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ABSTRACT Brain storm optimization (BSO) is a swarm intelligence optimization algorithmwhich is proven
to have practical values in various fields. During these years, many modifications have been facilitated to
effectively improve BSO’s search performance. So far, these modifications focus on improving the solution
quality by applying different clustering methods and learning strategies, in which the population diversity is
often neglected. However, in recent studies, population diversity plays a more significant role in designing
optimization algorithm. A population that maintains its diversity in a high level can easily obtain better
solutions than the one with low level of diversity. Therefore, this paper proposes a control method that
evaluates the population diversity of BSO to improve its performance. Two diversity measures, which are
known as distance-based diversity and fitness-based diversity, are implemented to realize the adaptation of
algorithm parameters. The new algorithm is calledmultiple diversity-drivenBSO (MDBSO). Its performance
is verified by CEC2017 benchmark function suit and a neuron model training task. The results demonstrate
the effectiveness and efficiency of MDBSO.

INDEX TERMS Population diversity, parameter control, swarm intelligence and adaptive parameters.

I. INTRODUCTION
In recent years, various swarm intelligence (SI) algorithms
have been proposed for solving diverse optimization prob-
lems. The main property of this kind of algorithms is that they
mimic the social behaviors of nature creatures. As far as we
know, it is full of wisdom and intelligence when animals are
hunting, foraging and navigating in nature. Survival instincts
drive them to improve search ability for creating more suit-
able living environment. Their behaviors gradually arouse
great interests among researchers in the field of artificial
intelligence [1]. Particle swarm optimization (PSO) which
is one of the most popular SI algorithms is modeled based
on the social behaviors of flocks of birds and schools of
fish [2]. It supposes that a swarm of particles fly randomly in
a multidimensional search space. Each of them represents a
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candidate solution for the optimization task. Their trajectories
change according to the best position of the individual and
the global best position of the whole population. Particles can
effectively search for better solutions by taking advantage of
this mechanism.

In addition to PSO, more and more SI optimization
algorithms progressively spring into our view. Ant colony
optimization (ACO) [3], fireworks algorithm (FA) [4], grav-
itational search algorithm (GSA) [5], artificial bee colony
algorithm (ABC) [6] and brain storm optimization (BSO) [7]
are some powerful optimization algorithms. These SI algo-
rithms can be roughly divided into three categories according
to the types of behaviors they take inspiration from.

The first category is called bio-inspired. Classical algo-
rithms in this category such as ACO and ABC emulate the
foraging behaviors of ant colony and bee colony, respec-
tively. In ACO, individuals utilize a special chemical sub-
stance called pheromone to mark their search trajectory.
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The trajectory with more pheromone is considered as a pre-
ferred path to the global optimum, and further attracts other
individuals [8]. ABC simulates the organizational structure
of bees to categorize individuals into three groups: employed
artificial bees, onlookers and scouts. The employed artifi-
cial bees represent candidate solutions and the onlookers are
responsible for sharing the information of employed bees.
After these steps, scouts are sent to diverse search area for
discovering new solutions. This sophisticated idea of giving
different functions to individuals makes the search procedure
of ABC efficient and effective [6].

The second category can be named as physics-inspired.
The algorithms belong to this category such as FA and GSA
straightly take inspiration from physical phenomena or laws.
For examples, the explosion processes of fireworks are uti-
lized to design the search mechanism of FA, in which the
distribution of individuals is analogized by the sparks in fire-
work explosion. In GSA, the law of gravity is used to depict
the relationship among individuals in search space. They are
attracted by each other and the gravitational force is directly
proportional to their fitness and inversely proportional to
the square of the distance between them. The performance
of GSA in different kinds of problems implies its powerful
search ability [9]–[11].

The last category is called sociology-inspired. The major
property of the algorithms in this category is that they are
inspired by human social behaviors. BSO is very notable
among SI algorithms and has already achieved great success
in various applications [12]. Its operations of generating new
individuals adopt the brainstorming process in human social
behaviors. In reality, a group of people should be called
together to figure out a solution when we encounter problems
that can not be solved alone. This brainstorming process
needs repetitive discussions and debates. BSO is enlightened
by this feature and obtains an elaborated search process.
At the rudimentary stage of optimization, individuals are
divided into multiple clusters, then each cluster selects the
best individual as the center. BSO has four independent indi-
vidual generation methods and the selections of correspond-
ing method are depending on three preset parameters p1, p2
and p3. p1 decides the usage of one or two clusters. In the con-
dition of using one cluster, p2 is adopted to choose the center
or one random individual in the selected cluster. Otherwise,
when two clusters are selected, p3 determines the adoption
of two centers or two random individuals. Being beneficial
from this sophisticated selection mechanism, BSO can avoid
sticking into local optima and outperform other optimization
algorithms when dealing with multimodal problems [12].
However, the inherent feature of BSO that can not maintain
good diversity reduces its robustness and deteriorates the
performance of solving different problems. In the meanwhile,
the parameter adjustment is very important in designing algo-
rithms but it generally costs much time to find an acceptable
parameter set. Therefore, more and more researchers prefer
making parameters adaptive or self-adaptive to enhance the
robustness and performance of algorithms [13]–[17].

Many modifications have been facilitated to improve the
optimization performance of BSO but little work tries to
make parameters be adaptive and keep the diversity staying
in a high stage. BSO in objective space (BSO-OS) [18]
aims to accelerate its convergent speed by replacing k-means
clustering method with an elitist selection mechanism. Its
mutation operation focuses on one-dimension objective space
instead of the whole solution space. In [19], a random group-
ing BSO (RGBSO) is proposed to balance exploration and
exploitation via adopting a new dynamic parameter in the
generation of step-size. Besides, it replaces k-means cluster-
ing by a random grouping strategy so that the time complexity
is decreased. Global-best BSO (GBSO) [20] tries to improve
the performance of BSO from multiple aspects, including
the clustering method, individual selection and mutation.
Different from the k-means and mentioned random grouping
methods, GBSO ranks the population according to their fit-
ness and makes good and bad individuals equally distribute
in different clusters. In original BSO, at most two individuals
participate in generating new individuals, while in GBSO,
more individuals can contribute to enhance the information
exchange in this step. GBSO also adopts the global-best
guidance strategy in PSO to modify its mutation mechanism.
In our previous work [21], a chaotic local search method is
combined with BSO (CBSO) to enhance its search ability and
improve the solution quality. Besides the mentioned works,
there are many other effective modifications for BSO, In [22],
a self-adaptive multiobjective BSO (SMOBSO) is proposed.
It adopts an adaptive mutation method to give an uneven
distribution of solutions, but parameters still need to be set
according to empirical data. Similarly, other works [23], [24]
mainly focus on the adaptations of search step length in the
mutation operator.

TABLE 1. The main parameters in BSO and MDBSO.

Overall, most existing works that improve the performance
of BSO focus on the adjustments of search and mutation
strategies, but as we emphasized before, one drawback of
BSO is that it has too many user-defined parameters. Pre-
setting these parameters is a nontrivial task and generally
difficult to find the best parameter set for solving different
problems. Table 1 lists the main parameters of BSO and their
corresponding values. It’s widely accepted that the variation
in parameter values of an algorithm could cause consid-
erable fluctuation in performance [25]. Taking differential
evolution (DE) as an example [26], the number of control
parameters in DE is very few, including the scaling factor F ,
crossover rateCR and population sizeNP. The effects of these
parameters on the performance of DE are well studied and it
is reported that different value set for F and CR could obtain
significant performance variations [27]. The most successful

126872 VOLUME 7, 2019



Y. Yu et al.: MDBSO Algorithm With Adaptive Parameters

modifications for DE, such as JADE [13] and SHADE [28],
employ parameter adaptation strategy to automatically update
the control parameters. Besides, some researches indicate
that diversity plays a significant role in improving search
performance of SI algorithms [29]–[31].

In the design of optimization algorithms, the balance
between exploration and exploitation is a crucial factor for the
search performance. A good balance can make the algorithms
fast converge and avoid local optimal solutions. Contrar-
ily, the solution quality could be badly deteriorated when
the relation is unbalanced. Therefore, the researches about
keeping the balance between exploration and exploitation
become crucial in recent years [32]–[34]. The key point of
keeping balance is the preservation of population diversity
in optimization process [31]. The population diversity can
be explained as the extent of variation in the population
based on the distribution or fitness performance obtained by
individuals [35]. There are various methods that can be used
to calculate the population diversity [30], [31]. The diversity
is named as distance-based when it is measured according
to the distance between each individual in decision space.
While the fitness-based diversity is obtained by evaluating the
performance of individuals in the objective space.

Both kinds of diversity have been incorporated into other
techniques to improve the performance of corresponding
algorithms. In [32], [33], the distance-based diversity is con-
sidered as an explicit objective. In other words, diversity
and fitness are combined as a multi-objective problem to
be solved. In this way, the balance between exploration
and exploitation can be well maintained by searching for
Pareto optimal solutions. The experimental results [32], [33]
also demonstrate controlling diversity can evidently improve
the performance of algorithm. With regard to the fitness-
based diversity, it is mainly used to obtain good fitness
spread among individual solutions. In [36], a variable relo-
cation technique based on fitness diversity is applied to
make the converged population restart convergence from
another promising location. A fast adaptive memetic algo-
rithm is proposed in [37] and the fitness diversity is inves-
tigated to control the utilization of local search strategies.
Other techniques such as fitness sharing [38] and adap-
tive grid [39] also apply fitness diversity to improve the
performance of algorithms [31]. Motivated by these prior
studies, it can be expected to make the parameters adaptive
via diversity control. Therefore, a multiple diversity-driven
BSO (MDBSO) with well-balanced diversity and adaptive
parameters is proposed.

Themain contributions of this study can be summarized as:
(1) We make the first attempt to use both distance-based
diversity Dd and fitness-based diversity Df to control the
mutation process to the best of our knowledge. (2) Two
new mutation strategies are adopted, including a local search
strategy called BLX-α [40], [41] and a Gaussian mutation
strategy. Additionally, Df is utilized to adjust the standard
deviation δ in Gaussian distribution. (3) Both Dd and Df
participate in generating new individuals. (4) Extensive

Algorithm 1 Flowchart of BSO

Randomly generate a population with N individuals;
Calculate the fitness of each individual;
while maximum number of function evaluations is not
reached do

Use k-means to divide N individuals into n clusters;
Choose the best individual in each cluster as the
center ;
if random(0, 1) < p0 = 0.2 then

replace one cluster center by a randomly
generated individual

end
if random(0, 1) < p1 = 0.8 then

select one cluster;
if random(0, 1) < p2 = 0.4 then

choose the cluster center as Xselected
else

randomly choose an individual in the cluster
as Xselected

end
else

randomly select two clusters;
if random(0, 1) < p3 = 0.5 then

choose the combination of two centers as
Xselected

else
choose the combination of two randomly
selected individuals in two clusters as
Xselected

end
end
Generate new individual by adding step length
generated by Eqs. (1) and (2) to Xselected ;
if the new individual is better than the old one then

replace the old individual
end

end

experiments are conducted to verify the performance of
MDBSO based on CEC2017 [42] benchmark function test
suit and a neuron model training task [43], [44]. The results
indicate that MDBSO has much better search ability than its
peers.

The organization of this paper is arranged as follows.
Section II briefly introduces the BSO. The proposedMDBSO
is presented in Section III. In Section IV, the experimental
results of benchmark function suit and neuron model training
data set are reported to show the performance of MDBSO
in comparison with other SI algorithms. Some discussions
are given in Section V. Finally, we conclude this paper in
Section VI.

II. BRAIN STORM OPTIMIZATION
BSO is an SI algorithm which mimics the human brainstorm-
ing in social behaviors. Algorithm 1 gives its optimization
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procedure. The main difference between BSO and other SI
algorithms is that BSO divides the population into n clusters
and the individual with the best fitness in each cluster is
selected as the center. Then, Xselected is selected to generate
new individuals according to the process controlled by p1, p2
and p3. If a random number is smaller than p1 (= 0.8 [7]), one
cluster will be selected. Otherwise, two clusters are applied
to generate new individuals. In the condition of using one
cluster, p2 (= 0.4 [7]) decides the usage of the center or
one random individual in the selected cluster. In addition,
p3 makes the centers and random individuals in two selected
clusters have equal chance to participate in generating new
individuals. Besides, BSO has another parameter p0 to control
the operation that replaces one cluster center by a randomly
generated individual to avoid premature convergence. Finally,
the population is updated based on the elite survival rule,
i.e., the old individual will be replaced by the generated
individual when the old one’s fitness is worse. The mutation
operator of BSO is shown as:

Xgenerated = Xselected + ξ · N (0, 1) (1)

where Xselected and Xgenerated are the selected and newly
generated individuals, respectively. N (0, 1) is the Gaussian
distribution with mean 0 and variance 1. ξ is a search step
length which is calculated by Eq. (2).

ξ = logsig((0.5 ∗ iterationmax − t)/k) · rand (2)

where logsig() means a logarithmic sigmoid transfer function,
and its interval is (0, 1). iterationmax and t are the maximum
iteration and current iteration count, respectively. k (= 20 [7])
is a scale factor to control the slope of logsig() function.

III. MULTIPLE DIVERSITY-DRIVEN BSO (MDBSO)
A. DIVERSITY-DRIVEN STRATEGY
Although the distance-based diversity and fitness-based
diversity are investigated in some researches, they are for the
first time to be studied simultaneously as control parameters
in this study. Before introducing the specific roles of two
kinds of diversity in MDBSO, their formulas are given as
follows.

Djd =
1
Nj

√√√√√ Nj∑
i=1

(||X ji − X
j
center ||)

2 (3)

where j (j = 1, 2, . . . , n) refers to the cluster number and
Djd is the distance-based diversity of the jth cluster. Nj is
the number of individuals in the jth cluster, X ji and X

j
center

are the ith individual and the center in the current cluster,
respectively.

The fitness-based diversity Df is calculated as

Djf =
1
Nj

√√√√√ Nj∑
i=1

(||F ji − F
j
center ||)

2 (4)

where F ji and F
j
center are the fitness of the ith individual and

the center in the jth cluster, respectively. It should be noticed
that we choose the centers and their fitness values instead of
using the mean values as the subtrahends to calculate corre-
sponding diversities. The intention is to increase convergence
rate during optimization process as the centers are the best
individuals in the population.

In MDBSO,Dd is applied as a control parameter to replace
p1, p2 and p3. It is adaptive via a normalization operation and
the formula is shown in Eq. (5).

pjd (t) =
Djd (t)− min{Dd (t)}

max{Dd (t)} − min{Dd (t)}
(5)

where pjd (t) decides which mutation strategy is called to
generate new individuals in the jth cluster at the tth iteration.
max(Dd (t)) and min(Dd (t)) refer to the maximum and mini-
mum values of Dd of n clusters at tth iteration, respectively.
It’s obvious that pjd values in the interval of [0, 1], and it
controls a switch between two mutation strategies: BLX-α
and Gaussian mutation. If a random value generated in (0, 1)
is smaller than pjd (t), it indicates the jth cluster may have
a good distance diversity. Therefore, a local search method
BLX-α is applied to speed up its convergence. Conversely,
if the random value is greater than pjd (t), the bad distance
diversity in the jth cluster may eventually deteriorate solution
quality and cause a premature convergence. Thus, the func-
tion of the Gaussian mutation is used to improve the distance
diversity.

B. MUTATION STRATEGIES
1) BLX-α
BLX-α is a local search operator to adjust the population
density [45]. Firstly, two individuals X1 = (x11 . . . x

dim
1 ) and

X2 = (x12 . . . x
dim
2 ) are selected (dim is the dimension num-

ber). Then, a new individual is generated from the interval
of [min{X1,X2} − Y × α,max{X1,X2} + Y × α], where
Y = max{X1,X2} − min{X1,X2}. α is a control parameter
used to limit the search space. According to [41], BLX-α
can increase the distribution of individuals when α >

√
3−1
2 ,

otherwise the distribution will be decreased. In particular,
BLX-0 makes the variance of the distribution decrease and
reduces the distance diversity. Therefore, we use BLX-0 in
MDBSO because it is a local search operator that can improve
solutions’ quality when a cluster maintains a good distance
diversity.

Particularly, the individuals X1 and X2 are selected via
a novel mechanism, in which the centers of the top two
clusters with the highest fitness diversity Df are specified
as X1 and X2, respectively. The reasons we use the fitness
diversity instead of distance diversity here are as follows:
(1) Even if the individuals have a close distance, their fitness
can vary widely as they are in different peaks of a multi-
modal problem. Thus, fitness diversity is more suitable for
selections of mutation operators. (2) High fitness diversity
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means that the cluster manages good fitness spread among
individual solutions. Thus, it can avoid premature conver-
gence to a great extent. (3) Meanwhile, centers are the best
individuals in the population. They are of strong reliability
and promising to enable BLX-α to generate individuals with
good fitness. The formula of generating individuals is shown
in Eq. (6)

Xgenerated = rand × (max{X1,X2} − min{X1,X2}) (6)

where rand is a random value generated in (0, 1).

2) GAUSSIAN MUTATION
BLX-α is applied for the situation that the cluster stays in a
good diversity. But it is not capable of improving diversity
when the solution quality is poor. Therefore, we use a muta-
tion strategy to generate new individuals when the distance
diversity is relative low. In this part, the adopted Gaussian
mutation is presented in details. A common formula which
uses Gaussian distribution to generate new individuals can be
described as follows.

Xgenerated = Xi + N (µ, δ) · (Xselected1 − Xselected2) (7)

where Xi is the ith individual to be updated in the popula-
tion. In MDBSO, Xselected1 and Xselected2 are two randomly
selected individuals in the top two clusters with the highest
distance diversity Dd , respectively. It should be pointed out
that, different from the utilization of Df in BLX-α, we use
Dd because we want to increase the distance diversity here.
Moreover, δ is adaptive inMDBSO and it is controlled byDf .
The adaptation mechanism is given as follows.

δ =
1
eω

(8)

where e is the base of natural logarithm and ω is calculated
according to Eq. (9).

ω = |
Djf (t)− mean{Df (t)}

max{Df (t)} − min{Df (t)}
| (9)

where mean{Df (t)} = 1
n

∑n
j=1D

j
f (t).

It is worth emphasizing that we use mean{Df (t)} as the
subtrahend to control ω. It is clear that ω and δ are nega-
tively correlated, which means that the clusters with higher
(or lower)Df obtain smaller (or bigger) δ. Generally, an indi-
vidual in the cluster with poor population diversity may need
greater δ to provide a larger search step size in the aim of
increase diversity. But too high diversity could cause the algo-
rithm fail to converge. A contrast experiment is conducted,
in which we use min{Df (t)} instead of mean{Df (t)} as the
subtrahend. In this way, the cluster with the lowest fitness
diversity would generate new individuals with N (µ, 1) and
it’s predictable that this method could obtain considerable
population diversity due to the increase in δ. However, its
optimization result is not as well as it of using mean{Df (t)}.
The reason is that too high population diversity undermines

the performance of algorithm. Therefore, a moderate value is
more suitable for not only maintaining population diversity,
but also obtaining good results.

C. MDBSO
The structure of BSO is simplified by replacing its parameters
with pjd (t). We can find the number of parameters are sub-
stantially reduced due to the proposal of adaptive parameters,
as shown in Table 1. The number of clusters stays the same
as 5 in BSO and µ is set to 0.5. Regarding the values of these
two parameters, some discussions are given in Section V.

Algorithm 2 Flowchart of MDBSO

Randomly generate a population with N individuals;
Calculate the fitness of each individual;
while maximum number of function evaluations is not
reached do

Use k-means to divide N individuals into n clusters;
Choose the best individual in each cluster as the
center ;
Calculate the Dd and Df of each cluster;
for the individual in the jth cluster do

if random(0, 1) < pjd then
use BLX-α strategy to generate new
individuals in the jth cluster;

else
use Gaussian mutation strategy to generate
new individuals in the jth cluster;

end
end
if the new individual is better than the old one then

replace the old individual
end

end

The primary procedures of MDBSO is presented in
Algorithm 2. In the first step, MDBSO randomly generates
N individuals and calculates their fitness. If the termination
is not satisfied, k-means is applied to divide the population
into n clusters. The best individual in each cluster is selected
as the center . Then, MDBSO has its specific step in which
the distance diversity Dd and fitness diversity Df of each
cluster are calculated. The pjd calculated by Dd decides the
selection of mutation strategies for each cluster. The BLX−α
strategy would have a high possibility to be applied to gen-
erate individuals in the cluster with good distance diversity.
In the opposite, the Gaussian mutation strategy is utilized by
the cluster with bad distance diversity. The new generated
individual with better fitness will replace the old at the end
of each iteration.

Fig. 1 illustrates the functions of Dd and Df in the specific
steps in MDBSO. Each of them has very important role in
the generation of new solutions and would be used for more
than once. In most literature, population diversity is usually
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FIGURE 1. The functions of distance diversity and fitness diversity in
MDBSO.

applied as an optimization objective rather than an approach.
They focus on the maintenance of population diversity but it
does not participate in the search process. Innovatively, in this
study, the distance and fitness diversity are simultaneously
utilized and have been proven to be very effective in enhanc-
ing the performance of BSO.

Comparedwith the original BSO presented inAlgorithm 1,
MDBSO has essential modifications in two aspects. One
is that the diversity in BSO is well maintained so that the
search ability is enhanced. The other is the adaptations of
parameters. Most steps inMDBSO are controlled by adaptive
parameters, which enhances its robustness and makes it can
be applied into more diverse application scenarios.

IV. EXPERIMENTAL RESULTS
A. BENCHMARK FUNCTION TEST SUIT
In this section, CEC2017 benchmark function suit is imple-
mented to test the performance of MDBSO. It should be
noticed that F2 in CEC2017 has been excluded because it
shows unstable behavior especially for higher dimensions,
and significant performance variations for the same algorithm
implemented in Matlab and C [42]. This benchmark function
suit includes 2 unimodal, 7 simple unimodal, 10 hybrid and
10 composition functions. Hence, it is very suitable for testing
the search ability and robustness of optimization algorithms.
The population size N is 100, and the dimension for the prob-
lems dim is 30. Each problem is run for 30 times to reduce
random errors. The maximum number of function evalua-
tions (MFE) is 10000∗dim. All experiments are implemented
on a PC with 3.10GHz Intel(R) Core(TM) i5-4440 CPU and
8GB of RAM using MATLAB R2013b. All parameters for
the contrast SI algorithms are set up according to the values
provided in the corresponding literature.

1) MDBSO VS. BSO VARIANTS
In this part, MDBSO is compared with BSO [7] and its
variants, including CBSO [21], BSO-OS [18], RGBSO [19],
GBSO [20] and ASBSO [23]. The results including mean and
standard deviation (Std Dev) are listed in Tables 2 and 3.
The values in boldface represent the best results among
compared algorithms.

TABLE 2. Experimental results of MDBSO versus BSO variants on CEC’17 benchmark functions (1).
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TABLE 3. Experimental results of MDBSO versus BSO variants on CEC’17 benchmark functions (2).

We can intuitively find that MDBSO obtains much more
number of the best results in comparison with other com-
petitors from these tables. It should be emphasized that
MDBSO outperforms BSO on hybrid and composition func-
tions (F11-F30) except for F14, suggesting that the drawback
of BSO’s poor robustness is mitigated and the search ability
of BSO is greatly improved via diversity controlled param-
eters. A non-parametric statistical analysis called Friedman
test is employed to give the ranking that each algorithm
obtained in the current comparison [46]. The lower ranking
indicates the better performance. As observed, MDBSO is
the algorithm with the best performance among the com-
pared BSO variations. To more precisely analyze its per-
formance, a non-parametric statistical test called Wilcoxon
rank-sum test is implemented [47]. Each +/ ≈ /− indi-
cates the performance of MDBSO is significantly better (+),
not significantly better and worse (≈) or worse (−) than
its peers. According to the statistical results, the number
of times MDBSO wins to others is 19 (BSO), 21 (CBSO),
20 (BSO-OS), 19 (RGBSO), 17 (GBSO) and 19 (ASBSO)
out of 29 tested problems, respectively. Moreover, there are
at most six problems where MDBSO underperforms another
algorithm (i.e. GBSO). Considering the tested algorithms
are state-of-the-art BSO variations, MDBSO has verified its
superior and it executes an effective search process by the
adaptive parameter system.

In addition, box-and-whisker diagrams and convergence
graphs are given in Fig. 2 and Fig. 3 to directly exhibit the
difference in performance between MDBSO and its peers,
respectively. The box-and-whisker diagrams can illustrate the
quality of solutions on 30 runs. There are five values are
conventionally used: the extremes, the upper and lower hinges
(quartiles), and the median. The interval between the upper
and lower hinges of the box is called interquartile range (IQR)
and it indicates the degree of dispersion and skewness in
the results. Symbol + indicates the outliers. As observed
in Fig. 2, MDBSO obtains the best performance on F5, F12,
F13, F23, F24, and F26. Fig. 3 depicts the convergent per-
formance during the whole search procedure. The horizon-
tal axis represents the number of function evaluations, and
the vertical axis denotes the average values of optimization
results on 30 runs. It’s obvious that the convergence speed of
MDBSO is much faster than its peers. In addition, it generally
obtains better results. Although RGBSO shows an ability of
avoiding premature on F13, F23, and F26, its slow convergent
speed deteriorates the solutions’ quality. The good perfor-
mance ofMDBSOprofits from the diversity controlled search
mechanismwhich keeps the balance between exploration and
exploitation.

Moreover, to show the population diversity obtained by
each contrast algorithm graphically, four plots on F12,
F13, F23, and F24 are illustrated in Fig. 4, respectively.
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FIGURE 2. The box-and-whisker diagrams of optimal solutions obtained by seven kinds of BSOs on F5, F12, F13, F23, F24, F26.

The calculation of population diversity is shown in Eq. (10)

Div =
1
N

√√√√ N∑
i=1

(||Xi − Xmean||)2 (10)

whereDiv is the population diversity.N is population size and
Xi is the ith individual. Xmean which is calculated as Xmean =
1
N

∑N
i=1 Xi is the average of the population.

As observed, MDBSO and CBSO are the best two algo-
rithms that maintain population diversity at a good level in
the whole process. This is owing to that MDBSO implements
the diversity-driven strategy and CBSO uses a chaotic local
search mechanism that can disturb the search trajectory of
the individual. The diversity of GBSO keeps stable at the
early stage but rapidly deteriorates, which makes it lose the
capability of further improving solutions’ quality. It should be
emphasized that the diversity of RGBSO keeps fluctuating,
which means that the dynamic step-size parameter control
strategy has the efficacy of improving population diversity,
but RGBSO lacks a mechanism to maintain it. Based on these
analyses, one conclusion can be drawn that MDBSO can
significantly preserve the population diversity in a good level
during the search process.

2) MDBSO VS. GSA VARIANTS
Besides the BSO variants, more SI algorithm are applied to
further testify the effectiveness of MDBSO. GSA has been
proposed for nearly a decade, and its developments are more
matured than BSO’s. Thus, the comparison betweenMDBSO

and GSA variants can reflect the position of MDBSO in the
whole SI algorithms. GSA uses gravity to mimic the search
mechanism of individuals and it has obtained many successes
in various research aspects. In this part, GSA [5] and its vari-
ants (IGSA [14], GGSA [48], MGSA [49], PSOGSA [50],
HGSA [51], DNLGSA [52]) are implemented and their
experimental results are presented in Tables 4 and 5. The
results including mean and standard deviation (Std Dev) are
exhibited and the values in boldface represent the best results
among compared algorithms. The Rank refers to the rank of
each algorithm obtained in the Friedman test. Each+/ ≈ /−
indicates the performance of MDBSO is significantly bet-
ter (+), not significantly better and worse (≈) or worse (−)
than its peers.

In the statistical results obtained by MDBSO and GSA
variants, the number of times MDBSO wins to others is 26
(GSA), 17 (IGSA), 18 (GGSA), 20 (MGSA), 25 (PSOGSA),
13 (HGSA) and 25 (DNLGSA) out of 29 problems, respec-
tively. MDBSO can significantly outperform most variations
of GSA and is very competitive with HGSA. This indicates
that MDBSO obtains a strong competitiveness in comparison
with GSA and its peers.

3) MDBSO VS. ABC VARIANTS
ABC [6] is another powerful SI algorithm and it has been
successfully modified in these years. It has a very special
search mechanism against classical SI algorithms like PSO
and GSA. The population in ABC is divided into three
categories: employed bees, onlooker bees and scout bees.
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FIGURE 3. The convergence graphs of average best-so-far solutions obtained by seven kinds of BSOs on F5, F12, F13, F23, F24, F26.

FIGURE 4. Population diversity on F12, F13, F23, and F24.

Each of them has different responsibility during the search
process. Therefore, ABC is quite successful in optimizing
multivariable and multimodal problems. As we mentioned

that the proposed MDBSO is superior than BSO in solving
such kinds of problems [53]. UsingABCvariants as contrasts,
including GABC [54], SeABC [55], MABC [56], RABC [57]
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TABLE 4. Experimental results of MDBSO versus GSA variants on CEC’17 benchmark functions (1).

and SFABC [58], is a very suitable conduct to prove the
promising search ability of MDBSO.

Tables 6 and 7 exhibit the results obtained by MDBSO
and ABC variants. The results including mean and standard
deviation (Std Dev) are exhibited and the values in boldface
represent the best results among compared algorithms. The
Rank refers to the rank of each algorithm obtained in the
Friedman test. Each +/ ≈ /− indicates the performance of
MDBSO is significantly better (+), not significantly better
and worse (≈) or worse (−) than its peers. To be pre-
cise, MDBSO significantly outperforms ABC and its vari-
ants on 26 (ABC), 17 (GABC), 25 (MABC), 24 (SeABC),
21 (RABC) and 20 (SFABC) problems, respectively. The
result reveals the fact that MDBSO has better performance
in solving diverse optimization problems than most state-of-
the-art variants of ABC.

B. ARTIFICIAL NEURON NETWORK (ANN)
TRAINING DATA SET
Benchmark functions are widely used to test the preliminary
performance of the proposed algorithms because of its simple
practicality. They can directly exhibit the pros and cons of
the tested algorithms. However, it is far from enough to only
use benchmark functions as they are surrogate models and
can not closely reflect real-world challenges to cross the big
gap between academia and industries. Thus, in this section,

we make an attempt to apply MDBSO for training a dendritic
neuron model (DNM) [43].

DNM is proposed by considering the nonlinearity of
synapses and has achieved great success in classification and
prediction problems [59]–[62]. It is composed of four layers,
including a synaptic layer, a dendrite layer, a membrane layer
and a soma layer. Gao et al. [44] conclude that DNM with
learning algorithms can outperform the traditional multilayer
perceptron (MLP) model with the same algorithms. Besides,
training a neural network is a complex and tough optimization
problem as it requires high computational cost. The goal is to
minimize the sum of errors (between the practical and desired
values) by optimizing the weight ω and threshold θ [63].
Thus, the application of using MDBSO can closely reflect
its practical value in real-world challenges. We use BSO and
MDBSO to train DNM for classification, approximation and
prediction problems to systemically investigate the effective-
ness of MDBSO in ANN training.

Four classification, three function approximation, and
three prediction problems are used to testify the effectiveness
of MDBSO for training DNM. The classification problems,
i.e., XOR, ballon, iris and heart are acquired from the Univer-
sity of California at IrvineMachine LearningRepository [64].
The number of attributes, training samples, test samples and
classes for these problems are summarized in Table 8. The
function approximation problems include 1-D cosine with
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TABLE 5. Experimental results of MDBSO versus GSA variants on CEC’17 benchmark functions (2).

one peak, 1-D sine with four peaks, and 2-D Griewank
problems. Their formulas, number of training samples and
test samples are listed in Table 9. With regard to the pre-
diction problems, their details are presented in Table 10,
including Mackey Glass, Box Jenkins and EEG times series
data. Besides, the reasonable combination of three DNM
parameters for these tested problems are given in Table 13,
respectively.

The experimental results obtained by BSO and MDBSO
for training DNM are shown in Table 13 where better results
are highlighted. A Wilcoxon rank-sum test is used to analyze
the significant difference between the performance of BSO
and MDBSO. It can be observed that MDBSO obtains better
results than BSO on all test problems, and seven out of ten are
significantly better. Thus, the conclusion can be drawn that
MDBSO is more superior than BSO in training DNM, which
exhibits that it is promising to be applied to more fields.

In addition, Fig. 5 presents a logic circuit (LC) of DNM
trained by MDBSO for the heart dataset, after implement-
ing the neuronal pruning function [62], [65]. In LCs, com-
parator which is an analog-to-digital converter and logical
‘‘NOT’’, ‘‘AND’’ and ‘‘OR’’ gates are the major components.
Comparator outputs 1 when the input is greater than the
threshold θ , otherwise it outputs 0. More details about the
pruning method can be referred in [62], [65]. In this LC,
the number of attributes is decreased from 10 to 5, which

FIGURE 5. LC of Heart dataset trained by MDBSO.

means the structure is greatly simplified and it can be easily
implemented in hardware. By doing so, this model achieves
a high computational speed and exhibits its practical value.

V. DISCUSSION
A. ANALYSIS OF PRESET PARAMETERS
The number of parameters of MDBSO is reduced to two,
including the number of cluster n and the mean value of
Gaussian distribution µ. This indicates the effectiveness of
the proposed concrete structure and adaptive parameters.
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TABLE 6. Experimental results of MDBSO versus ABC variants on CEC’17 benchmark functions (1).

Moreover, to be more precise, n and µ need to be analyzed to
find the best parameter set for MDBSO.

1) ANALYSIS OF THE NUMBER OF CLUSTERS
In this part, n is first investigated. Four values, 3, 7, 9 and the
original number 5 in BSO, are tested. The Wilcoxon rank-
sum result is given in Table 13 and we can find that 5 is the
value with the best performance.

2) ANALYSIS OF µ
Besides µ = 0.5, we also investigate the values of −0.5,
0 and 1 to decide the best parameter for Gaussian distribution.
In Table 15, µ = 0.5 is significantly better than 0 and 1.
Although µ = −0.5 has similar performance with 0.5,
µ = 0.5 is still the best choice for MDBSO.

B. ANALYSIS OF POPULATION DIVERSITY
The experimental results have proven that the MDBSO has
superior performance than BSO and other SI algorithms.
It is owing to the multiple diversity-driven strategy which
keeps a well balance between exploration and exploitation.
In this part, the graphs of population diversity are illustrated
to deeply analyze its effectiveness in optimization process.
Figs. 6 and 7 are the curves of distance and fitness diversities
of BSO andMDBSO on F12, F13, F23 and F24, respectively.
In each subgraph, the population diversity of each cluster is

depicted based on the average value of 30 runs. The horizontal
axis is the number of function evaluations and the vertical
axis is the average population diversity (including distance
diversity Dd and fitness diversity Df ).

It should be noticed that in Fig. 6 the population diversity of
the last cluster in BSO is always decreasing fast and stays in
a very low order of magnitude until the end of search process.
It indicates that only a few individuals remain in this cluster.
As we introduced in Section II, the best individual in each
cluster is selected as the center after k-means clustering. The
situation of individuals keeping emigrating reports that the
center in the last cluster obtains the worst quality in com-
parison with others. Thus, it is not competitive in attracting
other individuals, which reflects the deficiency of the original
individual generation strategy of BSO. If a cluster in BSO
can not generate individuals with better fitness at the early
stage of optimization, its size will continue to decease and
never has a chance to rebound. However, in Fig. 7, the curves
of MDBSO have more coordination than these of BSO. The
population diversity of the last cluster keeps the same level
with other cluster from the beginning to the end. Even if
there is a deterioration in the middle, it will rebound quickly
after several generations. This is due to the proposedmutation
strategies in MDBSO which can efficiently generate new
individuals with good fitness and endow the cluster with
considerable attraction.
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TABLE 7. Experimental results of MDBSO versus ABC variants on CEC’17 benchmark functions (2).

C. MDBSO WITH FITNESS-BASED GROUPING
It is introduced above that many attempts aremade to improve
the efficiency of BSO in clustering as the k-means is a
time-cost clustering method. The modifications in BSO-OS,
RGBSO and GBSO include improvements to clustering
methods. For example, BSO-OS and RGBSO apply ran-
dom grouping to minimize the clustering overhead. Although
this method divides the population into elitists and normal
individuals, it can not provide any specific measures for
clustering. Thus, it is not suitable for MDBSO since the
population diversity of each cluster is not available. In GBSO,
a fitness-based grouping strategy is presented in which the
individuals are ranked according to their fitness. The individ-
uals with good and bad fitness are equally distributed into
different groups. Fitness-based grouping is proven to be a
less time-cost and effective method in [20]. Therefore, in this
part, we will discuss whether the fitness-based grouping
method could further improve the performance of MDBSO
by replacing k-means clustering. The combination is named
as MDBSO-FG.

Table 15 provides the Wilcoxon rank-sum test result and
one conclusion can be drawn that the fitness-based grouping
method is not suitable for MDBSO. In current situation,
although k-means clustering is a computational cost method,
it still has good performance in optimization results. Finding
a method which can outperform k-means in both efficiency
and effectiveness becomes a challenge in our future research.

TABLE 8. Details of the classification data sets.

D. COMPARISON WITH MIIBSO
BSO with multi-information interactions (MIIBSO) [66] is
a newly proposed state-of-the-art BSO variation. It proposes
a multi-information interaction (MII) strategy which con-
tains three patterns to enhance the information interaction
capability between individuals. Moreover, it uses a random
grouping strategy to replace the k-means clustering method.
The comparison result between MDBSO and MIIBSO is
shown in Table 16. The results including mean and standard
deviation (Std Dev) are exhibited and the values in boldface
represent the better results. Each +/ ≈ /− indicates the
performance of MDBSO is significantly better (+), not sig-
nificantly better and worse (≈) or worse (−) than MIIBSO.

As observed, MDBSO can significantly outperform
MIIBSO on 19 out of the total of 29 functions. Specifi-
cally, the search ability of MDBSO is much better than that
of MIIBSO on F1-F10 as they are unimodal and simple
multimodal functions. The good performance of MIIBSO
on F14-F20 reveals its effect for solving hybrid functions.
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TABLE 9. Details of the function approximation data sets.

FIGURE 6. The curves of distance diversity and fitness diversity of BSO on F12, F13, F23 and F24.

TABLE 10. Details of the prediction data sets.

TABLE 11. Reasonable combination of three parameters for nine tested
problems, respectively.

This encourages us to further enhance the search ability of
MDBSO on complex problems.

E. COMPUTATIONAL COMPLEXITY
In this part, we compare the computational complexity of
MDBSO with BSO to show its efficiency.

TABLE 12. Experimental results of DNM training by MDBSO and BSO,
respectively.

The time complexity of BSO is calculated as follows:
(1) The initialization of population and parameters in

BSO needs the time complexity O(N ) where N is the
population size.

(2) The population evaluation process needs O(N ).
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FIGURE 7. The curves of distance diversity and fitness diversity of MDBSO on F12, F13, F23 and F24.

TABLE 13. Wilcoxon rank-sum test results of different numbers of
clusters in MDBSO.

TABLE 14. Wilcoxon rank-sum test results of different numbers of µ
in MDBSO.

TABLE 15. Wilcoxon rank-sum test result of MDBSO vs. MDBSO-FG.

(3) Using k-means clustering method to divide the popula-
tion into 5 clusters needs O(5N 2).

(4) The process of individual selection and generation of
step length both cost O(N 2).

(5) The generation of new individuals and the fitness calcu-
lation needs the time complexity O(N 2), respectively.

Therefore, the overall time complexity of BSO is

O(N )+ O(N )+ O(5N 2)+ O(N 2)+ O(N 2)

= 2O(N 2)+ O(5N 2)+ 2O(N ) (11)

To be simplified, its overall time complexity is O(N 2).
The time complexity of MDBSO is
(1) The initialization process is O(N ).
(2) The fitness evaluation is O(N ).
(3) Using k-means clustering method to divide the popula-

tion into 5 clusters needs O(5N 2).
(4) Calculating the distance diversity (Dd ) and fitness

diversity (Df ) needs O(N 2), respectively.
(5) Selection of mutation strategies costs O(N 2).

TABLE 16. Experimental results of MDBSO versus MIIBSO on
CEC’17 benchmark functions.

(6) The generation of new individuals and the fitness calcu-
lation needs the time complexity O(N 2), respectively.

Thus, the overall time complexity of MDBSO is

O(N )+ O(N )+ O(5N 2)+ 2O(N 2)+ O(N 2)+ O(N 2)

= 4O(N 2)+ O(5N 2)+ 2O(N ) (12)
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The time complexity of MDBSO can be simplified
as O(N 2).
Although calculating Dd and Df need more cost than

BSO, the same overall time complexities of O(N 2) indicate
that MDBSO achieves the same computational efficiency in
comparison with BSO. In other words, the multiple diversity-
driven strategy can improve the performance of MDBSO and
maintain efficiency. Thus, the utilization of Dd and Df is
promising to be applied to more SI algorithms.

VI. CONCLUSION
In this paper, a novel multiple diversity-driven BSO is pro-
posed to improve the search ability of BSO. Two diversity
measures, including distance diversity and fitness diversity,
are collaborated to control the generation of adaptive parame-
ters in optimization procedure. The diversities of each cluster
in BSO is calculated to control the utilization of mutation
strategies. Moreover, new individuals are generated accord-
ing to these diversities. In this way, the number of parameters
in original BSO is greatly decreased.

Experiments on CEC2017 benchmark function suit and
ANN training task are utilized to investigate the perfor-
mance of the proposed MDBSO. The results demonstrate
that MDBSO obtains superior effectiveness, efficiency and
robustness. In the comparison with the latest BSO varia-
tions, MDBSO exhibits overwhelming advantages, which
indicates MDBSO is the current best BSO variation. Besides,
diversity is a significant part in optimization search. Several
researchers have realized its importance but we creatively
take it into parameter adaptation and obtain desired result.
It suggests that the proposed multiple diversity-driven strat-
egy deserves more attention in SI research field.

In our future research, we will consistently concentrate
on the parameter adaptation and the diversity management.
Some other combinations can be attempted to reveal the effect
of diversity in SI optimization algorithms.
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