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ABSTRACT Bipartite networks belong to the category of complex networks, whose vertices can be divided
into two separated vertex sets, so that there are no edges between vertices in the same set, and edges only
exist between vertices in different sets. In the past decades, although community discovery in one-mode
networks has been deeply explored, the detection of communities in bipartite networks has not been widely
studied. In this paper, we present a new memetic algorithm named MATMCD-BN for community detection
in bipartite networks with two types of nodes in the community. Firstly, we put forward a new initialization
method for population initialization of memetic algorithm for bipartite network communities discovery,
which can expedite the convergence speed of this algorithm. Secondly, besides using traditional mutation
operator, we propose a new crossover operator (called two-way random crossover operator in this paper) and
a newmutation operator (called mutation operator 2 in this paper), which are helpful to improve the accuracy
of the solution and accelerate the convergence speed of the proposed algorithm. Finally, we develop a local
search method, which can make the solution approach the global optimal solution quickly and jump out of
the local optimal solution with a certain probability. As far as we know, the proposed MATMCD-BN is the
first memetic algorithm (MA) applied to community detection in bipartite networks with two types of nodes
in the community. In order to confirm the performance of this algorithm, we have done a lot of experiments
using synthetic and real social networks. The experimental results demonstrate that the presented method is
effective and promising for bipartite network community identification.

INDEX TERMS Genetic algorithm, social network, bipartite network, community detection.

I. INTRODUCTION
Many complex systems in the real world can be represented
by complex networks [26], such as computer networks,
information networks, collaborative networks, the Internet,
the world wide web, technology networks, transportation
networks. A complex network is usually composed of ver-
tices (or nodes) and edges (or links). A node represents a
component of a complex network, and an edge between two
nodes stands for the interaction between two components of
a complex network. Network features like small world phe-
nomenon and scale-free characteristic have attracted much
attention. In recent years, community structure as another
important feature of the network has been widely studied [9].
At present, there is no uniform definition of community. This
definition usually depends on the current application or the
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specific system to be processed. A common definition is that
a community is a collection of vertices, in which vertices
are closely connected, and between collections, vertices are
sparsely connected [4].

So far, many algorithms and methods for community struc-
ture detection have been proposed. For example, splitting
algorithm, agglomerative algorithm, optimization algorithm,
random walks, statistical mechanics, spectral clustering and
graph partitioning [11]. Pothen et al. presented a community
structure discovery algorithm on the strength of hierarchical
clustering for complex networks [13]. In the literature, one
of the most famous optimization algorithms is the algorithm
named GN presented by Girvan and Newman [9], [19]. It is
a split hierarchical clustering algorithm on the strength of
iterative deletion of network edges, which divides the entire
network into several communities. In order to identify com-
munities, many performance evaluation criteria have been
developed. The modularity presented by Newman and Girvan
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FIGURE 1. An example of a bipartite network with three communities.

is an important evaluate function to assess the accuracy of
clustering in complex networks [19]. On the basis of the con-
cept of modularity, community discovery can be considered
as a modularity optimization problem. Based on modularity
optimization, many community detection methods have been
proposed [9]. They all encounter the resolution limit prob-
lem [17]. None of them can detect the communities in the
network whose size is less than

√
2L, where L is the total

number of edges in the network. The resolution limit problem
can be settled by different community structure quality eval-
uation functions, like the density-based bipartite modularity
function used in the algorithm in this paper.

As is known to all, individuals in social networks are
often members of multiple communities. In [14] and [20],
the author pointed out that overlap is a common feature
of many real complex networks. Therefore, more and more
researchers are interested in overlapping community detec-
tion. So far, many overlapping community detection algo-
rithms have been presented. Most of them are node-based
rather than link-based approaches. After the link-based com-
munity structure is obtained, the link-based community can
be easily transformed into a node-based community by con-
verting the edge into two nodes attached to it [16].

A number of complex systems in the real world can be
modeled as bipartite networks. A bipartite network, also
called a two-mode network, is comprised of two types of ver-
tices, and edges can only connect different types of vertices.
The authors of [19] believe that the communities of bipar-
tite networks can only consist of identical types of vertices.
However, the authors of [17] and [20] argued that the bipartite
communities should be made up of two types of vertices,
making the edges in the communities are denser than those
between communities. Fig. 1 shows an example of a bipartite
network with three communities.

Some algorithms have been presented to find communities
included in bipartite networks. Until now, researchers have
proposed two types of community detection algorithms for
bipartite networks. One method is to first transform the initial
bipartite network into a one-mode network by projection.
After that, the mature unipartite network community detec-
tion methods are applied to find the communities on the

projection network. However, the projection will lose some
valuable information of the initial bipartite network. The sec-
ond method directly analyses the original bipartite network
and detects the communities on it.

Because the community detection problem is NP-hard,
people have used various mature methods to solve this prob-
lem. Therefore, approximate algorithms such as swarm intel-
ligence algorithms and evolutionary algorithms (EAs) are
applied to community detection. Evolutionary algorithm is
an algorithm inspired by the natural evolutionary process.
Evolutionary algorithms use the evolutionary principles of the
natural world to solve community detection problems, such as
selecting the best individuals for the next generation popula-
tion from the current population, performing crossover oper-
ations, and performing mutation operations. When selecting
individuals, fitness functions are used to evaluate individuals.
Genetic algorithm (GA) belongs to the category of evolu-
tionary algorithm. It is an effective global search technology,
but it often spends a lot of time to converge to the global
optimal solution. Genetic algorithms use selection, crossover
and mutation operators to optimize a solution population.

An evolutionary algorithm which combines a genetic algo-
rithm with a local search process is called memetic algo-
rithm (MA). BecauseMA introduces local search into genetic
algorithm, it solves the problem of high computational com-
plexity of genetic algorithm, and also overcomes the problem
of easily falling into local optimum. Compared with the
algorithm for searching the exact best solution, the genetic
algorithm is more suitable for finding the good approximate
solutions rapidly, and local search ismore efficient for finding
the exact best solution. Local learning further optimizes some
of the best solutions in the population, thus speeding up the
convergence rate of the population. For solving combinatorial
optimization problems, MA is a very powerful algorithm.
MA is suitable for solving NP-hard community detection
problem.Many precedents have shown thatMAhas been suc-
cessfully applied to this problem. Since finding the optimal
density-based bipartite modularity is an NP-hard problem,
we use MA to optimize the fitness function. In the process
of discovering community structure, for optimize the fitness
of chromosomes in the population of genetic algorithm and
speed up the convergence of the algorithm, it is necessary to
move nodes to the most suitable community. In order to find
the most suitable community for each vertex, we only need
to check the vertex’s direct neighbor vertex. Local search
combines knowledge of community discovery with a genetic
algorithm, which is why the memetic algorithm is more
effective than the genetic algorithm in the field of community
discovery. Due to the local search function can accelerate
the convergence of the memetic algorithm, it is vital for the
performance of the memetic algorithm.

This paper presents a memetic algorithm for two-mode
community (i.e., containing two types of nodes in the commu-
nity) discovery in bipartite networks. The main contributions
of this paper are summarized as follows.
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1. As far as we know, the proposed MATMCD-BN is
the first MA algorithm applied to community detection
in bipartite networks with two types of nodes in the
community.

2. For accelerating the convergence rate (reduce the num-
bers of iteration), a new memetic algorithm population
initialization mechanism is proposed.

3. We propose a new crossover operator (named two-way
random crossover operator in this paper). It can better
inherit the genetic characteristics of parent chromo-
somes, improve the quality of solution, and accelerate
the convergence speed of the algorithm.

4. In addition to using the traditional mutation operator,
we also propose a newmutation operator (namedmuta-
tion operator 2 in this paper). Similarly, it can improve
the quality of the solution and accelerate the conver-
gence of the algorithm. Moreover, it can significantly
improve the diversity of the population.

5. We also propose a local search function to make the
best solution of the child population of the algorithm
closer to the global best solution in the solutions space.
This function can make the algorithm jump out of local
optimum and achieve global optimum with a certain
probability.

To check the performance of MATMCD-BN, we con-
ducted a lot of experiments on five synthetic and six
real-world social networks. We also compare MATMCD-BN
with three existing famous bipartite network community
detection methods. The experimental results show that the
presented method is superior to the existing methods.

The rest of this paper is organized as follows: Section II
states the related work of our research. Section III
gives some basic concepts and knowledge related to our
research. In Section IV, the proposed MATMCD-BN algo-
rithm for community discovery in the bipartite network is pre-
sented. This section describes in detail the memetic algorithm
population representation, population initialization, fitness
function, chromosome selection algorithm, crossover opera-
tor, mutation operator, local search function and so on. The
experimental results on synthetic and real networks are shown
in Section V. Finally, Section VI gives some conclusions.

II. RELATED WORKS
The main goal of community discovery is to partition the
network into communities. A large number of algorithms
based on different disciplines, such as mathematics, biology,
computer science and sociology, have been presented to dis-
cover communities in the network [9], [15], [29], [30]–[32].

In the past decades, with the emergence of a good deal
of community discovery problems, many methods have been
presented to solve community discovery problems. Newman
andGirvan proposed a splitting algorithm namedGNmethod.
Newman also presented an algorithm using modularity Q
on the strength of GN algorithm, which belongs to the cat-
egory of agglomeration algorithms [31]. This algorithm is

named FN algorithm. In FN algorithm, at first, each vertex
in the network forms a unique community. Then, at each
step, the algorithm iteratively merges the community pairs
with the greatest modularity gain. Based on the optimization
of modularity, Clauset et al. [34] presented an algorithm to
discover communities in networks, named CNM. Compared
with FN algorithm, this algorithm is faster and suitable for
detecting the community structure of large scale networks.
In [35], Newman also presented a spectral algorithm using
modularity matrix.

As described in section I, the resolution limit problem is a
common defect ofmodularity optimization-based algorithms.
By using different quality metric functions, many algorithms
have been presented to settle this problem [36], [29]. The
density-based bipartite modularity function QD introduced in
section IV-C of this paper is one of these functions. In the
literature, another existingmethod to overcome the resolution
limit problem is to transform the community discovery prob-
lem into a multi objective optimization problem [37], [38].
Multi objective optimization algorithm seeks the best solution
of the problem by optimizing multiple optimization functions
(also known as objective functions) simultaneously. These
optimization functions assess the community partition found
from different perspectives.

Shi et al. [37] presented a multi objective evolutionary
algorithm named MOCD, which is used in community dis-
covery of complex networks. In the MOCD algorithm, two
model choice methods are used to choose better solutions
from Pareto optimal set, which can produce more precise
network partition.

Arenas et al. [36] presented a multi objective evolution-
ary algorithm MOEAD-Net to solve community discovery
problems of complex networks. This algorithm optimizes
two contradictory optimization functions at the same time.
In [40], an algorithmMOEA/D-Net which also belongs to the
category of multi objective evolutionary algorithm (MOEA)
is proposed. The experimental consequences in [40] prove
that MOEA/D-Net is a promising and high-efficiency
algorithm for accurately discovering network community
structures. In the literature, two other MOEA algorithms
have been also proposed, named MODTLBO/D [41] and
MODBSA/D [42].

Pizzuti [39] presented a genetic algorithm named GA-Net
to detect community partitions in networks. This algorithm
identifies communities in the network by optimizing an
objective function. Because themutation operators inGA-Net
only consider the real connections between nodes, the algo-
rithm is fast.

Pizzuti [38] also developed a network community struc-
ture identification algorithm MOGA-Net, which belongs
to the category of multi objective genetic algorithm.
MOGA-Net optimizes two optimization functions at the
same time, namely community score and community fit-
ness. MOGA-Net can generate a hierarchical structure of
communities. On the basis of modularity and an improved
genetic algorithm, Shang et al. [44] presented a community
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discovery method named MIGA. MIGA uses modularity as
the optimization function, which simplifies this algorithm.
In addition, MIGA uses prior information (the number of
communities) in the initialization process of the algorithm,
which enhances the stability and accuracy of the algorithm.

Based on genetic algorithm, a memetic algorithm named
Meme-Net was proposed by the authors of [46]. Its local
search function used a hill climbing strategy. This algorithm
optimizes the modularity density function, which contains an
adjustable parameter to enable one to find community parti-
tions at different resolutions. In [60], Li et al. presented a new
link-based community discovery algorithm called Meme-
Link. Meme-Link first transforms the original network into
the corresponding weighted line graph. Then, the disjoint
communities based on links are detected on the line graph.
Finally, the link-based disjoint communities of the line graph
are transformed into overlapping communities of the orig-
inal network. Based on node-entropy learning procedure,
Žalik et al. [47] presented a community detection algorithm,
called Node Entropy MA for Networks (NE-Net). NE-Net
uses modularity as the objective function and adopts two
new genetic operators: modularity based group crossover and
mutation. A modified version of NE-Net, called Entropy
based MA for Networks (E-Net), was also proposed by
Žalik et al. In order to discover communities in the net-
works, Mu et al. [48] proposed a memetic algorithm called
MA-SAT. MA-SAT uses simulated annealing (SA) and tight-
ness greedy optimization (TGO) as two local search proce-
dures. SA can avoid the algorithm falling into local optimum,
while TGO is beneficial to the diversity of the population.
In [49], Said et al. developed a multi objective memetic
algorithm for community discovery. In [50], a modularity
based memetic algorithm for undirected and unweighted net-
works community detection is proposed. In [61], a memetic
particle swarm optimization algorithm for networks commu-
nity discovery is proposed, which is called MPSOA. In [51],
Mirsaleh and Meybodi proposed an algorithm called
MLAMA-NET based on Michigan memetic algorithm to
solve community discovery problems.

Generally, community detection algorithms in bipartite
networks can be fallen into two categories: one-mode projec-
tion algorithms and direct processing algorithms for bipar-
tite networks [33]. In [21], a weighted projection method is
proposed, which projects the bipartite network into a uni-
partite network, and then detects the community using the
classical one-mode community discovery algorithm. In order
to discover one-mode communities in bipartite networks,
Cui et al. [22] proposed an algorithm. Firstly, this algorithm
projects the initial bipartite network to a one-mode network.
Then, an algorithm based on weighted clustering threshold
is used to find one-mode community. This algorithm can
identify overlapping nodes.

For the second bipartite network community detection
algorithm, the optimization algorithm is usually applied
to find the communities. In [24], Chen et al. proposed a
bipartite modularity extended from unipartite modularity,

and then proposed a BRIM algorithm to detect commu-
nities directly on bipartite networks. In [25], the BRIM
algorithm is extended and an algorithm combining label
propagation (LP) and BRIM is proposed, which is called
LP BRIM. Based on distance dynamics, Sun et al. [59]
proposed a new method to discover two-mode communities
in large bipartite networks. This method is inspired by the
interaction between people in human society. Zhou et al. [27]
developed a community detection algorithm for bipartite net-
works. It detected bipartite communities using the formula of
bipartite modularity gain. Based on two asymmetric parame-
ters, Wang et al. [5] proposed a bipartite network community
discovery algorithm. This algorithm can detect overlapping
community partitions. On the basis of the concept of average
bipartite modularity degree, Xu et al. [55] developed a quanti-
tative function to assess the community partitions in bipartite
networks. Li et al. [10] developed a quantitative measure
named bipartite partition density to assess the community
partitions in bipartite networks. They also developed an
algorithm called BiLPA to find overlapping community struc-
tures in bipartite networks using bipartite partition density.
Cui et al. [12] presented an algorithm to identify overlapping
community structures directly in bipartite networks. Based on
memetic algorithm, Wang et al. [52] presented an algorithm
called MACD-BN to find communities in bipartite networks.
However, MACD-BN can only detect communities that con-
tain one type of node, that is, one-mode rather than two-mode
communities.

In this paper, the MATMCD-BN algorithm we developed
belongs to the second category. It is a memetic algorithm
that combines genetic algorithm with a local search function.
Unlike MACD-BN, it can detect two-mode communities.
And two-mode community detection is more in line with the
needs of many practical applications.

III. BASIC CONCEPTS AND KNOWLEDGE
A. DEFINITION OF BIPARTITE NETWORK AND ITS
COMMUNITY
A bipartite network can be modeled as an undirected graph
G = (V,E), where V is the set of nodes or vertices and
V = {U ∪W}, U and W represent the nodes of type-U and
type-W respectively, E is the set of edges or links. U∩W = ∅,
|U| = p, |W| = q, and p+ q = n. Edge eij can only connect
different types of nodes, that is, eij ∈ E

(
ui ∈ U,wj ∈ W

)
.

|E| = m is the number of edges in a bipartite network G. The
adjacency matrix A of G can be expressed as follows:

A =

∣∣∣∣∣ 0p∗p A′p∗q
A
′T
q∗p 0q∗q

∣∣∣∣∣
where 0p∗p and 0q∗q are all-zero matrices, and A′p∗q is a non-
zero matrix. A′p∗q, a simplified version of A, can also be used
to represent the adjacencymatrix of G. InA′p∗q, the row stands
for the nodes of U and the column stands for the nodes of W.

Community discovery in a bipartite graph G = (V,E) =
(U ∪ W,E) is executed to partition G into s sub-graphs
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Gi = (Ui ∪Wi,Ei), i = 1, 2, . . . , s, where s is the number
of the communities, Ui ⊂ U,Wi ⊂ W ,∪si=1Ui = U and
∪
s
i=1Wi =W. This paper studies the community structure of

connected bipartite networks.

B. A BIPARTITE MODULARITY FORMULA
FOR BIPARTITE NETWORKS
Here, we will introduce a bipartite modularity formula of
bipartite network used in experiments later in this paper. It is
defined as follows:

Qb =
1
m

p∑
i=1

q∑
j=1

(
A′ij −

digj
m

)
δ
(
ri, sj

)
(1)

where di is the degree of the ith type-U node, gj is the degree
of the jth type-W node, and ri, sj represent the communities to
which node i and j are assigned. When ri = sj, δ

(
ri, sj

)
= 1,

otherwise, δ
(
ri, sj

)
= 0. See section III-A for the meaning

of p, q, A′ij and m.

IV. PRESENTED ALGORITHM
In this part, we will present a memetic algorithm for two-
mode community detection in bipartite networks, referred
to as MATMCD-BN. Firstly, the representation method of
individuals in a population are given. At the same time,
we propose a new population initialization method, which is
helpful to accelerate the convergence of the population. Then,
a fitness function for evaluating individuals in a population
and a selection operator for reproductive operations are intro-
duced. Next, a crossover operator and two mutation operators
used in MATMCD-BN are proposed. Finally, a local search
function proposed by us is given. The following sections
will discuss the above contents in detail. The flow chart of
MATMCD-BN algorithm is shown in Fig. 2.

A. INDIVIDUAL REPRESENTATION
In memetic algorithm, each possible community partition
is represented by an individual, also known as a chro-
mosome or a solution. A set of individuals is called
a population of memetic algorithm, that is, population
P = {C1,C2, . . . ,CM}, where Ci is the ith individual in
the population and M is the size of the population. Classical
individual representation includes locus-based representation
and string-based representation. This paper uses string-based
representation. The ith individual in the population can be
expressed as: Ci = [g1, g2, . . . , gn]. Here, gj is the jth gene of
chromosome Ci, and n is the number of nodes in the network.
Each gene may take a value in the range {1, 2, . . . , p}, where
p is the number of nodes in node set U of bipartite network G.
This is determined by our proposed initialization algorithm.
Genes represent the nodes in graph G = (V,E) that models
a network, and the value assigned to the ith gene stands for
the community containing node i. In this representation, if the
gene gi = gj, it means that nodes i and j belong to the same
community.

FIGURE 2. The flow chart of MATMCD-BN Algorithm.

Fig. 3(b) shows a string-based representation of the graph
shown in Fig. 3(a). The bipartite network is made up of
eight nodes numbered from 1 to 8. As shown in Fig. 3 (b),
the gene values of nodes 1, 2, 3, 6 and 7 are all 1, while
those of nodes 4, 5, 8 and 9 are all 2. This means that the
network consists of two communities, where nodes 1, 2, 3,
6, 7 belong to one community and nodes 4, 5, 8, 9 belong to
another community. Fig. 3 (c) shows the community structure
transformed by chromosomes in Fig. 3 (b).

B. POPULATION INITIALIZATION
For the development of high quality MA, the generation of
the initial population is of great significance, because the
characteristics of the initial individuals will affect the accu-
racy of the final result of the algorithm and the convergence
rate of the algorithm. Therefore, we present a new population
initialization algorithm to enhance the quality of the initial
population and accelerate the convergence rate of the algo-
rithm. The initialization process of the proposed MATMCD-
BN algorithm is shown in algorithm 1.

In algorithm 1, the outer loop of line 1 to 12 is responsible
for generating the initial population. The inner loop of lines
2 to 8 is responsible for generating a chromosome. In line 4,
a random community label is initialized for the 1 to p nodes
in the chromosome. In line 6, the labels of p+1 to p+q nodes
are initialized to the community labels owned bymost of their
neighbors. The inner loop of lines 9 to 11 is responsible for
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FIGURE 3. (a) Simple bipartite network consisting of 8 vertices;
(b) string-based representation of one chromosome; (c) graph
representation of the chromosome shown in (b).

Algorithm 1 Pseudocode of Initialization Step of
MATMCD-BN Algorithm
Parameters: population size popsize;
Input: a adjacent matrix A of a bipartite networks;
Output:initial population;
1: for i = 1; i <= popsize; i++ do
2: for j = 1; j <= n; j++ do
3: if j <= p then
4: pop[i][j] = A random integer in the range of 1-p

generated randomly;
5: else
6: pop[i][j] = The label shared by most of the

neighbor nodes of node j. If there are more than
one label satisfy the above condition, randomly
select one of them.

7: end if
8: end for
9: for j = 1; j <= p; j++ do
10: pop[i][j] =The label shared bymost of the neighbor

nodes of node j. If there are more than one label
satisfy the above condition, randomly select one
of them.

11: end for
12: end for
13: return pop[];

modifying the community labels of nodes 1 to p in chromo-
somes to those owned by most of their neighbors. Finally,
in line 13, the algorithm returns the generated population.

We compare our initialization method with two commonly
used population initialization methods. One is the random

initialization method, the other is the initialization method
using the label propagation algorithm. Detailed descriptions
of these two methods are presented in the appendix. The
experimental results on various real data sets show that the
Qb values of the optimal individuals of the initial popu-
lation obtained by algorithm 1 are significantly improved
compared with the other two algorithms in the appendix.
Compared with algorithm 5, the increase is about 35%. Com-
pared with algorithm 6, the increase is about 28%. For the
final convergence time of the algorithm, the convergence
time of MATMCD-BN using algorithm 1 as the initialization
method has also been significantly reduced. Compared with
algorithm 5, the reduction is about 38%. Compared with
algorithm 6, the reduction is about 25%.

C. FITNESS FUNCTION
In this subsection, we will introduce a new evaluation func-
tion called density-based bipartite modularity presented by
Xu et al. [55] to evaluate the good and bad of community
partitions in bipartite networks. It is defined as follows:

QD =

s∑
i=1

D
(
UCi ,WCi

)
−D

(
UCi ,W

)
− D(U,WCi )∣∣UCi

∣∣× ∣∣WCi

∣∣ (2)

where s is the total number of communities in the bipartite
network, Ci is the ith community in community partition.
D
(
UCi ,WCi

)
=
∑

j∈UCi

∑
k∈wCi

A′jkis the number of edges

in community Ci. D
(
UCi ,W

)
=
∑

j∈UCi

∑
k∈W A′jk is the

number of edges between the nodes of type U in commu-
nity Ci and all nodes of type W outside Ci.W =W−WCi .
Similarly U= U− UCi .

∣∣UCi

∣∣ is the number of nodes of type
U contained in Ci.

∣∣WCi

∣∣ is the number of nodes of type W
contained in Ci. The bigger the value of QD is, the higher
the quality of community partition. Xu et al. claim that this
metric is correlated with the density of connections in the
community, thus overcoming the resolution limit problem.

D. SELECTION ALGORITHM
In order to select chromosomes for crossover and mutation
operations, we need to give a selection algorithm. The selec-
tion methods of traditional MA include random selection
method, tournament selection method and roulette selection
method. In order that individuals with fitness values that are
not as high as the fitness values of the fittest individuals can
also exist in the next generation of population, we chose an
algorithm that kept elitism controlled. This method is called
the tournament selectionmethod. Themost prominent feature
of this method is that individuals in the population have equal
opportunities to be selected for subsequent genetic opera-
tions. The implementation steps of this method are as follows:
firstly, k (k < M, M is the size of the population) individuals
are randomly selected from the population set, and then an
individual with the greatest fitness value is selected from the k
individuals as an individual in the selected set of individuals,
repeating the above process until the required number of
chromosomes is obtained.
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E. CROSSOVER
Crossover operations use very simple methods to generate
new individuals. The crossover operator acts on two parent
individuals at the same time, and generates new individuals
by exchanging information between the parent individuals.
Therefore, the individuals generated by crossover operation
have the characteristics of two parent individuals at the same
time [53]. The process of crossover operation is usually split
into three stages: (1) selecting two individuals from the parent
population; (2) combining them according to certain rules;
(3) outputting two new individuals. A crossover position is
randomly determined. Then, based on the pre-specified prob-
ability of execution crossover, the corresponding fragments of
the two parent individuals around this position are exchanged.
Classical crossover operators include: one-point crossover,
the two-point crossover, the uniform crossover, the one-way
crossover, the two-way crossover, and so on.

In order to make full use of the community structure infor-
mation of the parent chromosomes, improve the quality of the
descendants generated by crossover operator and accelerate
the convergence of population, we propose a new crossover
operator, which is called two-way random crossover opera-
tor. This operator first marks the two chromosomes selected
by the tournament selection method as the primary chro-
mosome and the secondary chromosome respectively. Then,
an offspring chromosome is generated by the following
process.
(1) Mark all the genes of the primary chromosome and

the secondary chromosome as unvisited, and set the
counter t = 1.

(2) Randomly select an unvisited gene in the primary chro-
mosome, find all the gene positions with the same gene
value as the selected gene in the primary chromosome,
and then fill the current t value into all the correspond-
ing gene positions of the offspring chromosome. If the
position of the gene to be filled has been filled by pre-
vious operations, it will not be changed and its original
value will be retained. In the primary chromosome,
all genes with the same value as the selected gene
are marked as visited. If all the gene positions to be
filled have been filled by previous operations, another
unvisited gene is randomly selected from the primary
chromosome to perform the above operations.

(3) Let t = t+ 1.
(4) Randomly select an unvisited gene in the secondary

chromosome, find all the gene positions with the same
gene value as the selected gene in the secondary
chromosome, and then fill the current t value into
all the corresponding gene positions of the offspring
chromosome. If the position of the gene to be filled
has been filled by previous operations, it will not
be changed and its original value will be retained.
In the secondary chromosome, all genes with the
same value as the selected gene are marked as vis-
ited. If all the gene positions to be filled have been
filled by previous operations, another unvisited gene is

randomly selected from the secondary chromosome to
perform the above operations.

(5) Let t = t+ 1.
(6) Step (2) - (5) are performed iteratively until the gene

positions of the offspring chromosome are filled. In this
way, we get an offspring chromosome.

Next, the primary chromosome and secondary chromosome
are exchanged. Then, the above steps (1)-(6) are performed
again on the two exchanged chromosomes to obtain another
offspring chromosome. Fig. 4 shows a schematic diagram of
the crossover operation of the MATMCD-BN algorithm.

In Fig. 4, c1 and c2 are two parent chromosomes selected
from the previous generation population using the tournament
selection algorithm. First, let c1 be the primary chromosome
and c2 be the secondary chromosome. The process of obtain-
ing an offspring chromosome o1 from the parent chromo-
somes c1 and c2 are as follows. Step 1: Mark all genes of
the primary chromosome c1 and secondary chromosome c2
as unvisited. Step 2: Randomly select an unvisited gene 5 in
the primary chromosome c1, and find all genes with the same
gene value as gene 5 in c1, i.e. genes 1, 4, 5 and 8. Then, let
t = 1, and fill the current t value into the genes 1, 4, 5 and
8 of the offspring chromosome o1. Subsequently, genes 1, 4,
5 and 8 in c1 are marked as visited. Step 3: Randomly select
an unvisited gene 8 in the secondary chromosome c2, and find
all genes with the same gene value as gene 8 in c2, i.e. genes
2, 6 and 8. Then, let t = t + 1 = 2, and fill the current t
value into the genes 2 and 6 of the offspring chromosome o1.
Because gene 8 of o1 has been filled by the previous opera-
tion, this operation does not fill it. Subsequently, genes 2, 6,
and 8 in c2 are marked as visited. Step 4: Randomly select an
unvisited gene 3 in the primary chromosome c1, and find all
genes with the same gene value as gene 3 in c1, i.e. genes
3 and 7. Then, let t = t + 1 = 3, and fill the current t
value into the genes 3 and 7 of the offspring chromosome o1.
Subsequently, genes 3 and 7 in c1 are marked as visited.
Step 5: Randomly select an unvisited gene 5 in the secondary
chromosome c2, and find all genes with the same gene value
as gene 5 in c2, i.e. genes 3 and 5. Because the genes 3 and
5 of o1 have been filled, another unvisited gene 9 is randomly
selected in c2, and all genes with the same gene value as
gene 9, namely genes 1, 4 and 9, are found in c2. Then, let
t = t + 1 = 4, and fill the current t value into the genes 9 of
the offspring chromosome o1. Because genes 1 and 4 of o1
has been filled by the previous operation, this operation does
not fill it. Subsequently, genes 1, 4, and 9 in c2 are marked
as visited. Because chromosome o1 has been filled at this
time, the process of generating offspring chromosome o1 is
over, and we get offspring chromosome o1. Now, let c2 be the
primary chromosome and c1 be the secondary chromosome
to produce another offspring chromosome o2. The generative
process of o2 is similar to that of o1. The detailed steps are
shown in Fig. 4 (c).

We compare our two-way random crossover operator with
three famous crossover operators (i.e., uniform crossover
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FIGURE 4. A schematic diagram of the crossover operation of the
MATMCD-BN algorithm. Among them, U indicates that the corresponding
gene has been unvisited, and V indicates that the corresponding gene has
been visited. The number in the square stands for the number of the
community to which the corresponding vertex belongs. The number
0 indicates that the corresponding gene has not been filled. (a) Parent
chromosomes c1 and c2. (b) Generative process of offspring chromosome
o1. (c) Generative process of offspring chromosome o2.

operator, one-way crossover operator and two-way crossover
operator). The experimental results on various real data sets
show that the Qb value of the final result of MATMCD-BN

algorithm using two-way random crossover operator is sig-
nificantly higher than that of MATMCD-BN algorithm using
uniform crossover operator, one-way crossover operator and
two-way crossover operator. Compared with the uniform
crossover operator, the increase is about 47%. Compared with
the one-way crossover operator, the increase is about 45%.
Compared with the two-way crossover operator, the increase
is about 42%. Two-way random crossover operator also
contributes to reducing the final convergence time of the
algorithm. Compared with the uniform crossover operator,
the convergence time of the two-way random crossover oper-
ator is reduced by about 26%. Compared with the one-way
crossover operator, the convergence time of the two-way ran-
dom crossover operator is reduced by about 23%. Compared
with the two-way crossover operator, the convergence time
of the two-way random crossover operator is reduced by
about 19%.

F. MUTATION
In the MATMCD-BN algorithm, we use two mutation opera-
tors, one is the traditional mutation operator, we call it muta-
tion operator 1, the other is the mutation operator proposed
by us, we call it mutation operator 2.

As shown in Fig. 3, in string-based representations, each
gene represents a vertex and the gene value represents the
community to which the vertex belongs. In the commu-
nity discovery algorithms, the traditional mutation operator
(mutation operator 1) first randomly selects a node vi, then
randomly selects a neighbor node vj of vi (vi and vj are not in a
community), and finally replaces the gene value (community
label) of vi with the gene value of vj [38].
An example of traditional mutation operation is shown

in Fig. 5. As shown in Fig. 5, an individual X is chosen first,
and then a node 7 on individual X is randomly selected. The
neighbors of node 7 include nodes 1, 2 and 4. Assume that
node 2 is randomly selected. Therefore, the community label
of node 7 is set as the community label 1 of node 2.

Before introducingmutation operator 2, let’s first introduce
the definition of community separability [54].
Definition 1 (Community Separability(Sep)): Let C be a

community in the graph. The separability of C is the ratio
between the number of internal edges and external edges in
C. It is defined as follow.

Sep (C) =
|{(u,w) ∈ E : u ∈ C,w ∈ C}|
|{(u,w) ∈ E : u ∈ C,w /∈ C}|

(3)

The higher the value of Sep (C) is, the more obvious the
community structure of community C is.

The mutation operator 2 is introduced below. When Sep
(C) is below a threshold θ , we believe that the nodes in C
cannot form a community. In this case, mutation operator
2 is needed to assign nodes in C to other communities. The
pseudocode of mutation operator 2 of the MATMCD-BN
algorithm is shown in algorithm 2. An example of the oper-
ation of mutation operator 2 of the MATMCD-BN algorithm
is shown in Fig. 6.
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FIGURE 5. An example of traditional mutation operation.

Algorithm 2 Pseudocode of Mutation Operator 2 of the
MATMCD-BN Algorithm
Parameters: parent chromosome X, a threshold value ρ;
Input: an adjacent matrix A of a bipartite network;
Output: mutated chromosome X′;
1: C = The community with the smallest community sepa-

rability in X was found by equation (3);
2: if C’s community separability < ρ then
3: ns = set of nodes in C;
4: X′ = X;
5: for each node i ∈ ns do
6: Randomly select a neighbor j of node i (node i

and j are not in the same community), assign the
community label of node j to i, and modify the
corresponding gene value in X’. If node i and all
its neighbors belong to the same community, then
the community label of node i will not change;

7: end for
8: q1 = The QD value of X calculated by equation (2);
9: q2 = The QD value of X′ calculated by equation (2);
10: if q2 > q1 then
11: return X′;
12: end if
13: end if
14: return X;

Fig. 6 (a) shows a bipartite network. Fig. 6 (b) shows a
chromosome generated by the network in Fig. 6 (a). It consists
of three communities, namely community 1, 2 and 3. Using
equation (3), we can calculate Sep (1) = 5, Sep (2) = 1

3 ,
Sep (3) = 0.5. Let θ = 0.4. Therefore, community 2 is
selected to mutate. In the neighborhood of node 4, node 7 and
9 are not in the same community as node 4. Assume that
node 9 is randomly selected. Therefore, the community label
of node 4 is changed to the community label 3 of node 9.
In the neighborhood of node 8, node 4 and node 5 are not

FIGURE 6. An example of the operation of mutation operator 2 of the
MATMCD-BN algorithm.

in the same community as node 8. Because, at the moment,
the community labels of nodes 4 and 5 are all 3, so the
community label of node 8 is changed to 3.

We also compare the performance of our MATMCD-BN
algorithm using mutation operator 1 (i.e., traditional muta-
tion operator) and mutation operator 2 with that of the
MATMCD-BN algorithm using mutation operator 1 only.
The experimental results on various real data sets show that
the Qb value of the final result of our MATMCD-BN algo-
rithm has been significantly improved compared with that
of the MATMCD-BN algorithm using only mutation oper-
ator 1. Compared with the MATMCD-BN algorithm which
only uses mutation operator 1, the Qb value increased by
about 29%. Similarly, by combining mutation operator 1
with mutation operator 2, our MATMCD-BN algorithm also
reduces the convergence time of the algorithm. Compared
with the MATMCD-BN algorithm which only uses mutation
operator 1, the convergence time is reduced by about 13%.

G. LOCAL SEARCH FUNCTION
Local search function is an important component of memetic
algorithm. It has an important influence on the good and
bad of the final solution and the convergence rate of the
algorithm. To this end, we propose a local search function
named Local_search(), which can enhance the quality of
the final solution and accelerate the convergence rate of the
algorithm. Given the optimal solution best_of_children of
the child population, for each node j, we store in the set
commSet the communities to which most neighbors of node
j belong (There may be two or more eligible communities.).
If we can improve the fitness function by moving node i to a
community in commSet, thenwe do this, otherwisewe do not.
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FIGURE 7. A schematic diagram of local search.

Algorithm 3 gives detailed information about the function
Local_search().

Algorithm 3 Local Search().
Parameters: optimal chromosome best_of_children in the
child population, a threshold value θ ;
Input: an adjacent matrix A of a bipartite network;
Output: improved chromosome best_of_children;
1: Produce a random arrangement of the integers from

1 to n and store the arrangement in an array
named o;

2: for i = 1 to n do
3: j = o[i];
4: commSet = ∅;
5: Store the communities to which most of the

neighbors of node j belong in the set commSet.
(there may be more than one eligible communities);

6: for k = 1 to |commSet| do
7: c = commSet[k];
8: newPartition=Change the community label of node

j of best_of_children to c to form
a new chromosome;

9: q1 =The QD value of chromosome
best_of_children was calculated by equation
(2);

10: q2 = The QD value of
chromosome newPartition was calculated by
equation (2);

11: if q2 > q1 then
12: best_of_children = newPartition;
13: else if rand(0, 1) < θ

14: best_of_children = newPartition;
15: end if
16: end for
17: end for
18: return best_of_children;

In algorithm 3, rand (0, 1) represents a real number
between 0 and 1 randomly generated. One of the main advan-
tages of our local search function, Local_search(), is that it
can adopt a poorer solution with a certain probability. This
advantage enables it not only to improve the results in the
iteration process, but also to escape from the local optimum
solution. This is achieved by the conditional statement of line
13 in algorithm 3.

As shown in Fig. 7, assuming that the algorithm currently
searches to point 1 and the local optimal solution point 2 is
found, some other strategies will stop searching. Because
some other strategies are incapable of discovering the global
optimal solution by moving in a small range around point 2.
However, our proposed Local_search() canmove aroundwith
a certain probability, that is, it can accept a solution with a
specified probability that is poorer than the current solution.
This enables the function to escape from the local optimal
solution and reach the global optimal solution after several
algorithm steps. As shown in Fig. 7, when Local_search()
discovers point 2 is a local optimum point, it can move to
point 3 with a specified probability that is worse than point
2. After a few moving steps, it may reach point 4, which
escapes from local optimal solution point 2. Then, the func-
tion can seek out the global optimal solution point 5. Thus,
the function can discover the global optimal solution with a
certain probability. Therefore, our proposed Local_search()
function can escape from the local optimum and attain the
global optimum.

In algorithm 4, the MATMCD-BN algorithm proposed by
us is described in detail.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
Here, we will assess MATMCD-BN in detail through experi-
ments, and compare it with three existing famous algorithms
in five synthetic bipartite networks and six real bipartite
networks. These three algorithms are described as follows.

1) ASYMINTIMACY
In [5], two parameters are defined to show the relations
between the same type of vertices and heterogeneous vertices
respectively. In this algorithm, two different types of vertices
are tackled independently on the basis of different closeness.
In the first place, the same type of vertices are clustered
into subsets based on the asymmetric intimacy. Subsequently,
in order to form core communities, the second type of vertices
is divided into the corresponding set. In this way, a set of core
communities have been acquired. If the overlap rate of the
two core communities exceeds the threshold, then this pair
of communities are merged. This process is repeated as long
as there are core communities that can be combined in the
core communities set. The time complexity of this algorithm
is O(2n2+ mn), where m and n are the number of links and
vertices in the graph respectively.

2) LP BRIM
By combining label propagation (LP) with BRIM, the authors
of [3] proposed a bipartite network community detection
method named LP BRIM, which extended the work of
BRIM. The worst case time complexity of this algorithm
is O(n2), where n is the number of nodes in the graph.
In real bipartite networks, this worst-case time complexity is
acceptable.
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Algorithm 4 MATMCD-BN Algorithm
Parameters: population size popsize, crossover rate Pc, first
mutation rate Pm1, second mutation rate Pm2, number of
generations without improvement t, a threshold value θ ;
Input: an adjacent matrix A of a bipartite network;
Output: a community division C of the network;
1: pop = The initial population obtained by using

algorithm 1;
2: repeat
3: Using equation (2) to assess the fitness of each

chromosome in pop;
4: parents = The parent chromosomes for genetic

operations were selected from pop by
tournament selection method;

5: children = Using Pc to perform two-way random
crossover operator on chromosomes
in parents;

6: children = Using Pm1 to perform mutation
operator 1 on chromosomes in children;

7: children = Using Pm2 to perform mutation
operator 2 on chromosomes in children;

8: best_of_children = Chromosome with the highest
fitness in children;

9: best_of_children = Local_search
(best_of_children, θ );

10: pop = pop∪children∪
best_of_children;

11: pop = The first M chromosomes with the
highest fitness in pop were selected as the next
generation population;

12: until number of generations without improvement in the
best chromosome in pop >= t

13: C = Community division of chromosome with the
highest fitness in pop;

14: return C.

3) ADAPTIVE BRIM
The authors of [2] propose bipartite, recursively induced
modules (BRIM) algorithm on the basis of the iterative
optimization idea of modularity measure Qb in bipartite
networks. At each iteration of the algorithm, Qb is non-
decreasing. However, this algorithm often finds the local opti-
mal solution rather than the global optimal solution. At the
same time, the number of modules does not need to be
specified in advance.

The experimental data of algorithms BRIM, LP BRIM and
AsymIntimac in this paper are from [59]. MATMCD-BN is
implemented by C# 4.0 using Microsoft Visual Studio 2010.
In the experiment, we set the parameters popsize = 1000,
Pc = Pm1 = Pm2 = 0.3, ρ = 0.2, t = 3, and θ = 0.15.

4) MEASUREMENTS
For compare the performance of different algorithms, two
types of metrics are generally used. If the community
structures are known beforehand, the normalized mutual

FIGURE 8. A ring consisting of bicliques. (a) A ring consisting of four
bicliques. Each biclique is made up of two square nodes and three
circular nodes, and the square nodes are fully connected to the circular
nodes. (b) A ring is made up of eight bicliques with the same linking rules
used in (a).

information (NMI) formula is used to produce a score
between 0 and 1. If the opposite is true, then modularity [35]
is used to compare algorithms.Modularity was originally pro-
posed for one-mode networks. Barber modifies the formula
of modularity as Qb for bipartite networks [2]. A higher Qb
value from [0,1] indicates a better community structure. A Qb
value close to 0 represents a poor community structure.

B. SYNTHETIC NETWORKS
Many existing community detection methods lean upon max-
imization of modularity. However, these methods may suf-
fer from resolution limitation problem [17]. They usually
cannot find communities smaller than

√
2L, where L is the

number of links of the network. To prove the effectiveness
of MATMCD-BN, a series of synthetic networks consisting
of different numbers of biclique were designed. As shown
in Fig. 8, one synthetic network consists of 4 sequentially con-
nected bicliques, and the other consists of 8 in turn connected
bicliques. Each biclique is made up of two modes of nodes,
and the nodes of different modes are fully interconnected. The
basic topological characteristics of all synthetic networks are
shown in Table 1. The following experiments are performed
on synthetic networks with different numbers of bicliques.
The experimental results are shown in Table 2 and Fig. 9.

As can be seen from Table 2, for networks with only
4 bicliques and 8 bicliques, MATMCD-BN, LP BRIM and
Adaptive BRIM can correctly detect communities. Further
experiments show that when the network has 16 bicliques,
Adaptive BRIM detects 15 communities and obtains
NMI = 0.934. LP BRIM detects 13 communities and gets
NMI = 0.802. However, MATMCD-BN can still obtain
an accurate solution, which has been significantly improved
compared with the other three algorithms. Similar results
have been obtained on 64 bicliques network. For Adaptive
BRIM, MATMCD-BN achieved about 2% improvement,
and about 13% improvement for LP BRIM. Experiments on
128 bicliques network show that MATMCD-BN improves
about 1% for Adaptive BRIM and about 12% for LP BRIM.
Compared with the other three algorithms, AsymIntimacy is
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TABLE 1. The basic topological characteristics of rings of bicliques used in the experiment in this paper.

TABLE 2. Performance summary of MATMCD-BN, AsymIntimacy, LP BRIM and Adaptive BRIM on rings of bicliques. NMI is the detection accuracy of
different bipartite community discovery algorithms. Nc is the number of communities detected by different algorithms.

FIGURE 9. Performance summary of MATMCD-BN, AsymIntimacy,
LP BRIM and Adaptive BRIM on rings of bicliques. NMI is the detection
accuracy of different bipartite community discovery algorithms.

always the worst according to the NMI values on all synthetic
networks used in this experiment. But compared with LP
BRIM and Adaptive BRIM, AsymIntimac always gets the
right number of communities. Therefore, due to the resolution
limit problem, the other three algorithms can not accurately
detect small communities, but MATMCD-BN can precisely
detect such small communities.

C. REAL NETWORKS
Several experiments in this section are performed on real
networks, that is to say, the modular structure is unknown,
and Qb is used to verify the accuracy of the algorithm.
The real bipartite networks used in our experiments include
Southern Women Events Participation (SW), America Rev-
olution (AR), Scotland Corporate Interlock (SCI), Crime

FIGURE 10. Performance comparison of MATMCD-BN, AsymIntimacy,
LP BRIM and Adaptive BRIM on real bipartite networks. Qb indicates the
modularity score in each two-mode networks.

Network (CN), Malaria and var Genes (MG) and Protein
Complex and Drug network (PCD). The basic topological
characteristics of all real networks are shown in Table 3. The
following experiments are performed on real networks. The
experimental results are shown in Table 4 and Fig. 10.

1) SOUTHERN WOMEN EVENTS PARTICIPATION (SW)
The Southern Women dataset was produced by
Davis et al. [6] in the 1930s in the southern United States.
It indicates the interaction among 18 women who took part
in 14 informal social activities. The original goal of the survey
is to explore the corresponding relationship between social
strata and informal touches. Because this dataset forms a nat-
ural bipartite network with small amount of data, researchers
have done a lot of research on it. This network is a connected
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TABLE 3. The basic topological characteristics of the real-world bipartite network used in the experiment in this paper.

TABLE 4. Performance comparison of MATMCD-BN, AsymIntimacy, LP BRIM and Adaptive BRIM on real bipartite networks. Qb indicates the modularity
score in each two-mode networks. Ncis the number of bipartite clusters (i.e. bipartite communities) discovered by different methods.

and unweighted network. The network contains 32 vertices
and 89 links. The properties of this network are shown
in Table 3. Four different community discovery algorithms
are compared to detect the cluster structure of this network.
The comparison results are shown in Table 4.

In this experiment, MATMCD-BN partitions SW Network
into 4 different sizes of bipartite communities. Among them,
the largest community consists of 8 women and 6 events.
The second largest community is made up of 4 women and
4 events. The third largest community is comprised of 4
women and 3 activities. The last community consists of 2
women and 1 event.

2) AMERICAN REVOLUTION (AR)
This dataset is made up of membership information for
136 members of 5 organizations. The founding time of
these organizations can be traced back to before the Amer-
ican Revolution [7]. The dataset includes a large number
of American celebrities. The relationship between members
and organizations may be represented as a bipartite net-
work. A link between an individual and an organization
indicate that the individual is a member of this organiza-
tion. In Table 3, the basic topological characteristics of this
network are described in detail. Table 3 indicates that the
network is comprised of 141 nodes and 160 edges. Next,
we will compare four different bipartite network community
discovery methods to find the community partitions in this
network. The comparison results are shown in Table 4.

As can be seen from Table 4, the optimal modularity score
(Qb = 0.708) is obtained from MATMCD-BN algorithm,
which is superior to the other three comparison algorithms.

MATMCD-BN found five different communities in the
American Revolution network. These five communities have
the same organizational model, and each community consists
of a specific organization and its members. From the results of
the detection, we see that all organizations are located in the
core of their respective communities, encircled by members

of the organization. We also see that a small quantity of
individuals are members of different organizations, they are
overlapping nodes between different clusters.

3) SCOTLAND CORPORATE INTERLOCK (SCI)
This dataset is the third dataset used in our experiment. This
dataset reveals the Scottish business chain network between
1904 and 1905 [8]. The network consists of 136 directors
who holdmultiple directorship positions in 108 share-holding
corporations. If a person belongs to the board of directors of
a company, there is an unweighted edge between him and
the corporation. But this bipartite network is not connected,
it consists of several connected components.

As can be seen from Table 4, among the four comparison
algorithms, MATMCD-BN obtains the best community par-
tition with (Qb = 0.689).

4) CRIME NETWORK (CN)
This dataset includes individuals who were documented in at
lowest one criminal incident. The individual is either a victim,
a witness or as a suspect in the incident [7].

The relations between criminal individuals and crimi-
nal incidents naturally constitute a bipartite network with
1476 edges. These edges connect 829 criminal individuals
and 551 criminal incidents. As can be seen from Table 4,
MATMCD-BN is superior to the other three methods in
precision (Qb = 0.841).

5) MALARIA AND VAR GENES (MG)
By a protein camouflage encoded in var genes, parasites
can escape the human immune mechanism [56]. In order
to evade the human immune system, the var gene is often
recombined to create new camouflages, which naturally pro-
duces community structure [33]. Therefore, the var genes and
their genetic subsequences constitute a two-mode network
consisting of two types of nodes. This network has a
natural community partition. As shown in Table 3, the ver-
tices of two types of MG network contain 297 genes and
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806 subsequences, respectively. There are 2965 edges con-
necting different kinds of nodes in this two-mode network.

In this real network, four different detection algorithms
detect community structure of the genes and their genetic
substrings respectively. As can be seen from Table 4, com-
pared with AsymIntimacy, LP BRIM and Adaptive BRIM,
MATMCD-BN achieves the best community partition with
modularity value Qb = 0.786.

6) THE PROTEIN COMPLEX AND DRUG NETWORK (PCD)
Recently, the studies in the field of biology have found
contacts between some protein complexes and correspond-
ing illness. The bipartite networks analyzed by Nacher and
Schwartz contain two types of vertices: drug and protein
complexes. This network consists of 680 drugs and 739 pro-
tein complexes [58]. It reveals the interrelationship between
molecules and human diseases. The basic topological charac-
teristics of PCD networks are described in Table 3. As shown
in Table 3, PCD is made up of 1419 nodes and 3690 edges.
As shown in Table 4, MATMCD-BN is superior to the other
three algorithms, and its modularity value is Qb = 0.826.
LP BRIM takes second place, and its modularity value is
Qb = 0.806.

VI. CONCLUSION
In the study of complex networks including bipartite
networks, community structure is a crucial network prop-
erty. For better research and make use of such a network,
it is very important to detect its community structure. This
paper presents a memetic algorithm called MATMCD-BN
for community discovery in two-mode networks. The chro-
mosome representation of MATMCD-BN algorithm uses the
classical string-based representation method. We proposed a
novel population initialization method for bipartite network
community detection to speed up the convergence rate of
this algorithm. The fitness function of MATMCD-BN algo-
rithm uses the QD function proposed in [55], which solves
the resolution limit problem of traditional modularity. For
selecting parent chromosomes for crossover operator and
mutation operators, we use the tournament selection method,
which gives individuals in the population equal opportunities
to be selected for subsequent genetic operations. Besides
using the traditional mutation operator, we also propose a
new crossover operator and a newmutation operator. The new
two-way random crossover operator may better inherit the
genetic characteristics of parent chromosomes, and the new
mutation operator can significantly improve the multiformity
of the population. In addition, we propose a new local search
function, which can improve the quality of the final solution
and the convergence rate of the algorithm, and make the algo-
rithm can jump away from the local optimum with a certain
probability and reach the global optimum. In order to check
the performance of the presentedmethod, a lot of experiments
have been carried out on five synthetic networks and six real
networks. The experimental results were compared with three
famous bipartite network community discovery algorithms.

The comparison results indicate that theMATMCD-BN algo-
rithm is superior to the other three algorithms, which shows
that our algorithm is a good algorithm to find community
structures in bipartite networks.

APPENDIX

Algorithm 5 Pseudocode of Random Initialization Method
Parameters: population size popsize;
Input: an adjacent matrix A of a bipartite network;
Output: initial population;
1: for i = 1; i <= popsize; i++ do
2: Generate an random integer permutation of

integers 1-n and store it in the array o (n is the
amount of vertices in a bipartite graph);

3: for j = 1; j <= n; j++ do
4: pop[i][j] = o[j];
5: end for
6: end for
7: return pop[];

Algorithm 6 Pseudocode of Initialization Method Using the
Label Propagation Algorithm
Parameters: population size popsize;
Input: an adjacent matrix A of a bipartite network;
Output: initial population;
1: for i = 1; i <= popsize; i++ do
2: Generate an random integer permutation of integers

1-n and store it in the array o (n is the amount of
vertices in a bipartite graph);

3: for j = 1; j <= n; j++ do
4: pop[i][j] = o[j];
5: end for
6: for j = 1; j <= n; j++ do
7: pop[i][j] = The label shared by most of the

neighbor nodes of node j. If there are more than one
labels satisfy the above condition, randomly select
one of them.

8: end for
9: end for
10: return pop[];

REFERENCES
[1] J. Xie, B. K. Szymanski, and X. Liu, ‘‘SLPA: Uncovering overlapping

communities in social networks via a speaker-listener interaction dynamic
process,’’ inProc. IEEE 11th Int. Conf. DataMiningWorkshops (ICDMW),
Dec. 2011, pp. 344–349.

[2] M. J. Barber, ‘‘Modularity and community detection in bipartite net-
works,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 76, no. 6, 2007, Art. no. 066102.

[3] X. Liu and T. Murata, ‘‘Community detection in large-scale bipartite
networks,’’ Trans. J. Jpn. Soc. Artif. Intell., vol. 25, no. 1, pp. 16–24, 2010.

[4] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, ‘‘Defining
and identifying communities in networks,’’ Proc. Nat. Acad. Sci. USA,
vol. 101, no. 9, pp. 2658–2663, 2004.

[5] X. Wang and X. Qin, ‘‘Asymmetric intimacy and algorithm for detecting
communities in bipartite networks,’’ Phys. A, Stat. Mech. Appl., vol. 462,
pp. 569–578, Nov. 2016.

126910 VOLUME 7, 2019



S. Che et al.: Memetic Algorithm for Community Detection in Bipartite Networks

[6] A. Davis, B. B. Gardner, and M. R. Gardner, Deep South: A Social
Anthropological Study of Caste and Class. Columbia, SC, USA: Univ.
South Carolina Press, 1941.

[7] J. Kunegis, ‘‘Konect: The koblenz network collection,’’ in Proc. 22nd Int.
Conf. World Wide Web, Rio de Janeiro, Brazil, May 2013, pp. 1343–1350.

[8] J. Scott andM. Hughes, The Anatomy of Scottish Capital: Scottish Compa-
nies and Scottish Capital. Montreal, QC, Canada: McGill-Queen’s Press-
MQUP, 1981, p. 291.

[9] M. Girvan and M. E. J. Newman, ‘‘Community structure in social
and biological networks,’’ Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821–7826, 2002.

[10] Z. Li, R.-S. Wang, S. Zhang, and X.-S. Zhang, ‘‘Quantitative function
and algorithm for community detection in bipartite networks,’’ Inf. Sci.,
vols. 367–368, pp. 874–889, Nov. 2016.

[11] B. W. Kernighan and S. Lin, ‘‘An efficient heuristic procedure for parti-
tioning graphs,’’ Bell Syst. Tech. J., vol. 49, pp. 291–307, Feb. 1970.

[12] Y. Cui and X. Wang, ‘‘Uncovering overlapping community structures by
the key bi-community and intimate degree in bipartite networks,’’ Phys. A,
Stat. Mech. Appl., vol. 407, pp. 7–14, Aug. 2014.

[13] A. Pothen, H. D. Simon, and K.-P. Liou, ‘‘Partitioning sparse matrices
with eigenvectors of graphs,’’ SIAM J. Matrix Anal. Appl., vol. 11, no. 3,
pp. 430–452, 1990.

[14] S. Kelley, M. Goldberg, M. Magdon-Ismail, K. Mertsalov, and A. Wallace,
‘‘Defining and discovering communities in social networks,’’ inHandbook
of Optimization in Complex Networks. Boston, MA, USA: Springer, 2012,
pp. 139–168.

[15] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, ‘‘Uncovering the overlapping
community structure of complex networks in nature and society,’’ Nature,
vol. 435, pp. 814–818, Jun. 2005.

[16] G. Bello-Orgaz, S. Salcedo-Sanz, and D. Camacho, ‘‘A multi-objective
genetic algorithm for overlapping community detection based on edge
encoding,’’ Inf. Sci. vol. 462, pp. 290–314, Sep. 2018.

[17] S. Fortunato and M. Barthélemy, ‘‘Resolution limit in community detec-
tion,’’ Proc. Nat. Acad. Sci. USA, vol. 104, no. 1, pp. 36–41, 2007.

[18] A. McDaid and N. Hurley, ‘‘Detecting highly overlapping communities
with model-based overlapping seed expansion,’’ in Proc. Int. Conf. IEEE
Adv. Social Netw. Anal. Mining (ASONAM), Aug. 2010, pp. 112–119.

[19] M. E. J. Newman and M. Girvan, ‘‘Finding and evaluating community
structure in networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 69, Feb. 2004, Art. no. 026113.

[20] F. Reid, A. McDaid, and N. Hurley, ‘‘Partitioning breaks communi-
ties,’’ in Mining Social Networks and Security Informatics. Dordrecht,
The Netherlands: Springer, 2013, pp. 79–105.

[21] T. Zhou, J. Ren, M. Medo, and Y.-C. Zhang, ‘‘Bipartite network projection
and personal recommendation,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 76, Oct. 2007, Art. no. 046115.

[22] Y. Cui and X. Wang, ‘‘Detecting one-mode communities in bipartite
networks by bipartite clustering triangular,’’ Phys. A, Stat. Mech. Appl.,
vol. 457, pp. 307–315, Sep. 2016.

[23] R. Guimerà, M. Sales-Pardo, and L. A. Amaral, ‘‘Module identification in
bipartite and directed networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 76, Sep. 2007, Art. no. 036102.

[24] B.-L. Chen, L. Chen, S. R. Zou, and X.-L. Xu, ‘‘Detecting community
structure in bipartite networks based on matrix factorisation,’’ Int. J. Wire-
less Mobile Comput., vol. 6, pp. 599–607, Nov. 2013.

[25] P. Zhang, J. Wang, X. Li, M. Li, Z. Di, and Y. Fan, ‘‘Clustering coefficient
and community structure of bipartite networks,’’Phys. A, Stat.Mech. Appl.,
vol. 387, pp. 6869–6875, Dec. 2008.

[26] W.-D. Pei, W. Xia, X.-R. Ma, and L.-F. Jiang, ‘‘Robustness and statistical
characters of a class of complex network models,’’ in Recent Advances in
Computer Science and Information Engineering (Lecture Notes in Electri-
cal Engineering), vol. 129. Berlin, Germany: Springer, 2012, pp. 747–752.

[27] C. Zhou, L. Feng, and Q. Zhao, ‘‘A novel community detection method in
bipartite networks,’’ Phys. A, Stat. Mech. Appl., vol. 492, pp. 1679–1693,
Feb. 2018.

[28] A. F. Liu, C. H. Fu, Z. P. Zhang, H. Chang, and D. R. He, ‘‘An empirical
statistical investigation on Chinese mainland movie network,’’ Complex
Syst. Complex. Sci., vol. 4, no. 3, pp. 10–16, 2007.

[29] Z. Li, S. Zhang, R.-S. Wang, X.-S. Zhang, and L. Chen, ‘‘Quantitative
function for community detection,’’ Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 77, no. 3, 2008, Art. no. 036109.

[30] Z. Jiang, J. Liu, and S. Wang, ‘‘Traveling salesman problems with
PageRank distance on complex networks reveal community structure,’’
Phys. A, Stat. Mech. Appl., vol. 463, no. 2016, pp. 293–302, 2016.

[31] M. E. J. Newman, ‘‘Fast algorithm for detecting community structure in
networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 69, no. 6, 2004, Art. no. 066133.

[32] Z. Li and J. Liu, ‘‘Amulti-agent genetic algorithm for community detection
in complex networks,’’ Phys. A, Stat. Mech. Appl., vol. 449, pp. 336–347,
May 2016.

[33] D. B. Larremore, A. Clauset, and A. Z. Jacobs, ‘‘Efficiently inferring
community structure in bipartite networks,’’ Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 90, Jul. 2014, Art. no. 012805.

[34] A. Clauset, M. E. J. Newman, and C. Moore, ‘‘Finding community struc-
ture in very large networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 70, Dec. 2004, Art. no. 066111.

[35] M. E. J. Newman, ‘‘Modularity and community structure in networks,’’
Proc. Nat. Acad. Sci. USA, vol. 103, no. 23, pp. 8577–8582, 2006.

[36] A. Arenas, A. Fernández, and S. Gómez, ‘‘Analysis of the structure of
complex networks at different resolution levels,’’ New J. Phys., vol. 10,
May 2008, Art. no. 053039.

[37] C. Shi, Z. Yan, Y. Cai, and B.Wu, ‘‘Multi-objective community detection in
complex networks,’’ Appl. Soft Comput., vol. 12, pp. 850–859, Feb. 2012.

[38] C. Pizzuti, ‘‘A multiobjective genetic algorithm to find communities
in complex networks,’’ IEEE Trans. Evol. Comput., vol. 16, no. 2,
pp. 418–430, Jun. 2012.

[39] C. Pizzuti, ‘‘GA-Net: A genetic algorithm for community detection in
social networks,’’ in Parallel Problem Solving From Nature—PPSN X,
vol. 5199, G. Rudolph, T. Jansen, N. Beume, S. Lucas, and C. Poloni, Eds.
Berlin, Germany: Springer, 2008, pp. 1081–1090.

[40] M. Gong, L. Ma, Q. Zhang, and L. Jiao, ‘‘Community detection in net-
works by using multiobjective evolutionary algorithm with decomposi-
tion,’’ Phys. A, Stat. Mech. Appl., vol. 391, no. 15, pp. 4050–4060, 2012.

[41] D. Chen, F. Zou, R. Lu, L. Yu, Z. Li, and J. Wang, ‘‘Multi-objective
optimization of community detection using discrete teaching–learning-
based optimization with decomposition,’’ Inf. Sci., vol. 369, pp. 402–418,
Nov. 2016.

[42] F. Zou, D. Chen, S. Li, R. Lu, and M. Lin, ‘‘Community detection in com-
plex networks: Multi-objective discrete backtracking search optimization
algorithm with decomposition,’’ Appl. Soft Comput., vol. 53, pp. 285–295,
Apr. 2017.

[43] Y. Tian, H. Wang, X. Zhang, and Y. Jin, ‘‘Effectiveness and efficiency of
non-dominated sorting for evolutionary multi- and many-objective opti-
mization,’’ Complex Intell. Syst., vol. 3, no. 4, pp. 247–263, Dec. 2017.

[44] R. Shang, J. Bai, L. Jiao, and C. Jin, ‘‘Community detection based on
modularity and an improved genetic algorithm,’’ Phys. A, Stat. Mech.
Appl., vol. 392, pp. 1215–1231, Mar. 2013.

[45] Y. Zhao, W. Jiang, S. Li, Y. Ma, G. Su, and X. Lin, ‘‘A cellular learning
automata based algorithm for detecting community structure in complex
networks,’’ Neuro-Comput., vol. 151, pp. 1216–1226, Mar. 2015.

[46] M. Gong, B. Fu, L. Jiao, and H. Du, ‘‘Memetic algorithm for community
detection in networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 84, Nov. 2011, 056101.

[47] K. R. Žalik and B. Žalik, ‘‘Memetic algorithm using node entropy
and partition entropy for community detection in networks,’’ Inf. Sci.,
vols. 445–446, pp. 38–49, Jun. 2018.

[48] C.-H. Mu, J. Xie, Y. Liu, F. Chen, Y. Liu, and L.-C. Jiao, ‘‘Memetic
algorithmwith simulated annealing strategy and tightness greedy optimiza-
tion for community detection in networks,’’ Appl. Soft Comput., vol. 34,
pp. 485–501, Sep. 2015.

[49] A. Said, R. A. Abbasi, O.Maqbool, A. Daud, andN. R. Aljohani, ‘‘CC-GA:
A clustering coefficient based genetic algorithm for detecting communities
in social networks,’’ Appl. Soft Comput., vol. 63, pp. 59–70, Feb. 2018.

[50] L. Ma, M. Gong, J. Liu, Q. Cai, and L. Jiao, ‘‘Multi-level learning
based memetic algorithm for community detection,’’ Appl. Soft
Comput., vol. 19, pp. 121–133, Jun. 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1568494614000623.
doi: 10.1016/j.asoc.2014.02.003.

[51] M. R. Mirsaleh and M. R. Meybodi, ‘‘A Michigan memetic algorithm for
solving the community detection problem in complex network,’’ Neuro-
computing, vol. 214, pp. 535–545, Nov. 2016.

[52] X. Wang and J. Liu, ‘‘A comparative study of the measures for evaluat-
ing community structure in bipartite networks,’’ Inf. Sci., vols. 448–449,
pp. 249–262, Jun. 2018.

[53] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA, USA: Addison-Wesley, 1989.

[54] J. Yang and J. Leskovec, ‘‘Defining and evaluating network communities
based on ground-truth,’’Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213, 2015.

VOLUME 7, 2019 126911

http://dx.doi.org/10.1016/j.asoc.2014.02.003


S. Che et al.: Memetic Algorithm for Community Detection in Bipartite Networks

[55] Y. Xu, L. Chen, B. Li, and W. Liu, ‘‘Density-based modularity for eval-
uating community structure in bipartite networks,’’ Inf. Sci., vol. 317,
pp. 278–294, Oct. 2015.

[56] D. B. Larremore, A. Clauset, and C. O. Buckee, ‘‘A network approach
to analyzing highly recombinant malaria parasite genes,’’ PLoS Comput.
Biol., vol. 9, no. 10, 2013, Art. no. e1003268.

[57] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, ‘‘Link communities reveal
multiscale complexity in networks,’’ 2009, arXiv:0903.3178. [Online].
Available: https://arxiv.org/abs/0903.3178

[58] J. C. Nacher and J.-M. Schwartz, ‘‘Modularity in protein complex and drug
interactions reveals new polypharmacological properties,’’ PLoS ONE,
vol. 7, no. 1, 2012, Art. no. e30028.

[59] H.-L. Sun, E. Ch’ng, X. Yong, J. M. Garibaldi, S. See, and D.-B. Chen,
‘‘A fast community detection method in bipartite networks by distance
dynamics,’’ Phys. A, Stat. Mech. Appl., vol. 496, pp. 108–120, Apr. 2018.

[60] M. Li and J. Liu, ‘‘A link clustering based memetic algorithm for over-
lapping community detection,’’ Phys. A, Stat. Mech. Appl., vol. 503,
pp. 410–423, Aug. 2018.

[61] C. Zhang, X. Hei, D. Yang, and L. Wang, ‘‘A memetic particle swarm
optimization algorithm for community detection in complex networks,’’
Int. J. Pattern Recognit. Artif. Intell., vol. 30, no. 2, 2016, Art. no. 1659003.

SHIWEI CHE received the M.E. degree from the
Department of Computer Science and Technology,
Xinjiang University, Xinjiang, China, in 2010.
He is currently pursuing the Ph.D. degree with
the Department of Computer Science and Tech-
nology, Harbin Engineering University. His cur-
rent research interests include social networks and
community detection.

WU YANG received the Ph.D. degree in computer
system architecture specialty from the Computer
Science and Technology School, Harbin Institute
of Technology. He is currently a Professor and
a Doctoral Supervisor with Harbin Engineering
University. His current research interests include
wireless sensor networks, peer-to-peer networks,
and information security. He is a member of ACM
and a Senior Member of CCF.

WEI WANG received the Ph.D. degree in
computer system architecture specialty fromCom-
puter Science and Technology School, Harbin
Institute of Technology. He is currently a Profes-
sor with Harbin Engineering University. His cur-
rent research interests include social networks and
community detection.

126912 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORKS
	BASIC CONCEPTS AND KNOWLEDGE
	DEFINITION OF BIPARTITE NETWORK AND ITS COMMUNITY
	A BIPARTITE MODULARITY FORMULA FOR BIPARTITE NETWORKS

	PRESENTED ALGORITHM
	INDIVIDUAL REPRESENTATION
	POPULATION INITIALIZATION
	FITNESS FUNCTION
	SELECTION ALGORITHM
	CROSSOVER
	MUTATION
	LOCAL SEARCH FUNCTION

	EXPERIMENTAL RESULTS
	EXPERIMENTAL SETTINGS
	ASYMINTIMACY
	LP BRIM
	ADAPTIVE BRIM
	MEASUREMENTS

	SYNTHETIC NETWORKS
	REAL NETWORKS
	SOUTHERN WOMEN EVENTS PARTICIPATION (SW)
	AMERICAN REVOLUTION (AR)
	SCOTLAND CORPORATE INTERLOCK (SCI)
	CRIME NETWORK (CN)
	MALARIA AND VAR GENES (MG)
	THE PROTEIN COMPLEX AND DRUG NETWORK (PCD)


	CONCLUSION
	REFERENCES
	Biographies
	SHIWEI CHE
	WU YANG
	WEI WANG


