griffin-Lim algorithm as vocoder, the performance of our
method are superior in clarity and naturalness.
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