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ABSTRACT In this paper, an off-policy game Q-learning algorithm is proposed for solving linear discrete-
time non-zero sum multi-player game problems. Unlike the existing Q-learning methods for solving the
Riccati equation by on-policy learning approaches for multi-player games, an off-policy game Q-learning
method is developed for achieving the Nash equilibrium of multiple players. To this end, first, a non-zero
sum game problem is formulated, and the value function and the Q-function defined according to each-
player individual performance index are rigorously proved to be linear quadratic forms. Then, based on the
dynamic programming and Q-learning methods, an off-policy game Q-learning algorithm is developed to
find the control policies for multi-player games, such that the Nash equilibrium is reached under the learned
control policies. The merit of this paper lies in that the proposed algorithm does not require the systemmodel
parameters to be known a priori and fully utilizes measurable data to learn the Nash equilibrium solution.
Moreover, there is no bias of Nash equilibrium solution when implementing the proposed off-policy game
Q-learning algorithm even though probing noises are added to control policies for maintaining the persistent
excitation condition. While bias of the Nash equilibrium solution could be produced if on-policy game
Q-learning is employed. This is another contribution of this paper.

INDEX TERMS Adaptive dynamic programming, off-policy Q-learning, non-zero sum game,
Nash equilibrium, discrete-time systems.

I. INTRODUCTION
Reinforcement learning (RL), as one of machine learning
methods, has been widely used in solving optimal control
problems [1]–[4] by using partially or completely unknown
dynamics for systems with [5]–[12]. The approximate opti-
mal control strategies for varieties of control issues and
control systems have been reported in the latest decade,
such as [3] for MIMO systems, [5] for multi-agent graphical
games, [8], [10], [12] for H∞ control, [13]–[17] for optimal
tracking control, and [18], [19] for Q-learning based con-
troller design, etc.

The on-policy RL and the off-policy RL are two kinds of
RL approaches. When conducting the on-policy RL, the data
used for learning the optimal control policies are generated by
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the same control policy as the one under evaluation, while two
types of control policies are needed in the off-policy RL. One
is the behavior policy used for generating systems data, and
the other is the target policy updated until convergence to the
optimal control policy. In the literature as mentioned before,
the Q-learning algorithms in [18] and [19] are actually the on-
policy RL. Other on-policy RL research results can be found
in [18]–[22]. Compared with the off-policy learning method,
the remarkable shortcomings of the on-policy Rl algorithm
[6]–[10] lie in 1) insufficient exploration of the systems;
2) interfering with the operation of systems in the learning
process; 3) under the condition of satisfying the persistence of
excitation (PE), adding probing noises to the system is proved
to produce deviation of solutions to the focused optimization
problems.

Q-Learning is a behavior-dependent heuristic dynamic
programming, and the research on the off-policy Q-learning
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has been attracted increasing attention by scholars. For
linear discrete-time (DT) systems, Al-Tamimi et al. [21]
derived an H∞ optimal state feedback controller, Kim and
Lewis [23] designed the optimal tracking controller and
Jiang et al. [24] settled the optimal regulation problem. For
linear continuous-time (CT) systems, Lee et al. [19] and
Vamvoudakis [25] focused on the linear quadratic regulation
problem. Vamvoudakis [26] engaged in the linear graphical
game problem. For nonlinear systems, Luo et al. [27] aimed
at solving the model-free optimal tracking control problem
for affine DT systems and proposed an adaptive optimal
controller method of general DT systems [28]. Modares and
Lewis [13] focused on the optimal tracking control prob-
lem of continuous-time systems. Moreover, an off-policy
interleaved Q-learning algorithm was developed for affine
nonlinear systems in [29]. It is worth pointing out that the
above-mentioned off-policy Q-learning results can be imple-
mented only for designing one single controller that leads
systems to the optimum.

Since large scale, complexity and multiple subsystems
are the basic features in modern practical industries, then
Q-learning of multi-player systems for finding multiple opti-
mal controllers should be investigated by researchers. In non-
zero sum or zero sum multi-player games, each player
makes efforts to optimize its own performance or reward
by learning feedback from the environment and improv-
ing its behavior. In [21], the application of model-free
Q-learning zero sum game to H∞ problem has been studied.
Vamvoudakis et al. [30] systematically summarized game
theory-based RL methods to solve two-player games includ-
ing DT and CT systems. Notice that the off-policy RL algo-
rithm has been proposed in [30] for linear DT multi-player
systems, then whether the off-policy Q-learning method can
be used to study the optimal control problem of the com-
pletely unknown linear DT multi-player games or not? And
if it can work, then how to design the off-policy Q-learning
algorithm for achieving the Nash equilibrium of linear DT
multi-player games using only measured data is the key
point. This drops down into our focus. To the authors’ best
knowledge, the off-policy game Q-learning using only mea-
sured data for linear DT multi-player systems with com-
pletely unknown model parameters has not been reported
up to now.

In this paper, we devote to developing an off-policy game
Q-learning algorithm for achieving the Nash equilibrium of
linear DT multi-player systems by combining game theory
and Q-learning. The contributions of this paper are summa-
rized as follows.

1) Referring to the existed on-policy Q-learning methods
[21], [23]–[26], [31] and the off-policy RLmethod [30]
which is for linear DT two-player games, this is the
first time to propose an off-policy game Q-learning for
solving linear DT multi-player non-zero sum games
using only measured data.

2) No bias and bias of Nash equilibrium solution when
adding probing noises into multi-player systems are

rigorously proved, which are the extension of [8] where
the systems with single player or agent are concerned.

The rest of this paper is organized as follows. In Section II,
the non-zero sum games problem of linear DT multi-player
systems is formulated. Section III devotes to solving the non-
zero sum games. In Section IV, an on-policy game Q-learning
algorithm is proposed and the bias of the solution is analyzed.
In Section V, an off-policy game Q-learning algorithm is
proposed, and the rigorous proof of the unbiased solution is
presented. The effectiveness of the proposed algorithm is ver-
ified by numerical simulations, and the comparisons between
the off-policy game Q-learning algorithm and the on-policy
game Q-learning algorithm are carried out in Section VI.
Section VII states the conclusions in this paper.
Notations: Rp denotes the p dimensional Euclidean space.

Rp×q is the set of all real p by q matrices. ⊗ stands for the
Kronecker product. vec(L) is used to turn any matrix L into a
single column vector.

II. PROBLEM STATEMENT
In this section, the optimal control problem of linear DT
multi-player systems is formulated.Moreover, the value func-
tion and the Q-function defined in terms of the cost function
of each player are proved to be linear quadratic forms.

Consider the following linear DT multi-player system

xk+1 = Axk +
n∑
i=1

Bikuik (1)

where xk = x(k) ∈ Rp is the system state, uik = ui(k) ∈
Rmi (i = 1, ..., n) are the control inputs. A ∈ Rp×p, Bi ∈
Rp×mi and k is the sampling time instant. The full state of
system (1) can be accessed by each of the agents or players i.
The target of each player is to minimize its own performance
index by its efforts, regardless of the performance of other
players. The performance index Ji of each player i (i =
1, 2, . . . , n) is defined as the accumulative sum of utility
functions from time instant 0 to infinity as given below [5]:

Ji(x0, u1, . . . , un) =
∞∑
k=0

(xTk Qixk +
n∑

q=1

uTqkRquqk ) (2)

whereQi andRq are respectively positive semi-definite matri-
ces and positive definite matrices. x0 represents the initial
state of system (1) at time instant 0. Minimizing (2) subject
to (1) is indeed a standard multi-player non-zero sum games
problem, and all players will finally reach the Nash equilib-
rium. The objective of this article is to find the stabilizable
control policies u1k , u2k , . . . , unk by using RL combined with
game theory, such that the performance index of each player
shown in (2) is minimized.

The definition of admissible control policies is given
below, which is useful for Assumption 1 and Lemma 1.
Definition 1 [21], [32]: Control policies u1(xk ),u2(xk ),

. . . , un(xk ) are called the admissible with respect to (2)
on � ∈ Rp, if u1(xk ), u2(xk ), . . . , un(xk ) are continu-
ous on �, u1(0) = 0, u2(0) = 0, . . . , un(0) = 0,
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u1(xk ), u2(xk ), . . . , un(xk ) stabilize (1) on � and (2) is finite
∀x0 ∈ �.
Assumption 1: The n-player system (1) is controllable and

there exists at least one set of admissible control policies [32].
According to performance indicator (2), suppose there

exists a set of admissible control policies u1(x), u2(x), . . . ,
un(x), one can respectively define the following optimal
value function and the optimal Q-function for each player
i (i = 1, 2, . . . , n) as [5]:

V ∗i (xk ) = min
ui

∞∑
l=k

(xTl Qixl +
n∑

q=1

uTqlRquql) (3)

and

Q∗i (xk , uik , u−ik ) = xTk Qixk +
n∑

q=1

uTqkRquqk + V
∗
i (xk+1)

(4)

u−ik =
[
uT1k , . . . , u

T
i−1,k , . . . , u

T
i+1,k , . . . , u

T
nk
]T
. Thus,

the following relation holds

V ∗i (xk ) = Q∗i (xk , u
∗
ik , u−ik ) (i = 1, 2, . . . , n) (5)

Lemma 1: Suppose that the control policies uik = −Kixk
and they are admissible, the value function Vi(xk ) and the Q-
function Qi(xk , uik , u−ik ) of each player i can be respectively
expressed as the following quadratic forms.

Vi(xk ) = xTk Pixk (6)

and

Qi(xk , uik , u−ik ) = zTk Hizk (7)

where Pi and Hi are positive definite matrices. And

zk =
[
xTk uT1 uT2 . . . uTn

]T (8)

Proof:

Vi(xk ) =
∞∑
l=k

(xTl Qixl +
n∑

q=1

uTqlRquql)

=

∞∑
l=k

xTl Qixl + n∑
q=1

(−Kqxl)TRq(−Kqxl)


=

∞∑
l=0

xTl+k

Qi + n∑
q=1

(Kq)TRq(Kq)

 xl+k (9)

where xl+k = (A−
∑n

i=1 BiKi)
lxk = Glxk . Further, one has

Vi(xk ) =
∞∑
l=0

xTk (G
l)T

Qi + n∑
q=1

(Kq)TRq(Kq)

 (Gl)xk

(10)

then, one has

Vi(xk ) = xTk Pixk (11)

where

Pi =
∞∑
l=0

(Gl)T

Qi + n∑
q=1

(Kq)TRq(Kq)

 (Gl)

Then, one has

Qi(xk , uik , u−ik )

= xTk Qixk +
n∑

q=1

uTqkRquqk + V
∗
i (xk+1)

= xTk Qixk +
n∑

q=1

uTqkRquqk + (Axk +
n∑
i=1

Biui)TPi

× (Axk +
n∑
i=1

Biui)

= zTk Hizk (12)

where

Hi =


Hi,xx Hi,xu1 Hi,xu2 . . . Hi,xun
HT
i,xu1

Hi,u1u1 Hi,u1u2 . . . Hi,u1un
HT
i,xu2

HT
i,u1u2

Hi,u2u2 . . . Hi,u2un
...

...
... . . .

...

HT
i,xun HT

i,u1un
HT
i,u2un

. . . Hi,unun



=


ATPiA+ Qi ATPiB1 . . . ATPiBn
(ATPiB1)T BT1 PiB1 + R1 . . . BT1 PiBn
(ATPiB2)T (BT1 PiB2)

T . . . BT2 PiBn
...

... . . .
...

(ATPiBn)T (BT1 PiBn)
T . . . BTn PiBn + Rn


(13)

By (11) and (12) , one can get

Pi = MTHiM (14)

where

M =
[
I − KT

1 − KT
2 . . . − KT

n
]T

III. SOLVING NON-ZERO SUM GAME PROBLEMS
This section deals with solving the non-zero sum games
problem.

In the non-zero sum games, it is desired for all players to
reach the Nash equilibrium by assuming that each player has
the same hierarchical level as others. The definition of Nash
equilibrium is given as following.
Definition 2 [30]: If there exists an n-tuple of control

strategies (u∗1, u
∗

2, . . . , u
∗
n) satisfying the following n inequal-

ities

J∗i ≡ Ji(u∗1, u
∗

2, . . . , u
∗
i , . . . , u

∗
n)

≤ Ji(u∗1, u
∗

2, . . . , ui, . . . , u
∗
n)(i = 1, 2, . . . , n)

then, this n-tuple of control strategies constitutes the Nash
equilibrium solution of n-player finite game (1). And the
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n-tuple of quantities (J∗1 , . . . , J
∗
n ) is the Nash equilibrium

outcome of n-player games (1) with respect to (2).
Now, we are in the position of solving the non-zero sum

game to find the Nash equilibrium solution. According to the
dynamic programming, the following Q-function based game
Bellman equations can be derived based on Lemma 1.

zTk Hizk = xTk Qixk +
n∑

q=1

uTqkRquqk + z
T
k+1Hizk+1 (15)

The optimal control policy u∗ik of each player i should

satisfy
∂Q∗i (xk ,uik ,u−ik )

∂uik
= 0 in terms of the necessary condition

of optimality. Therefore, one has

u∗i (k) = −K
∗
i xk (16)

where

K∗i = H−1i,uiui

[
HT
i,xui − (Hi,uiu1K1 + · · · + Hi,uiui−1Ki−1

+Hi,uiui+1Ki+1 + · · · + Hi,uiunKn)
]

(17)

Substituting K∗i in (17) into (15) yields the optimal
Q-function based Riccati equations.

(zk )TH∗i zk = xTk Qixk +
n∑

q=1

(u∗qk )
TRqu∗qk + (zk+1)TH∗i zk+1

(18)

Where u∗qk = −K
∗
q xk . Note that Vamvoudakis et al [30] has

proven that the followingK∗i (i = 1, 2, ...n) guarantee system
(1) to be stable and achieved Nash equilibrium of all players
can be.

K∗i = (H∗i,uiui )
−1
[
(H∗i,xui )

T
− (H∗i,uiu1K

∗

1 + . . .

+H∗i,uiui−1K
∗

i−1 + H
∗
i,uiui+1K

∗

i+1 + · · · + H
∗
i,uiunK

∗
n )
]

(19)

Remark 1: From (17) and (19), it can be seen that in
Riccati equations (18) the matrices H∗i are coupled with each
other, and the values of matrices K∗i are also coupled with
each other, which make it difficult to solve Riccati equa-
tions (18). Therefore, the on-policy game Q-learning algo-
rithm and off-policy game Q-learning algorithm are given in
Section IV and Section V to learn the optimal control laws
u∗i (k) = −K

∗
i xk .

IV. FINDING K∗i (i = 1, 2, . . . , n) BY THE ON-POLICY
APPROACH
In this section, the model-free on-policy game Q-learning
algorithm is presented and the bias of solution to iterative
Q-function based Bellman equations is proved. By learning
the Q-function matrices H∗i in (18), the approximately opti-
mal controller gains of multiple players can be obtained.

A. ON-POLICY GAME Q-LEARNING ALGORITHM
The on-policy RL methods in [18]–[22] are extended to the
case of multi-player systems, thus we present on-policy game
Q-learning algorithm.

Algorithm 1 On-Policy Game Q-Learning
1: Initialization: Given the admissible controller gains for
n players K 0

1 ,K
0
2 ,. . . ,K

0
n . Let j = 0 and i = 1, where j

denotes the iteration index and i stands for player i (i =
1, 2, . . . , n);

2: Policies evaluation: solve the Q-function matrices H j+1
i

zTk H
j+1
i zk=xTk Qixk+

n∑
q=1

(ujqk )
TRqu

j
qk+z

T
k+1H

j+1
i zk+1

(20)

3: Policies update:

uj+1ik = −K
j+1
i xk (21)

where

K j+1
i = (H j+1

i,uiui )
−1
[
(H j+1

i,xui )
T
− (H j+1

i,uiu1
K j
1 + . . .

+H j+1
i,uiui−1

K j
i−1 + H

j+1
i,uiui+1

K j
i+1

+ · · · + H j+1
i,uiunK

j
n)
]

(22)

4: If i < n, then i = i+ 1 and go back to Step 2. Otherwise
j = j+ 1, i = 1, and go to Step 5;

5: Stop when∥∥∥H j−1
i − H j

i

∥∥∥ ≤ ε (i = 1, 2, . . . , n)

with a small constant ε (ε > 0). Otherwise go back to
Step 2.

Remark 2: Algorithm 1 calculating Q-function matrices
H j+1
i yields the updated K j+1

i (H j+1
i → K j+1

i ). As j →
∞, H j+1

i converge to H∗i result in the convergence of K j+1
i

to K∗i for all players, which can be proved in the similar
way to [29], [30], [33].

B. BIAS ANALYSIS OF SOLUTION FOR THE ON-POLICY
GAME Q-LEARNING ALGORITHM
To satisfy the PE condition in Algorithm 1, probing noises are
added to system (1). Thus, the actual control inputs applied
to the system for collecting data are

ûjik = ujik + eik (23)

with eik = ei(k) being probing noises and ujik given by (21).
Theorem 1 will prove the bias of solution to (20).
Theorem 1: Rewrite Bellman equation (20) as

xTk (M
j)TH j+1

i M jxk

= xTk Qixk +
n∑

q=1

(ujqk )
TRqu

j
qk + x

T
k+1(M

j)TH j+1
i M jxk+1

(24)

134650 VOLUME 7, 2019



J. Li et al.: Discrete-Time Multi-Player Games Based on Off-Policy Q-Learning

FIGURE 1. Architecture of the off-policy game Q-learning.

where

M j
=

[
I − (K j

1)
T
− (K j

2)
T . . . − (K j

n)T
]T

Let H j+1
i be the solution (24) with eik = 0 and Ĥ j+1

i be the
solution to (24) with eik 6= 0. Then, H j+1

i 6= Ĥ j+1
i .

Proof: Using (23) with eik 6= 0 in (24), Bellman
equation (24) becomes the following

xTk (M
j)T Ĥ j+1

i M jxk

= xTk Qixk +
n∑

q=1

(ujqk + eqk )
TRq

× (ujqk + eqk )+ x
T
k+1(M

j)T Ĥ j+1
i M jxk+1 (25)

where

xk+1 = Axk +
n∑
i=1

Bi(u
j
ik + eik ) (26)

Further, (25) is rewritten as

xTk (M
j)T Ĥ j+1

i M jxk = xTk Qixk

+

n∑
q=1

(ujqk + eqk )
TRq(u

j
qk + eqk )

+ (Axk +
n∑
i=1

Bi(u
j
ik + eik ))

T (M j)T Ĥ j+1
i

×M j(Axk +
n∑
i=1

Bi(u
j
ik + eik ))

= xTk Qixk +
n∑

q=1

(ujqk )
TRqu

j
qk

+ xTk+1(M
j)T Ĥ j+1

i M jxk+1 + 2
n∑

q=1

eTqkRqu
j
qk

+

n∑
i=1

eTik (B
T
i (M

j)T Ĥ j+1
i M jBi + Ri)eik

+ 2
n∑
i=1

eTikB
T
i (M

j)T Ĥ j+1
i M jxk+1 (27)

It can be concluded that the solution to (27) is not the solu-
tion to (24) if eik 6= 0. Since the solution to (24) is equivalent
to the solution to (20), then one has H j+1

i 6= Ĥ j+1
i . Hence,

adding probing noises during implementing the proposed on-
policy game Q-learning Algorithm 1 can produce bias of
solution. This completes the proof.
Remark 3: It is worth noting that data are generated by

uj+1i (k) = −K j+1
i xk in Algorithm 1, which is the typical

characteristic of the on-policy approach. Theorem 1 proves
that the solution of the on-policy game Q-learning algorithm
is biased.
Remark 4: In contrast to [8], we extend the proof of biased

solution to iterative Bellman equations in [8] to the case of
multi-player non-zero sum games.

V. FINDING K∗i (i = 1, 2, . . . , n) BY THE OFF-POLICY
APPROACH
In this section, an off-policy game Q-learning method is
proposed to solve the non-zero sum game problem of mul-
tiple players. Moreover, the unbiasedness of solution to
Q-learning based iterative game Bellman equation is rigor-
ously proved even though adding probing noises ensures the
PE condition.

A. DERIVATION OF OFF-POLICY GAME Q-LEARNING
ALGORITHM
From (20), one has

(M j)TH j+1
i M j

= (M j)T3iM j
+

(
A−

n∑
i=1

BiK
j
i

)T

× (M j)TH j+1
i M j

(
A−

n∑
i=1

BiK
j
i

)
(28)

where

3i = diag(Qi,R1,R2, . . . ,Rn)

Adding auxiliary variables ujik = −K
j
i xk (i = 1, 2, . . . , n) to

system (1) yields

xk+1 = Acxk +
n∑
i=1

Bi(uik − u
j
ik ) (29)
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where Ac = A −
∑n

i=1 BiK
j
i , uik are called the behavior

control policies to generate data and ujik are called the target
control policies that players need to learn. When the system
trajectory is (29), one has

Qj+1i (xk , uik , u−ik )− xTk A
T
c (M

j)TH j+1
i M jAcxk

= xTk (M
j)TH j+1

i M jxk −

(
xk+1 −

n∑
i=1

Bi(uik − u
j
ik )

)T

× (M j)TH j+1
i M j

(
xk+1 −

n∑
i=1

Bi(uik − u
j
ik )

)
= xTk (M

j)T3iM jxk (30)

In view that Pj+1i and H j+1
i are related as shown in

(13) and (14), then the following holds

xTk (M
j)TH j+1

i M jxk − xTk+1(M
j)TH j+1

i M jxk+1

+ 2

(
Axk +

n∑
i=1

Biuik

)T
Pj+1i

n∑
i=1

Bi(uik − u
j
ik )

−

n∑
i=1

(uik − u
j
ik )

TBTi P
j+1
i

n∑
i=1

Bi(uik − u
j
ik )

= xTk (M
j)T3iM jxk (31)

Further one has

xTk (M
j)TH j+1

i M jxk − xTk+1(M
j)TH j+1

i M jxk+1

+ 2xTk
[
H j+1
i,xu1

H j+1
i,xu2

. . .H j+1
i,xun

] n∑
i=1

(uik + k
j
ixk )

+ 2
n∑
i=1

uTikG
j+1
i

n∑
i=1

(uik + k
j
ixk )

−

n∑
i=1

(
uik + k

j
ixk
)T

Gj+1i

n∑
i=1

(uik + k
j
ixk )

= xTk (M
j)T3iM jxk (32)

where

Gj+1i =



H j+1
i,u1u1
− R1 H j+1

i,u1u2
. . . H j+1

i,u1un
(H j+1

i,u1u2
)T H j+1

i,u2u2
− R2 . . . H j+1

i,u2un
(H j+1

i,u1u3
)T (H j+1

i,u2u3
)T . . . H j+1

i,u3un
...

... . . .
...

(H j+1
i,u1un

)T (H j+1
i,u2un

)T . . . H j+1
i,unun − Rn


Manipulating (32) can get the following form

θ̂
j
i (k)L̂

j+1
i = ρ̂i,k (33)

where

ρ̂i,k = xTk Qixk +
n∑
i=1

uTikRiuik

L̂ j+1i =

[
(vec(L̂ j+1i,rz ))

T , . . . , (vec(L̂ j+1i,nn))
T
]T

θ̂
j
i (k) =

[
θ̂
j
i,rz, . . . , θ̂

j
i,nn

]

with r = 0, 1, 2, . . . , n, z = r, r + 1, r + 2, . . . , n.

θ̂
j
i,00 = xTk ⊗ x

T
k − x

T
k+1 ⊗ x

T
k+1

L̂ j+1i,00 = H j+1
i,xx

θ̂
j
i,ss = −(K

j
sxk+1)

T
⊗ (K j

sxk+1)
T
+ uTs ⊗ u

T
s

L̂ j+1i,ss = H j+1
i,usus

θ̂
j
i,0s = 2xTk+1 ⊗ (K j

sxk+1)
T
+ 2xTk ⊗ u

T
s

L̂ j+1i,0s = H j+1
i,xus

θ̂
j
i,st = −2(K

j
sxk+1)

T
⊗ (K j

t xk+1)
T
+ 2uTs ⊗ u

T
t

L̂ j+1i,st = H j+1
i,usut

with s 6= t and s, t = 1, 2, . . . , n.
Based on the above part, K j+1

1 ,K j+1
2 , . . . ,K j+1

n can be
expressed as the form of L̂ j+1i

K j+1
i = (L̂ j+1i,ii )

−1
(
(L̂ j+1i,0i )

T
−

[
(L̂ j+1i,i1 )

TK j
1 + . . .

+ (L̂ j+1i,(i,i−1))
TK j

i−1 + L̂
j+1
i,(i,i+1))

TK j
i+1

+ · · · + (L̂ j+1i,in )
TK j

n

])
(34)

Theorem 2: (H j+1
i , K j+1

i ) are the solution of (33) and (34)
if and only if they are the solution of (20) and (22).

Proof: From the derivation of (33) and (34), one can
conclude that if (H j+1

i ,K j+1
i ) are the solution of (20) and (22),

then (H j+1
i ,K j+1

i ) satisfies (33) and (34). Next, we will prove
that the solution to (33) and (34) is also the solution to (20)
and (22).

It is obvious that (33) is equivalent to (31), so the solutions
of both (33) and (31) are going to be the same. If (H j+1

i ,
K j+1
i ) is the solution to (31), then it is also the solution to (30)

based on Lemma 1. Subtracting (31) from (30) yields (20),
then the solution to (31) is the same one to (20). Thus (H j+1

i ,
K j+1
i ) satisfied with (33) makes (20) hold resulting in (34)

being (22).
Remark 5: If L̂ j+1i are solved correctly, then the ujik =
−K j

i xk can be learned by Algorithm 2. When j → ∞,
ujik → u∗ik . Since the solution to Algorithm 2 is the same
as the solution to Algorithm 1, and ujik learned by Algo-
rithm 1 have been proven to converge to u∗ik , then ujik
found by using Algorithm 2 can converge to u∗ik , under
which the Nash equilibrium of multi-player games can be
reached.
Remark 6: Algorithm 2 is indeed an off-policy Q-learning

approach, since the target control policies are updated but
they are not applied to the learning process. The use of
arbitrary admissible behavior control policies uik to gen-
erate data and enrich data exploration is the essential fea-
ture of the off-policy learning as opposed to the on-policy
learning [4], [23]–[26].
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Algorithm 2 Off-Policy Game Q-Learning
1: Data collection: Collect data xk by using behavior control

policies uik (i = 1, 2, . . . , n);
2: Initialization: Given initial admissible controller gains

of multiple players K 0
1 ,K

0
2 ,K

0
3 , . . . ,K

0
n . Let j = 1 and

i = 1, where j denotes the iteration index and i stands of
player i;

3: Implementing the off-policy game Q-learning: By using
recursive least-square methods, L̂ j+1i can be calculated
using (33). And then K j+1

i is updated by (34);
4: If i < n, then i = i+ 1 and go back to Step 3. Otherwise
j = j+ 1, i = 1 and go to Step 5;

5: Stop when
∥∥∥K j

i − K
j−1
i

∥∥∥ ≤ ε (i = 1, 2, . . . , n), the opti-
mal control policy is obtained. Otherwise, i = 1, and go
back to Step 3.

B. NO BIAS ANALYSIS OF SOLUTION FOR THE
OFF-POLICY Q-LEARNING ALGORITHM
To satisfy the condition of PE, probing noises are
added into (20) in Algorithm 1. It has been proven that
Algorithm 1 could produce bias of solution if adding probing
noises into systems. The following will prove that the pro-
posed Algorithm 2 does not produce deviation of the solution
under the circumstance of adding probing noises.
Theorem 3: Add probing noises to the behavior control

policies in Algorithm 2. Let H j+1
i be the solution to (30) with

eik = 0 and Ĥ j+1
i be the solution to (30) with eik 6= 0, then

Ĥ j+1
i = H j+1

i .
Proof: After probing noises are added to the behavior

control policies, that is uik + eik , solving (30) is equivalent to
solving the following form

x̂Tk (M
j)T Ĥ j+1

i M jx̂k = x̂Tk (M
j)T3iM jx̂k

+ x̂Tk

(
A−

n∑
i=1

BiK
j
i

)T
(M j)T Ĥ j+1

i

×M j

(
A−

n∑
i=1

BiK
j
i

)
x̂k (35)

Notice that if adding probing noises into system (29), then it
becomes

x̂k+1 = Acx̂k +
n∑
i=1

Bi(uik + eik + K
j
i x̂k ) (36)

In this case, (30) becomes

x̂Tk (M
j)T Ĥ j+1

i M jx̂k

−

(
x̂k+1 −

n∑
i=1

Bi(uik + eik + K
j
i x̂k )

)T
(M j)T Ĥ j+1

i M j

×

(
x̂k+1 −

n∑
i=1

Bi(uik + eik + K
j
i x̂k )

)
= x̂Tk (M

j)T3iM jx̂k (37)

Substituting (36) into (37), (37) becomes (35). So the solu-
tion to (35) is the same as (30). From the proof of Theorem 2,
one can find that the solution to (33) is equal to that to (30).
Therefore, it is impossible for the off-policy game Q-learning
algorithm to produce deviations when adding probing noises.
The unbiasedness of the solution of the off-policy game
Q-learning is proved.
Remark 7: Different from [8], where the unbiased proof

of the solution of the off-policy RL algorithm for solving
the zero sum game problem with two players was developed,
while here the unbiased proof of the solution of the off-
policy game Q-learning algorithm is for the non-zero sum
multi-player games.
Remark 8: Comparedwith the off-policy RL algorithm for

zero sum games [30], the off-policy game Q-learning algo-
rithm is put forward for the first time for non-zero sum multi-
players games and the rigorous proof of unbiased solution
even though adding probing noises to keep PE condition is
presented in this paper, which has not been reported up to
now.

VI. SIMULATION RESULTS
In this section, the effectiveness of the proposed off-policy
game Q-learning algorithm is verified respectively for the
three-player games and the five-player games.

A. SIMULATION RESULTS FOR THE THREE-PLAYER
SYSTEM
Consider the following linear DT system with three players,
which play non-zero sum game.

xk+1 = Axk + B1u1 + B2u2 + B3u3 (38)

where

A =

0.906488 0.0816012 −0.0005
0.074349 0.90121 −0.000708383

0 0 0.132655


B1 =

−0.00150808−0.0096
0.867345

 , B2 =

0.009518920.00038373
0


B3 =

−0.00563451−0.08962
0.356478


Choose Q1 = diag(4, 4, 4), Q2 = diag(5, 5, 5) Q3 =

diag(6, 6, 6) and R1 = R2 = R3 = 1. Rewrite (18) as

H∗i = 3i +


A B1 B2 B3
K1A K1B1 K1B2 K1B3
K2A K2B1 K2B2 K2B3
K3A K3B1 K3B2 K3B3


T

H∗i

×


A B1 B2 B3
K1A K1B1 K1B2 K1B3
K2A K2B1 K2B2 K2B3
K3A K3B1 K3B2 K3B3

 (39)
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TABLE 1. Optimal controller gains under three probing noises.

The model-based iterative algorithm in terms of (39) is
used in MATLAB to obtain the real solution. Thus, the opti-
mal Q-function matrices (H∗1 , H

∗

2 , H
∗

3 ) and the optimal con-
troller gains (K∗1 , K

∗

2 , K
∗

3 ) can be obtained.

H∗1 =


26.6577 11.7777 −0.0150 −0.1100
11.7777 21.4849 −0.0111 −0.1434
−0.0150 −0.0111 4.0707 0.4622
−0.1100 −0.1434 0.4622 4.0223
0.2336 0.1164 −0.0002 −0.0011
−1.0988 −1.6897 0.1910 1.2555

0.2336 −1.0988
0.1164 −1.6897
−0.0002 0.1910
−0.0011 1.2555
1.0024 −0.0108
−0.0108 1.6737



H∗2 =


32.0935 13.2638 −0.0172 −0.1220
13.2638 25.0310 −0.0117 −0.1585
−0.0172 −0.0117 5.0883 0.5773
−0.1220 −0.1585 0.5773 4.7753
0.2797 0.1310 −0.0002 −0.0012
−1.2318 −1.9340 0.2383 1.5664

0.2797 −1.2318
0.1310 −1.9340
−0.0002 0.2383
−0.0012 1.5664
1.0029 −0.0121
−0.0121 1.8244



H∗3 =


37.5293 14.7499 −0.0194 −0.1340
14.7499 28.5771 −0.0124 −0.1736
−0.0194 −0.0124 6.1059 0.6925
−0.1340 −0.1736 0.6925 5.5283
0.3258 0.1455 −0.0002 −0.0013
−1.3649 −2.1784 0.2857 1.8773

0.3258 −1.3649
0.1455 −2.1784
−0.0002 0.2857
−0.0013 1.8773
1.0034 −0.0134
−0.0134 1.9750


K∗1 =

[
−0.2671 −0.4385 −0.0992

]

K∗2 =
[
−0.2678 −0.1127 −0.0006

]
K∗3 =

[
0.9431 1.5190 −0.0504

]
(40)

Three different probing noises were added to verify the unbi-
asedness of the off-policy game Q-learning algorithm, and
compare it with the on-policy game Q-learning algorithm.
For ensure PE conditions when solving (20) and (33) used
the following three cases of probing noises are
1) Case 1:

ei =
100∑
j

0.5 ∗ sin(noisefeq(1, j) ∗ k) (41)

2) Case 2:

ei =
100∑
j

6 ∗ sin(noisefeq(1, j) ∗ k) (42)

3) Case 3:

ei =
100∑
j

10 ∗ sin(noisefeq(1, j) ∗ k) (43)

where

noisefeq(1, j) = 500 ∗ rand(1, 100)− 200 ∗ ones(1, 100)

(44)

Table 1 shows the optimal controller gains when imple-
menting Algorithm 1 and Algorithm 2 under the three cases
of probing noises. It can be observed that the solution when
using on-policy game Q-learning Algorithm 1 is affected by
the probing noises interference and the learned controller
gains are biased. On the contrary, for all of the three probing
noises, the Q-function matrices H j

i and controller gains K j
i

always converge to the optimal values when implementing
off-policy game Q-learning Algorithm 2.
Simulation results when utilizing the on-policy game

Q-learning Algorithm 1: Under the probing noises Case 1,
Fig. 2 and Fig. 3 show the errors between the matrices Hi
and H∗i and the errors between the controller gains Ki and
K∗i . Fig. 4 shows the state responses of the game system. The
optimal performance Ji is plotted using the learned optimal
control policy in Fig. 5.
Fig. 6 and Fig. 7 show the errors between the matrices Hi

and H∗i and the errors between the controller gains Ki and
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FIGURE 2. Case 1: Convergence of Hi in on-policy game Q-learning.

FIGURE 3. Case 1: Convergence of Ki in on-policy game Q-learning.

FIGURE 4. Case 1: The system states x in on-policy game Q-learning.

K∗i under the probing noises Case 2 during the implementing
of on-policy game Q-learning Algorithm 1. Fig. 8 shows the
state responses of the game system.

Under the probing noises Case 3, Fig. 9 and Fig. 10 show
the errors of matrices Hi and H∗i , and the errors of controller
gainsKi andK∗i , Fig. 11 shows the state responses of the game
system.

Simulation results when using the off-policy game
Q-learning Algorithm 2: Since there is no bias of solution
(Hi,Ki) caused by adding probing noises, then the con-
vergence results of (Hi,Ki) only under the probing noises
Case 1 are plotted Fig. 12 and Fig. 13. Fig. 14 shows the state
responses of the game system. The performance Ji along the

FIGURE 5. Case 1: The optimal costs in on-policy game Q-learning.

FIGURE 6. Case 2: Convergence of Hi in on-policy game Q-learning.

FIGURE 7. Case 2: Convergence of Ki in on-policy game Q-learning.

system trajectories under the learned optimal control policies
are plotted in Fig. 15.

B. SIMULATION RESULTS FOR THE FIVE-PLAYER SYSTEM
Consider the following linear DT system with five players,
which play non-zero sum game.

xk+1 = Axk + B1u1 + B2u2 + B3u3 + B4u4 + B5u5 (45)

where

A =

0.906488 0.0816012 −0.0005
0.074349 0.90121 −0.000708383

0 0 0.132655


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FIGURE 8. Case 2: The system states x in on-policy game Q-learning.

FIGURE 9. Case 3: Convergence of Hi in on-policy game Q-learning.

FIGURE 10. Case 3: Convergence of Ki in on-policy game Q-learning.

B1 =

−0.00150808−0.0096
0.867345

 , B2 =

0.009518920.00038373
0


B3 =

−0.00563451−0.08962
0.356478

 , B4 =

0.01239560.068
−0.05673


B5 =

 −0.1250.4
−0.4898


Choose Q1 = diag(4, 4, 4), Q2 = diag(5, 5, 5), Q3 =

diag(6, 6, 6), Q4 = diag(7, 7, 7), Q5 = diag(3, 3, 3) and

FIGURE 11. Case 3: The system states x in on-policy game Q-learning.

FIGURE 12. Convergence of Hi in off-policy game Q-learning.

FIGURE 13. Convergence of Ki in off-policy game Q-learning.

R1 = R2 = R3 = R4 = R5 = 1. Rewrite (18) as

H∗i = 3i +


A B1 . . . B5
K1A K1B1 . . . K1B5
K2A K2B1 . . . K2B5
K3A K3B1 . . . K3B5
K4A K4B1 . . . K4B5
K5A K5B1 . . . K5B5



T

×H∗i


A B1 . . . B5
K1A K1B1 . . . K1B5
K2A K2B1 . . . K2B5
K3A K3B1 . . . K3B5
K4A K4B1 . . . K4B5
K5A K5B1 . . . K5B5

 (46)
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The model-based iterative algorithm in terms of (46) is
used in MATLAB to obtain the real solution. Thus, the
optimal Q-function matrices (H∗1 , H

∗

2 , H
∗

3 , H
∗

4 , H
∗

5 ) and
the optimal controller gains (K∗1 , K

∗

2 , K
∗

3 , K
∗

4 , K
∗

5 ) can be
obtained.

H∗1 =



25.4360 9.7277 −0.0168 −0.1127
9.7277 14.1358 −0.0049 −0.0663
−0.0168 −0.0049 4.0707 0.4623
−0.1127 −0.0663 0.4623 4.0228
0.2217 0.0981 −0.0002 −0.0012
−0.9082 −0.9637 0.1904 1.2483
0.8767 0.8233 −0.0307 −0.2034
0.6170 2.8781 −0.2603 −1.7168

0.2217 −0.9082 0.8767 0.6170
0.0981 −0.9637 0.8233 2.8781
−0.0002 0.1904 −0.0307 −0.2603
−0.0012 1.2483 −0.2034 −1.7168
1.0023 −0.0091 0.0089 0.0052
−0.0091 1.6022 −0.1594 −0.9780
0.0089 −0.1594 1.0804 0.3301
0.0052 −0.9780 0.3301 3.1613



H∗2 =



29.7586 10.9982 −0.0182 −0.1208
10.9982 16.7580 −0.0058 −0.0778
−0.0182 −0.0058 5.0883 0.5775
−0.1208 −0.0778 0.5775 4.7758
0.2561 0.1107 −0.0002 −0.0012
−1.0225 −1.1192 0.2378 1.5589
0.9944 0.9532 −0.0383 −0.2536
0.6000 3.3906 −0.3254 −2.1457

0.2561 −1.0225 0.9944 0.6000
0.1107 −1.1192 0.9532 3.3906
−0.0002 0.2378 −0.0383 −0.3254
−0.0012 1.5589 −0.2536 −2.1457
1.0027 −0.0103 0.0101 0.0048
−0.0103 1.7443 −0.1920 −1.2033
0.0101 −0.1920 1.0941 0.3960
0.0048 −1.2033 0.3960 3.6386



H∗3 =



34.0812 12.2688 −0.0196 −0.1290
12.2688 19.3802 −0.0066 −0.0893
−0.0196 −0.0066 6.1059 0.6926
−0.1290 −0.0893 0.6926 5.5288
0.2906 0.1234 −0.0002 −0.0013
−1.1368 −1.2747 0.2852 1.8694
1.1121 1.0830 −0.0459 −0.3037
0.5830 3.9032 −0.3906 −2.5747

0.2906 −1.1368 1.1121 0.5830
0.1234 −1.2747 1.0830 3.9032
−0.0002 0.2852 −0.0459 −0.3906
−0.0013 1.8694 −0.3037 −2.5747
1.0030 −0.0114 0.0112 0.0044
−0.0114 1.8864 −0.2247 −1.4285
0.0112 −0.2247 1.1079 0.4620
0.0044 −1.4285 0.4620 4.1159



FIGURE 14. The system states x in off-policy game Q-learning.

H∗4 =



38.4038 13.5393 −0.0210 −0.1372
13.5393 22.0024 −0.0074 −0.1009
−0.0210 −0.0074 7.1235 0.8078
−0.1372 −0.1009 0.8078 6.2818
0.3250 0.1361 −0.0002 −0.0014
−1.2512 −1.4302 0.3326 2.1800
1.2297 1.2129 −0.0535 −0.3539
0.5660 4.4158 −0.4557 −3.0037

0.3250 −1.2512 1.2297 0.5660
0.1361 −1.4302 1.2129 4.4158
−0.0002 0.3326 −0.0535 −0.4557
−0.0014 2.1800 −0.3539 −3.0037
1.0034 −0.0126 0.0124 0.0040
−0.0126 2.0285 −0.2573 −1.6537
0.0124 −0.2573 1.1216 0.5280
0.0040 −1.6537 0.5280 4.5932



H∗5 =



21.1134 8.4572 −0.0154 −0.1045
8.4572 11.5136 −0.0041 −0.0548
−0.0154 −0.0041 3.0531 0.3471
−0.1045 −0.0548 0.3471 3.2698
0.1872 0.0854 −0.0002 −0.0011
−0.7938 −0.8082 0.1430 0.9378
0.7590 0.6935 −0.0231 −0.1532
0.6340 2.3655 −0.1951 −1.2878

0.1872 −0.7938 0.7590 0.6340
0.0854 −0.8082 0.6935 2.3655
−0.0002 0.1430 −0.0231 −0.1951
−0.0011 0.9378 −0.1532 −1.2878
1.0019 −0.0080 0.0077 0.0056
−0.0080 1.4600 −0.1268 −0.7528
0.0077 −0.1268 1.0667 0.2641
0.0056 −0.7528 0.2641 2.6840


K∗1 =

[
−0.1559 −0.4921 −0.1018

]
K∗2 =

[
−0.2372 −0.0944 −0.0006

]
K∗3 =

[
0.8838 0.5288 −0.0597

]
K∗4 =

[
−1.1014 −0.7778 0.0084

]
K∗5 =

[
0.3424 −0.7149 −0.0138

]
(47)

Simulation results when using off-policy game Q-learning
Algorithm 2: Under the probing noises Case 1, Fig. 16 and
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FIGURE 15. The optimal costs in off-policy game Q-learning.

FIGURE 16. Convergence of Hi in off-policy game Q-learning.

FIGURE 17. Convergence of Ki in off-policy game Q-learning.

Fig. 17 show the convergences of the Q-function matrices
Hi and the learned control gains Ki. Fig. 18 shows the state
responses of the game system. The above three figures are
obtained by implementing the proposed off-policy game
Q-learning algorithm. The performance Ji is plotted in Fig. 19
under the learned Nash equilibrium solution.

C. RESULTS ANALYSIS AND COMPARISONS
From Table 1, one can find that solution deviation indeed
existed when using the on-policy game Q-learning for
multi-player games, while there is no bias of solution of
Q-function matrices Hi and the optimal controller gains Ki
when implementing the off-policy game Q-learning for the
multi-player games. With the increasing of probing noises,
the state response in Fig. 4, 8 and 11 and the cost in Fig. 5

FIGURE 18. The system states x in off-policy game Q-learning.

FIGURE 19. The optimal costs in off-policy game Q-learning.

is more remarkably affected since the system is disturbed by
adding probing noises. However, as shown in Fig. 14 and 15
for the case of three-player games and Fig. 18 and 19 for
the case of five-player games, the systems converge with fast
velocity and without overshoot, and the costs are smaller than
those using the on-policy game Q-learning algorithm.

VII. CONCLUSION
In this paper, an off-policy game Q-learning algorithm is
proposed to solve multi-player non-zero sum game problems
in linear DT systems without knowing the dynamics of mod-
els. The probing noises are added into control inputs during
learning solutions and the convergence and unbiasedness of
the proposed off-policy game Q-learning are presented with
rigorously theoretical proofs. Simulation results have demon-
strated the effectiveness of the proposed method.
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