Certain Bounds Related to Multi-Parameterized k-Fractional Integral Inequalities and Their Applications

CHUNYAN LUO1, BO YU1,2, YAO ZHANG1, AND TINGSONG DU1,2

1Department of Mathematics, College of Science, China Three Gorges University, Yichang 443002, China
2Three Gorges Mathematical Research Center, China Three Gorges University, Yichang 443002, China

Corresponding author: Bo Yu (yubo2003@amss.ac.cn)

This work was supported by the National Natural Science Foundation of China under Grant 11301296.

\section*{ABSTRACT} A k-fractional integral identity with multiple parameters is investigated. Based on this identity, some estimation-type results related to k-fractional integral inequalities for the first-order differentiable functions are obtained. These results are then applied to the estimation of cumulative distribution function and some other special means.

\section*{INDEX TERMS} Hadamard’s inequality, generalized (α, m)-preinvex functions, k-fractional integrals.

\section*{I. INTRODUCTION} In 2013, Sarikaya et al. established the following Hadamard’s inequality utilizing Riemann–Liouville fractional integrals.

\textbf{Theorem 1} [24]: Let $g : [e_1, e_2] \to \mathbb{R}$ be a positive function with $0 \leq e_1 < e_2$ and $g \in L^1([e_1, e_2])$. If g is convex on $[e_1, e_2]$, then the following inequalities for fractional integrals hold:

\begin{equation}
J_{e_1}^\mu g(x) = \frac{1}{\Gamma(\mu)} \int_{e_1}^{x} (x - \lambda)^{\mu-1} g(\lambda) d\lambda, \quad e_1 < x
\end{equation}

and

\begin{equation}
J_{e_2}^\mu g(x) = \frac{1}{\Gamma(\mu)} \int_{x}^{e_2} (\lambda - x)^{\mu-1} g(\lambda) d\lambda, \quad x < e_2.
\end{equation}

Here, (μ) is the gamma function, i.e., $\Gamma(\mu) = \int_{0}^{\infty} e^{-\lambda} \lambda^{\mu-1} d\lambda$. It is to be noted that $J_{e_1}^0 g(x) = J_{e_1}^0 g(x) = g(x)$.

Due to the extensive applications of Riemann–Liouville fractional integrals, there are many studies involving this integral operator, for example, see [4], [7], [11]–[13], [25], [27], [29] and the references therein. In the case of $\mu = 1$, the fractional integral inequality (1) reduces to the classical Hadamard’s inequality. For recent studies on Hadamard’s inequality, see, for instance, [14], [15], [18], [19], [21].

In 2012, Mubeen and Habibullah presented the following k-fractional integrals.

\textbf{Definition 2} [22]: Let $g \in L^1([e_1, e_2])$, the k-fractional integrals $kJ_{e_1}^\mu g(x)$ and $kJ_{e_2}^\mu g(x)$ of order $\mu > 0$ are defined by

\begin{equation}
kJ_{e_1}^\mu g(x) = \frac{1}{k \Gamma_k(\mu)} \int_{e_1}^{x} (x - \lambda)^{\mu-1} g(\lambda) d\lambda
\end{equation}

and

\begin{equation}
kJ_{e_2}^\mu g(x) = \frac{1}{k \Gamma_k(\mu)} \int_{x}^{e_2} (\lambda - x)^{\mu-1} g(\lambda) d\lambda
\end{equation}

respectively, where $0 \leq e_1 < x < e_2$, $k > 0$ and $\Gamma_k(\mu)$ is the k-gamma function defined by $\Gamma_k(\mu) = \int_{0}^{\infty} e^{-\lambda} \lambda^{\mu-1} e^{-\frac{\lambda}{k}} d\lambda, \quad \mu > 0$, along with the properties $\Gamma_k(\mu + k) = k \Gamma_k(\mu)$ and $\Gamma_k(1) = 1$.

Some recent results related to the k-fractional integral operators can also be found in [8], [9], [16], [26], [28], [30]. In 2016, Farid et al. presented the following k-fractional integral inequality.

\textbf{Theorem 3} [10]: Let $g : [e_1, e_2] \to \mathbb{R}$ be a positive mapping with $0 \leq e_1 < e_2$ and $g \in L^1([e_1, e_2])$. If g is convex on $[e_1, e_2]$, then the following k-fractional integral inequality
with \(\mu > 0 \) and \(k > 0 \) holds:
\[
g\left(\frac{e_1 + e_2}{2}\right) \leq \frac{2^{\mu - 1} \Gamma_\mu(\mu + k)}{(e_2 - e_1)^{\mu}} \times \left[k \int_0^r \left(\frac{e_2}{e_1 + e_2}\right)^\mu g(e_2) + k \int_0^{e_1/2} g(e_1)\right] \leq g(e_1) + g(e_2)
\]

(2)

Here, our main goal is to obtain new estimation-type results associated with \(k \)-fractional integral operators. To this end, we consider the following three cases: (i) the considered mapping is generalized \((\alpha, m)\)-preinvex; (ii) the derivative of the considered mapping is bounded; (iii) the derivative of the considered mapping satisfies the Lipschitz condition.

Let us end this section by recalling some special functions and definitions as follows.

(1) The beta function:
\[
\beta(u, v) = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u + v)} = \int_0^1 \lambda^{u-1} (1 - \lambda)^{v-1} d\lambda, \quad u, v > 0.
\]

(2) The hypergeometric function:
\[
\sum_{k=1}^{\infty}\frac{a^k}{k!} = \sum_{k=1}^{\infty}\frac{a^k}{k!} = \sum_{k=1}^{\infty}\frac{a^k}{k!} = \sum_{k=1}^{\infty}\frac{a^k}{k!}
\]

where \(r_2 > r_1 > 0 \) and \(|z| < 1 \).

Definition 4 [11]: A set \(K \subseteq \mathbb{R}^n \) is named invex set with respect to the mapping \(\eta: K \times K \to \mathbb{R}^n \), if \(u + t \eta(v, u) \in K \) for any \(u, v \in K \) and \(t \in [0, 1] \). The invex set \(K \) is also referred to as an \(\eta \)-connected set.

Definition 5 [5]: A set \(K \subseteq \mathbb{R}^n \) is named \(m \)-invex with respect to the mapping \(\eta: K \times K \times [0, 1] \to \mathbb{R}^n \) for certain fixed \(m \in (0, 1), r_1, r_2 \in K \) with \(r_1 < r_2 \). Assume that \(g: K \to \mathbb{R} \) is a differentiable mapping satisfying that \(g^{(r)} \) is integrable on the \(\eta \)-invex set of \(\eta(m) = \eta_x + \eta_y \), where \(m = \eta_y \) and \(\eta_x \in K \). Before stating the results, we set the following notation:

\[
\mathcal{H}_{\eta}(u, \eta, \lambda, n, x) := \frac{n + 1}{2\eta(r_2, r_1, m)} \left((1 - \lambda)^{\eta_x(x, r_1, m)} \times \left(g(mr_1) + g(mr_1 + \eta(x, r_1, m)) \right)
\]

\[
+ \eta_x^{(r_2, r_1, m)} \left(g(mx + \eta(r_2, x, m)) + g(mx) \right) \right)
\]

\[
+ \lambda \left[\eta_x^{(r_2, x, m)} g \left(mx + \frac{n}{n+1} \eta(x, r_1, m) \right) \right]
\]

\[
+ \eta_x^{(r_2, x, m)} \left(g \left(mx + \frac{n}{n+1} \eta(r_2, x, m) \right) \right)
\]

\[
- \left(n + 1 \right)^{\eta_x(x, r_1, m)} \times \left[k \int_{(mr_1)}^{\eta_x(x, r_1, m)} g \left(mr_1 + \frac{n}{n+1} \eta(x, r_1, m) \right) \right]
\]

\[
+ k \int_{(mx)}^{\eta_x(x, r_1, m)} g \left(mx + \frac{n}{n+1} \eta(r_2, x, m) \right)
\]

\[
- k \int_{(mx)}^{\eta(x, r_1, m)} g \left(mx + \frac{n}{n+1} \eta(r_2, x, m) \right)
\]

\[
\]
In particular, if \(\eta(e_1, e_2, m) = e_1 - me_2 \) with \(m = 1 \) for \(e_1, e_2 \in [r_1, r_2] \), Eq. (3) reduces to

\[
\mathcal{H}(\mu, k; \lambda, n, x) := \frac{n + 1}{2} \left\{ (1 - \lambda) \left[\frac{(x - r_1)\mu}{r_2 - r_1} g(x) + (x - r_1)\frac{\eta}{r_2 - r_1} g(r_1) + (r_2 - x)\frac{\eta}{r_2 - r_1} g(r_2) \right] + \lambda \left[\frac{(x - r_1)\mu}{r_2 - r_1} g(x) + g \left(\frac{n + 1}{n + 1} x + \frac{1}{n + 1} x \right) \right] + \left(\frac{r_2 - x}{r_2 - r_1} g \left(\frac{n + 1}{n + 1} x + \frac{1}{n + 1} r_2 \right) \right) \right\} - (n + 1)\frac{\eta}{2(r_2 - r_1)} \\
\times k\mathcal{J}_{\mu,r_2}^\mu g \left(\frac{n + 1}{n + 1} x + \frac{1}{n + 1} r_2 \right) + k\mathcal{J}_{\mu,x}^\mu g \left(\frac{n + 1}{n + 1} x + \frac{1}{n + 1} r_1 \right) + k\mathcal{J}_{\mu,r_2}^\mu g \left(\frac{n + 1}{n + 1} x + \frac{1}{n + 1} r_2 \right) \right\}
\]

We need the succeeding lemma.

Lemma 12: The following \(k \)-fractional integral identity together with \(x \in (r_1, r_2) \), \(n \in \mathbb{N}^+ \), \(\lambda \in [0, 1] \), \(\mu > 0 \) and \(k > 0 \) holds:

\[
\mathcal{H}_{\eta, \mu}(\mu, k; \lambda, n, x) = \frac{\eta^\mu}{2\eta(r_2 - r_1)} \int_0^1 \left(r^\mu - \lambda \right) g \left(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) dt - g \left(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) \int_0^1 \left(r^\mu - \lambda \right) g \left(mx + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) dt.
\]

Proof: Integrating by parts and changing the variable, we have that

\[
\int_0^1 \left(r^\mu - \lambda \right) g \left(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) dt = \frac{(n + 1)(1 - \lambda)g \left(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) \left|_0^1 \right.}{\eta(x, r_1, m)} - \int_0^1 \frac{\mu(n + 1)\eta^\mu}{k\eta(x, r_1, m)} g \left(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) dt.
\]

Similarly, we get that

\[
\int_0^1 \left(r^\mu - \lambda \right) g \left(mx + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) dt = \frac{(n + 1)(1 - \lambda)g \left(mx + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) \left|_0^1 \right.}{\eta(x, r_1, m)} - \int_0^1 \frac{\mu(n + 1)\eta^\mu}{k\eta(x, r_1, m)} g \left(mx + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) dt.
\]

and

\[
\int_0^1 \left(r^\mu - \lambda \right) g \left(mx + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) dt = \frac{(n + 1)(1 - \lambda)g \left(mx + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) \left|_0^1 \right.}{\eta(x, r_1, m)} - \int_0^1 \frac{\mu(n + 1)\eta^\mu}{k\eta(x, r_1, m)} g \left(mx + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) dt.
\]
After suitable rearrangements, the desired result in (4) is obtained. This ends the proof.

Corollary 13: In Lemma 12, if \(\eta(e_1, e_2, m) = e_1 - me_2 \) with \(m = 1 \) for \(e_1, e_2 \in [r_1, r_2] \), then we obtain the following identity:

\[H(\mu, k; \lambda, n, x) = \frac{(x - r_1)^{\frac{k}{m} + 1}}{2(r_2 - r_1)} \int_0^1 \left(r^\mu - \lambda \right) \left[g'(\frac{n + t}{n + 1}x + 1 - t) \right] dt \]

where

\[e = \left(\frac{k}{m} + 1 \right)(n + 1)^\alpha \]

\[\frac{2n^\alpha \lambda}{(m + 1)(n + 1)^\alpha} \]

\[+ \frac{\lambda(2n + \frac{1}{n})\alpha + 1 - (n + 1)^\alpha + 1 - \mu^\alpha + 1}{(m + 1)(n + 1)^\alpha} \]

and

\[\Psi_{\mu, k}(\lambda, n, \alpha) = \int_0^1 \left| t^\mu - \lambda \right|^\alpha \left| f(t) \right|^\frac{1}{2} \left| g(t) \right|^\frac{1}{2} dt \]

where \(f \) and \(g \) are both integrable mappings on \([a, b]\) with \(q \geq 1 \).

Using this inequality, Lemma 12, and the generalized \((\alpha, m)\)-preinvexity of \(|g'|^q \), we get that

\[|H_{\eta_m}(\mu, k; \lambda, n, x)| \]

\[\leq \frac{\mu}{2} \left(\frac{n^\alpha \lambda}{(m + 1)(n + 1)^\alpha} \right) \left(\int_0^1 \left| t^\mu - \lambda \right| dt \right)^{\frac{1}{2}} \left(\int_0^1 \left| f(t) \right|^\frac{1}{2} \left| g(t) \right|^\frac{1}{2} dt \right)^{\frac{1}{2}} \]

\[+ \frac{\mu}{2} \left(\frac{n^\alpha \lambda}{(m + 1)(n + 1)^\alpha} \right) \left(\int_0^1 \left| t^\mu - \lambda \right| dt \right)^{\frac{1}{2}} \left(\int_0^1 \left| f(t) \right|^\frac{1}{2} \left| g(t) \right|^\frac{1}{2} dt \right)^{\frac{1}{2}} \]

where

\[\Gamma_{\mu, k}(\lambda) = \int_0^1 \left| t^\mu - \lambda \right| dt \]

\[= \left(\frac{k}{\mu + k} - \lambda \right) \frac{2m^\alpha}{\mu + k} \]

\[\Phi_{\mu, k}(\lambda, n, \alpha) = \int_0^1 \left| t^\mu - \lambda \right| \left(\frac{n + t}{n + 1} \right)^\alpha dt \]

\[\leq \frac{\mu}{2} \left(\frac{n^\alpha \lambda}{(m + 1)(n + 1)^\alpha} \right) \left(\int_0^1 \left| t^\mu - \lambda \right| dt \right)^{\frac{1}{2}} \left(\int_0^1 \left| f(t) \right|^\frac{1}{2} \left| g(t) \right|^\frac{1}{2} dt \right)^{\frac{1}{2}} \]
and
\[I_k = \int_0^1 \left| t^\frac{\mu}{n} - \lambda \right| ^q g' \left(m x + \frac{n + t}{n + 1} (r_2, x, m) \right) \left| \left(\frac{n + t}{n + 1} \right) ^a g(x) \right| ^q dt \]
\[\leq \int_0^1 \left| t^\frac{\mu}{n} - \lambda \right| \left(\frac{m (1 - \left(\frac{n + t}{n + 1} \right) ^a)}{\left(n + 1 \right) ^a} \right) g(x) \, dt \]
\[+ \left(\frac{n + t}{n + 1} \right) ^a g(x) \, dt. \]

Hence the proof is completed. \(\square \)

Remark 16: In Theorem 15, taking \(\eta(e_1, e_2, m) = e_1 - me_2 \) with \(m = 1 \) for \(e_1, e_2 \in [r_1, r_2] \), and choosing \(\lambda = 0, k = 1 = n \) together with \(\alpha = 1 \), one gets Theorem 3 established by Mihai and Mitroi in [20]. Furthermore, taking \(\mu = 1 \), one has Theorem 3 presented by Latif in [17].

Corollary 17: In Theorem 15, choosing \(\eta(e_1, e_2, m) = e_1 - me_2 \) with \(m = 1 \) for \(e_1, e_2 \in [r_1, r_2] \), and taking \(x = \frac{r_1 + r_2}{2}, n = 1 \), one has the following \(k \)-fractional integral inequality for \(\alpha \)-convex mappings:
\[\left| \frac{2^\frac{\mu}{n} - 1}{\left(r_2 - r_1 \right) ^{\frac{\mu}{n} - 1}} \mathcal{H} \left(\mu, k; 1, 1, \frac{r_1 + r_2}{2} \right) \right| \left| g' \left(r_1 \right) \right| ^\eta \]
\[\leq \left| \left(1 - \lambda \right) \left[g \left(\frac{r_1 + r_2}{2} \right) + \frac{g(r_1) + g(r_2)}{2} \right] \right| ^\frac{\mu}{n} \]
\[+ \lambda \left[g \left(\frac{3r_1 + r_2}{4} \right) + \frac{g(r_1) + 3g(r_2)}{4} \right] \]
\[- \frac{2^\frac{\mu}{n} - 1}{\left(r_2 - r_1 \right) ^\frac{\mu}{n} - 1} \left[k \mathcal{J} _{r_1} ^\mu g \left(\frac{3r_1 + r_2}{4} \right) \right] \]
\[+ k \mathcal{J} _{r_1} ^\mu g \left(\frac{3r_1 + r_2}{4} \right) \]
\[+ k \mathcal{J} _{r_1} ^\nu g \left(\frac{r_1 + r_2}{2} \right) \]
\[+ k \mathcal{J} _{r_1} ^\mu g \left(\frac{r_1 + r_2}{2} \right) \]
\[\leq \frac{r_2 - r_1}{8} \chi ^{\frac{n - 1}{n}} \left[\left(\chi - \Phi_\mu,k(1, \alpha) \right) \right] ^\eta \]
\[+ \Phi_\mu,k(1, \alpha) \left| g' \left(\frac{r_1 + r_2}{2} \right) \right| ^\eta \]
\[+ \left| \left(\chi - \Psi_\mu,k(1, \alpha) \right) g' \left(r_1 \right) \right| \]
\[+ \left| \left(\chi - \Psi_\mu,k(1, \alpha) \right) g' \left(r_2 \right) \right| \]
\[+ \left(\chi - \Phi_\mu,k(1, \alpha) \right) g' \left(\frac{r_1 + r_2}{2} \right) \]
\[+ \Phi_\mu,k(1, \alpha) g' \left(\frac{r_1 + r_2}{2} \right). \]

Remark 18: Consider Corollary 17.

(i) Taking \(\lambda = 0 \) and \(\alpha = 1 \) yields that
\[\left| \frac{2^\frac{\mu}{n} - 1}{\left(r_2 - r_1 \right) ^{\frac{\mu}{n} - 1}} \mathcal{H} \left(\mu, k; 0, 1, \frac{r_1 + r_2}{2} \right) \right| \]
\[\leq \frac{r_2 - r_1}{8} \left(\frac{k}{\mu + k} \right) \left\{ \left[\frac{k}{2\mu + 4k} \left| g'(r_1) \right| ^q \right] ^\frac{1}{q} \right\} \]
\[+ \frac{2\mu + 3k}{2\mu + 4k} \left| g' \left(\frac{r_1 + r_2}{2} \right) \right| ^\frac{1}{q} \]
\[+ \left[\frac{2\mu + 3k}{2\mu + 4k} g'(r_1) \right] ^q + \frac{3\mu + 3k}{4\mu + 8k} \left| g' \left(\frac{r_1 + r_2}{2} \right) \right| ^\frac{1}{q} \]
\[+ \left[\frac{3\mu + 5k}{4\mu + 8k} \right] \left| g'(r_1) \right| ^q + \frac{3\mu + 5k}{4\mu + 8k} \left| g'(r_1) \right| ^q \]
\[+ \left[\frac{3\mu + 5k}{4\mu + 8k} \right] \left| g'(r_1) \right| ^q + \frac{3\mu + 5k}{4\mu + 8k} \left| g'(r_1) \right| ^q \]
\[+ \frac{3\mu + 5k}{4\mu + 8k} \left| g'(r_1) \right| ^q + \frac{3\mu + 5k}{4\mu + 8k} \left| g'(r_1) \right| ^q \].

(ii) Taking \(\lambda = 1 \) and \(\alpha = 1 \) claims that
\[\left| \frac{2^\frac{\mu}{n} - 1}{\left(r_2 - r_1 \right) ^{\frac{\mu}{n} - 1}} \mathcal{H} \left(\mu, k; 1, 1, \frac{r_1 + r_2}{2} \right) \right| \]
\[\leq \frac{r_2 - r_1}{8} \left(\frac{\mu}{\mu + k} \right) \left\{ \left[\frac{k + 3k}{4\mu + 8k} \left| g'(r_1) \right| ^q \right] ^\frac{1}{q} \right\} \]
\[+ \frac{3\mu + 5k}{4\mu + 8k} \left| g' \left(\frac{r_1 + r_2}{2} \right) \right| ^\frac{1}{q} \]
\[+ \left[\frac{3\mu + 5k}{4\mu + 8k} \right] \left| g'(r_1) \right| ^q + \frac{3\mu + 5k}{4\mu + 8k} \left| g'(r_1) \right| ^q \]
\[+ \frac{3\mu + 5k}{4\mu + 8k} \left| g'(r_1) \right| ^q + \frac{3\mu + 5k}{4\mu + 8k} \left| g'(r_1) \right| ^q \]
\[+ \frac{3\mu + 5k}{4\mu + 8k} \left| g'(r_1) \right| ^q + \frac{3\mu + 5k}{4\mu + 8k} \left| g'(r_1) \right| ^q \].

(iii) Taking \(\lambda = \frac{1}{3} \) or \(\frac{1}{2} \), we have similar results mentioned above.

The following result holds for generalized \((\alpha, m)\)-preinvexity.

Theorem 19: Assume that \(|g'| \) for \(q > 1 \) is generalized \((\alpha, m)\)-preinvex with \(p + q^{-1} = 1 \). The following \(k \)-fractional integral inequality together with \(\mu > 0, k > 0, \lambda \in [0, 1], n \in \mathbb{N}^* \) and \(x \in (r_1, r_2) \) holds:
\[\mathcal{H} _{n,m} \left(\mu, k; \lambda, n, x \right) \]
\[\leq \frac{1}{\tau_1 ^\frac{\mu}{n} } \left\{ \left| \eta ^{\frac{\mu}{n} + 1} (x, r_1, m) \right| \right\} \]
\[\times \left[\left(m(1 - \tau_2 (n, \alpha)) |g'(r_1)| ^q + \tau_2 (n, \alpha) |g'(x)| ^q \right) ^\frac{1}{q} \right] \]
\[+ \left(m(1 - \tau_3 (n, \alpha)) |g'(r_1)| ^q + \tau_3 (n, \alpha) |g'(x)| ^q \right) ^\frac{1}{q} \]
\[+ \left| \frac{\eta ^{\frac{\mu}{n} + 1} (r_2, x, m) }{2^\eta (r_2, r_1, m) } \right| \]
\[\left(m(1 - T_3(n, \alpha)) \right| g'(x) \right|^q + T_3(n, \alpha) \right| g'(r_2) \right|^q \right) ^{\frac{1}{q}} \\
+ \left(m(1 - T_2(n, \alpha)) \right| g'(x) \right|^q + T_2(n, \alpha) \right| g'(r_2) \right|^q \right) ^{\frac{1}{q}} \right) \\
\right\}, \quad (7) \]

where

\[T_1(\mu, k, \lambda, p) = \begin{cases} \frac{k}{\mu p + k}, & \lambda = 0, \\
\frac{2 \mu p \frac{\mu p + k}{\mu p + k} - \lambda}{\mu p + k}, & 0 < \lambda < 1, \\
\frac{\mu p + k}{\mu} \left(k \mu, p + 1 \right), & \lambda = 1, \\
n_2(n, \alpha) = \int_0^1 \left(n + \frac{t}{n + 1} \right) ^{\alpha} dt = \frac{1}{(\alpha + 1)(n + 1)^{\alpha}}. \\
\end{cases} \]

\[T_3(n, \alpha) = \int_0^1 \left(\frac{1 - t}{n + 1} \right) ^{\alpha} dt = \frac{1}{(\alpha + 1)(n + 1)^{\alpha}}. \]

\[\text{Proof:} \text{ From Lemma 12, utilizing the Hölder inequality and the generalized} \ (\alpha, m) \text{-preinvexity of} \ |g'|^q, \text{we get that} \]

\[\left| \mathcal{H}_{\eta_{\mu}}(\mu, k; \lambda, n, x) \right| \leq \frac{1}{2 \left[\eta(r_2, r_1, m) \right]} \left(\int_0^1 \left| t - \lambda \right|^p dt \right) ^{\frac{1}{p}} \left[(J_1) ^{\frac{1}{q}} + (J_2) ^{\frac{1}{q}} \right] \\
+ \frac{\eta^{\frac{1}{n}+1}(r_2, x, m)}{2 \left[\eta(r_2, r_1, m) \right]} \left(\int_0^1 \left| t - \lambda \right|^p dt \right) ^{\frac{1}{p}} \left[(J_3) ^{\frac{1}{q}} + (J_4) ^{\frac{1}{q}} \right]. \]

where

\[J_1 = \int_0^1 \left| g'(m x + n + \frac{t}{n + 1} \eta(x, r_1, m)) \right|^q dt \]
\[J_2 = \int_0^1 \left| g'(m x + n + \frac{t}{n + 1} \eta(r_1, x, m)) \right|^q dt \]
\[J_3 = \int_0^1 \left| g'(m x + n + \frac{t}{n + 1} \eta(r_2, x, m)) \right|^q dt \]
\[J_4 = \int_0^1 \left| g'(m x + n + \frac{t}{n + 1} \eta(r_2, x, m)) \right|^q dt \]

and

\[J_1 = \int_0^1 \left| g'(m x + n + \frac{t}{n + 1} \eta(x, r_1, m)) \right|^q dt \]
\[J_2 = \int_0^1 \left| g'(m x + n + \frac{t}{n + 1} \eta(r_1, x, m)) \right|^q dt \]
\[J_3 = \int_0^1 \left| g'(m x + n + \frac{t}{n + 1} \eta(r_2, x, m)) \right|^q dt \]
\[J_4 = \int_0^1 \left| g'(m x + n + \frac{t}{n + 1} \eta(r_2, x, m)) \right|^q dt \]

When \(\lambda = 0 \), we have that

\[\int_0^1 \left| t - \lambda \right|^p dt = \frac{k}{\mu p + k} \]
In particular, taking $\alpha = 1$, one gets that
\[
\left| \frac{2^{\mu - 1}}{(r_2 - r_1)^{\beta - 1}} K_1 \left(\mu, k; \lambda, \frac{r_1 + r_2}{2} \right) \right|
\leq \frac{r_2 - r_1}{8} T_1^k (\mu, k, \lambda, p)
\times \left\{ \begin{array}{l}
\left[\frac{1}{4} |r'(r_1)|^q + \frac{3}{4} g\left(\frac{r_1 + r_2}{2} \right)|^q \right]^{\frac{1}{q}} \\
+ \left[\frac{3}{4} |g'\left(r_1 \right)|^q + \frac{1}{4} |g\left(\frac{r_1 + r_2}{2} \right)|^q \right]^{\frac{1}{q}} \\
+ \left[\frac{3}{4} g\left(\frac{r_1 + r_2}{2} \right)|^q + \frac{1}{4} |g'(r_2)|^q \right]^{\frac{1}{q}} \\
+ \left[\frac{1}{4} |g\left(\frac{r_1 + r_2}{2} \right)|^q + \frac{3}{4} |g'(r_2)|^q \right]^{\frac{1}{q}} \end{array} \right\}.
\]

Remark 22: In Corollary 21, taking $\lambda = 0$, $\frac{1}{2}$ and 1 respectively, one obtains the similar results.

Our next result is about an estimation of the upper bound of k-fractional integral inequality through products of two generalized (α, m)-preinvex mappings.

Theorem 23: Let $K \subseteq \mathbb{R}$ be an open m-invex subset with respect to $\eta : K \times \mathbb{R} \times (0, 1) \to \mathbb{R}$ for certain fixed $m \in (0, 1), r_1, r_2 \in K$ with $0 \leq r_1 < r_2$. If $g : K \to (0, +\infty)$ and $h : K \to (0, +\infty)$ are both generalized (α, m)-preinvex, then the following inequality holds:
\[
\frac{2^{\mu - 1} \Gamma_k(\mu + k)}{\eta^\mu (r_2, r_1, m)} \left[k \mathcal{J}_1^{\mu} (\eta(r_2, r_1, m)) \right] - \left(gh \right)(mr_1)
\leq \left[\begin{array}{l}
1 - 2L_1 + L_2 - 2L_3 + 2L_4 m^2 g(r_1) h(r_1) \\
+ [L_1 - L_2 + L_3 - L_4] [mg(r_1) h(r_2) + mg(r_2) h(r_1)] \\
+ [L_2 + L_4] g(r_2) h(r_2), \end{array} \right]
\]
where
\[
L_1 = \frac{\mathcal{F}_1[-\alpha, \frac{\mu}{k}; \frac{\mu}{k}; + 1; \frac{1}{2}]}{2},
\]
\[
L_2 = \frac{\mathcal{F}_1[-2\alpha, \frac{\mu}{k}; \frac{\mu}{k}; + 1; \frac{1}{2}]}{2},
\]
\[
L_3 = \frac{\mu}{2^{\alpha + 1}(\mu + ka)},
\]
\[
L_4 = \frac{\mu}{2^{\alpha + 1}(\mu + 2ka)}.
\]

Proof: Since g and h are generalized (α, m)-preinvex, one has that
\[
\frac{2^{\mu - 1} \Gamma_k(\mu + k)}{\eta^\mu (r_2, r_1, m)}
\times k \mathcal{J}_1^{\mu} (\eta(r_2, r_1, m)) (gh)(mr_1 + \eta(r_2, r_1, m))
= \frac{\mu 2^{\mu - 1}}{k \eta^\mu (r_2, r_1, m)}
\times \mathcal{J}_1^{\mu} (\eta(r_2, r_1, m)) (gh)(mr_1 + \eta(r_2, r_1, m)).
\]

Similarly, we have that
\[
\frac{2^{\mu - 1} \Gamma_k(\mu + k)}{\eta^\mu (r_2, r_1, m)} \left[k \mathcal{J}_1^{\mu} (\eta(r_2, r_1, m)) \right] - \left(gh \right)(mr_1)
\leq \left[\begin{array}{l}
1 - 2L_1 + L_2 - 2L_3 + 2L_4 m^2 g(r_1) h(r_1) \\
+ [L_1 - L_2 + L_3 - L_4] [mg(r_1) h(r_2) + mg(r_2) h(r_1)] \\
+ [L_2 + L_4] g(r_2) h(r_2), \end{array} \right]
\]
Adding both sides of these two inequalities correspondingly, we obtain the desired result in (8). This ends the proof.

Remark 24: In Theorem 23, taking $\eta(r_2, r_1, m) = r_2 - mr_1$ with $m = 1$ and choosing $\alpha = 1$ and $h(x) = 1$, we obtain the right part of the inequality (2.1) in Theorem 15 presented by Farid et al. in [10].

Another k-fractional integral inequality involving products of two generalized (α, m)-preinvex functions is obtained as follows.

Theorem 25: With the same assumptions in Theorem 23, one has that
\[
\frac{\Gamma_k(\mu + k)}{2^{\mu - 1} \eta^\mu (r_2, r_1, m)} \left[k \mathcal{J}_1^{\mu} (\eta(r_2, r_1, m)) \right] - \left(gh \right)(mr_1)
\leq \left[\begin{array}{l}
1 - 2\Theta_1 + \Theta_2 - 2\Theta_3 + 2\Theta_4 m^2 g(r_1) h(r_1) \\
+ [\Theta_1 - \Theta_2 + \Theta_3 - \Theta_4] [mg(r_1) h(r_2) + mg(r_2) h(r_1)] \\
+ [\Theta_2 + \Theta_4] g(r_2) h(r_2), \end{array} \right]
\]
where
\[
\Theta_1 = \frac{\mu \beta \mu}{2k}, \\
\Theta_2 = \frac{\mu}{2k}, \\
\Theta_3 = \frac{\mu}{2k}, \\
\Theta_4 = \frac{\mu}{2k}.
\]
Proof: The proof of Theorem 25 is analogous to that of in Theorem 23 and is omitted. □

Remark 26: In Theorem 25, taking \(\eta(r_2, r_1, m) = r_2 - mr_1 \) with \(m = 1 \), and choosing \(k = 1 = \alpha \), we have Theorem 15 presented by Chen in [3].

III. FURTHER ESTIMATION RESULTS

If the considered mapping \(g' \) is bounded, then we have the following result.

Theorem 27: If there exist constants \(r < R \) such that \(-\infty < r \leq g'(z) \leq R < \infty \) for all \(z \in \mathcal{K} \), then the following inequality together with \(\mu > 0, k > 0, \lambda \in [0, 1], n \in \mathbb{N}^* \) and \(x \in (r_1, r_2) \) holds:

\[
\left| \mathcal{H}_{\eta_0}(\mu, k; \lambda, n, x) \right| \leq \frac{(R - r)(|\eta^{\mu+1}(x, r_1, m)| + |\eta^{\mu+1}(r_2, x, m)|)}{2|\eta(r_2, r_1, m)|} \\
\times \left[\frac{k}{\mu + k} - \lambda + 2\lambda \frac{\mu}{\mu + k} \right].
\]

(10)

Proof: From Lemma 12, one has that

\[
\mathcal{H}_{\eta_0}(\mu, k; \lambda, n, x) = \frac{\eta^{\mu+1}(x, r_1, m)}{2|\eta(r_2, r_1, m)|} \left\{ \int_0^1 (t^\mu - \lambda) \right. \\
\times \left[g'(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m)) - \frac{r + R}{2} \right] \, dt \right. \\
\left. - \int_0^1 \left[g'(mx + \frac{n + t}{n + 1} \eta(x, x, r_1, m)) - \frac{r + R}{2} \right] \, dt \right\} \\
- \frac{\eta^{\mu+1}(r_2, x, m)}{2|\eta(r_2, r_1, m)|} \left\{ \int_0^1 (t^\mu - \lambda) \\
\times \left[g'(mr_1 + \frac{n + t}{n + 1} \eta(x, r_2, m)) - \frac{r + R}{2} \right] \, dt \right. \\
\left. - \int_0^1 \left[g'(mx + \frac{n + t}{n + 1} \eta(x, r_2, x, m)) - \frac{r + R}{2} \right] \, dt \right\}.
\]

Using the inequality \(r \leq g'(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m)) \leq R \), we have that

\[
r - \frac{r + R}{2} \leq g'(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m)) - \frac{r + R}{2} \leq R - \frac{r}{2},
\]

which implies that

\[
\left| g'(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m)) - \frac{r + R}{2} \right| \leq \frac{R - r}{2}.
\]

Similarly, we get that

\[
\left| g'(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m)) - \frac{r + R}{2} \right| \leq \frac{R - r}{2},
\]

and

\[
\left| g'(mx + \frac{n + t}{n + 1} \eta(x, r_2, m)) - \frac{r + R}{2} \right| \leq \frac{R - r}{2}.
\]

Therefore

\[
|\mathcal{H}_{\eta_0}(\mu, k; \lambda, n, x)| \leq \frac{1}{2|\eta(r_2, r_1, m)|} \left\{ \int_0^1 (t^\mu - \lambda) \right. \\
\times \left[g'(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m)) - \frac{r + R}{2} \right] \, dt \right. \\
\left. + \int_0^1 \left[g'(mx + \frac{n + t}{n + 1} \eta(x, r_1, m)) - \frac{r + R}{2} \right] \, dt \right\} \\
+ \frac{|\eta^{\mu+1}(r_2, x, m)|}{2|\eta(r_2, r_1, m)|} \left\{ \int_0^1 (t^\mu - \lambda) \\
\times \left[g'(mr_1 + \frac{n + t}{n + 1} \eta(x, r_2, m)) - \frac{r + R}{2} \right] \, dt \right. \\
\left. + \int_0^1 \left[g'(mx + \frac{n + t}{n + 1} \eta(x, r_2, m)) - \frac{r + R}{2} \right] \, dt \right\} \\
\leq (R - r)(|\eta^{\mu+1}(x, r_1, m)| + |\eta^{\mu+1}(r_2, x, m)|) \\
\times \left[\frac{k}{\mu + k} - \lambda + 2\lambda \frac{\mu}{\mu + k} \right].
\]

This ends the proof. □

Corollary 28: In Theorem 27, choosing \(\eta(e_1, e_2, m) = e_1 - me_2 \) with \(m = 1 \) for \(e_1, e_2 \in [r_1, r_2] \) and taking \(\lambda = 0, n = 1 \) and \(x = \frac{r_1 + r_2}{2} \), we have that

\[
\left| \frac{2^{\mu-1}}{(r_2 - r_1)^{\mu-1}} \mathcal{H}(\mu, k; 0, 1, \frac{r_1 + r_2}{2}) \right| \\
= \left| g\left(\frac{r_1 + r_2}{2}\right) + g(r_1) + g(r_2) - \frac{2^{\mu-1}}{(r_2 - r_1)^{\mu-1}} \right. \\
\times \left[k\mathcal{J}_r^\mu g\left(\frac{3r_1 + r_2}{4}\right) + k\mathcal{J}_r^\mu g\left(\frac{3r_1 + r_2}{4}\right) \right] \\
\left. + k\mathcal{J}_r^\mu g\left(\frac{3r_1 + r_2}{4}\right) + k\mathcal{J}_r^\mu g\left(\frac{3r_1 + r_2}{4}\right) \right| \\
\leq k(R - r)(r_2 - r_1) \frac{4}{4(\mu + k)}.
\]

(11)
In particular, taking \(\mu = 1 = k \), we obtain that
\[
\left| g\left(\frac{r_1 + r_2}{2} \right) + g(r_1) + g(r_2) - \frac{2}{r_2 - r_1} \int_{r_1}^{r_2} g(x) dx \right| \\
\leq \frac{(R - r)(r_2 - r_1)}{8}.
\] (12)

Our next goal is another estimation-type result when the considered mapping \(g' \) satisfies Lipschitz condition.

Theorem 29: If \(g' \) satisfies Lipschitz condition on \(K \) for some \(L > 0 \), then the following inequality together with \(\mu > 0, k > 0, \lambda \in [0, 1], n \in \mathbb{N}^+ \) and \(x \in (r_1, r_2) \) holds:
\[
\left| \mathcal{H}_{\eta_{\mu}}(\mu, k; \lambda, n, x) \right| \\
\leq \frac{L(|\eta_\mu^{k+2}(x, r_1, m)| + |\eta_\mu^{k+2}(r_2, x, m)|)}{2(n+1)|\eta(r_2, r_1, m)|} \\
\times \left[\frac{2\mu\lambda^{k+1} + 2k}{\mu + 2k} + \frac{(n-1)(2\mu\lambda^{k+1} + k)}{\mu + k} - n\lambda \right].
\] (13)

Proof: From Lemma 12, we get that
\[
\mathcal{H}_{\eta_{\mu}}(\mu, k; \lambda, n, x) \\
= \frac{\eta_\mu^{k+1}(x, r_1, m)\int_0^1 (t_\mu^\lambda - \lambda) \left\{ g' \left(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) \\
- g \left(mr_1 + \frac{1}{2} \eta(x, r_1, m) \right) \right\} dt \\
- \frac{\eta_\mu^{k+2}(r_2, x, m)\int_0^1 (t_\mu^\lambda - \lambda) \left\{ g' \left(mx + \frac{n + t}{n + 1} \eta(r_2, x, m) \right) \\
- g \left(mx + \frac{1}{2} \eta(r_2, x, m) \right) \right\} dt \right\} \\
\times \frac{\eta_\mu^{k+1}(r_2, x, m)}{2n\eta(r_2, r_1, m)} \\
\times \left\{ \int_0^1 |t_\mu^\lambda - \lambda| \left| g' \left(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) \\
- g \left(mr_1 + \frac{1}{2} \eta(x, r_1, m) \right) \right| dt \\
+ \int_0^1 |t_\mu^\lambda - \lambda| \left| g' \left(mx + \frac{n + t}{n + 1} \eta(r_2, x, m) \right) \\
- g \left(mx + \frac{1}{2} \eta(r_2, x, m) \right) \right| dt \right\}
\]
Since \(g' \) satisfies Lipschitz condition on \(K \) for some \(L > 0 \), we have that
\[
\left| g' \left(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) - g' \left(mr_1 + \frac{1}{2} \eta(x, r_1, m) \right) \right| \\
\leq L \left| mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m) - \left(mr_1 + \frac{1}{2} \eta(x, r_1, m) \right) \right| \\
= L |\eta(x, r_1, m)| \left(\frac{2t + n - 1}{n + 2} \right).
\]

Similarly, we obtain that
\[
\left| g' \left(mr_1 + \frac{1 - t}{n + 1} \eta(x, r_1, m) \right) - g' \left(mr_1 + \frac{1}{2} \eta(x, r_1, m) \right) \right| \\
\leq L |\eta(x, r_1, m)| \left(\frac{2t + n - 1}{n + 2} \right),
\]
\[
\left| g' \left(mx + \frac{n + t}{n + 1} \eta(r_2, x, m) \right) - g' \left(mx + \frac{1}{2} \eta(r_2, x, m) \right) \right| \\
\leq L |\eta(r_2, x, m)| \left(\frac{2t + n - 1}{n + 2} \right)
\]
and
\[
\left| g' \left(mx + \frac{1 - t}{n + 1} \eta(r_2, x, m) \right) - g' \left(mx + \frac{1}{2} \eta(r_2, x, m) \right) \right| \\
\leq L |\eta(r_2, x, m)| \left(\frac{2t + n - 1}{n + 2} \right).
\]

Therefore,
\[
\mathcal{H}_{\eta_{\mu}}(\mu, k; \lambda, n, x) \\
\leq \frac{|\eta_\mu^{k+1}(x, r_1, m)|}{2|\eta(r_2, r_1, m)|} \\
\times \left\{ \int_0^1 |t_\mu^\lambda - \lambda| \left| g' \left(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) \\
- g \left(mr_1 + \frac{1}{2} \eta(x, r_1, m) \right) \right| dt \\
+ \int_0^1 |t_\mu^\lambda - \lambda| \left| g' \left(mx + \frac{n + t}{n + 1} \eta(r_2, x, m) \right) \\
- g \left(mx + \frac{1}{2} \eta(r_2, x, m) \right) \right| dt \right\}
\]
\[
\times \frac{|\eta_\mu^{k+2}(r_2, x, m)|}{2n|\eta(r_2, r_1, m)|} \\
\times \left\{ \int_0^1 |t_\mu^\lambda - \lambda| \left| g' \left(mr_1 + \frac{n + t}{n + 1} \eta(x, r_1, m) \right) \\
- g \left(mr_1 + \frac{1}{2} \eta(x, r_1, m) \right) \right| dt \\
+ \int_0^1 |t_\mu^\lambda - \lambda| \left| g' \left(mx + \frac{n + t}{n + 1} \eta(r_2, x, m) \right) \\
- g \left(mx + \frac{1}{2} \eta(r_2, x, m) \right) \right| dt \right\}
\]
\[
\leq \frac{L(|\eta_\mu^{k+2}(x, r_1, m)| + |\eta_\mu^{k+2}(r_2, x, m)|)}{2(n+1)|\eta(r_2, r_1, m)|} \\
\times \left[\frac{2\mu\lambda^{k+1} + 2k}{\mu + 2k} + \frac{(n-1)(2\mu\lambda^{k+1} + k)}{\mu + k} - n\lambda \right].
\]
The proof is completed. \(\square \)
Corollary 30: In Theorem 29, choosing \(\eta(e_1, e_2, m) = e_1 - me_2 \) with \(m = 1 \) for \(e_1, e_2 \in [r_1, r_2] \) and taking \(\lambda = 0, n = 1 \) and \(x = \frac{r_1 + r_2}{2} \), we have that
\[
\left| \frac{2^{\frac{2}{\mu} - 1}}{(r_2 - r_1)^{\frac{1}{\mu}} - 1} H_k \left(\mu, k; 0, 1, \frac{r_1 + r_2}{2} \right) \right|
\[
= \left| g \left(\frac{r_1 + r_2}{2} \right) + \frac{g(r_1) + g(r_2)}{2} - \frac{2^{\frac{2}{\mu} - 1}}{(r_2 - r_1)^{\frac{1}{\mu}}} \right|
\times \left[k \mathcal{J}_{\alpha} \left(\frac{3r_1 + r_2}{4} \right) + k \mathcal{J}_{\alpha} \left(\frac{3r_1 + r_2}{4} \right) \right]
\leq \frac{k L (r_2 - r_1)^2}{8(\mu + 2k)}.
\]
In particular, taking \(\mu = 1 = k \) yields that
\[
\left| g \left(\frac{r_1 + r_2}{2} \right) + \frac{g(r_1) + g(r_2)}{2} - \frac{2}{r_2 - r_1} \int_{r_1}^{r_2} g(u) du \right|
\leq \frac{L (r_2 - r_1)^2}{24}.
\]

IV. APPLICATIONS
A. PROBABILITY DENSITY FUNCTIONS
Let \(\tau : [r_1, r_2] \rightarrow [0, 1] \) be the probability density function of a continuous random variable \(X \) with the cumulative distribution function
\[
F(x) = \Pr(X \leq x) = \int_{r_1}^{x} \tau(t) dt.
\]
Using the fact that \(E(X) = \int_{r_1}^{r_2} t dF(t) = r_2 - \int_{r_1}^{r_2} F(t) dt \), we get the following results.

Proposition 31: In Theorem 15, taking \(\eta(e_1, e_2, m) = e_1 - me_2 \) with \(m = 1 \) for \(e_1, e_2 \in [r_1, r_2] \), and choosing \(\lambda = 0, \mu = 1 = k \) together with \(\alpha = 1 = n \), one gets the following inequality
\[
\Pr(X \leq x) + \frac{r_2 - x}{r_2 - r_1} \left(\frac{2}{r_2 - r_1} (r_2 - E(X)) \right)^{\frac{1}{3}}
\leq \left(\frac{x - r_1}{4(r_2 - r_1)} \right) \left[\frac{1}{6} |\tau(r_1)|^q + \frac{5}{6} |\tau(x)|^q \right]^{\frac{1}{3}}
+ \left(\frac{2}{3} |\tau(r_1)|^q + \frac{1}{3} |\tau(x)|^q \right)^{\frac{1}{3}}
+ \left(\frac{1}{3} |\tau(x)|^q + \frac{2}{3} |\tau(r_2)|^q \right)^{\frac{1}{3}}.
\]
In particular, taking \(q = 1 \) yields that
\[
\Pr(X \leq x) + \frac{r_2 - x}{r_2 - r_1} \left(\frac{2}{r_2 - r_1} (r_2 - E(X)) \right)^{\frac{1}{3}}
\leq \left(\frac{x - r_1}{4(r_2 - r_1)} \right) \left[|\tau(r_1)| + |\tau(x)| \right]
+ \left(\frac{2}{3} |\tau(r_1)| + \frac{1}{3} |\tau(x)| \right)^{\frac{1}{3}}
+ \left(\frac{1}{3} |\tau(x)| + \frac{2}{3} |\tau(r_2)| \right)^{\frac{1}{3}}.
\]

Proposition 32: In Theorem 15, taking \(\eta(e_1, e_2, m) = e_1 - me_2 \) with \(m = 1 \) for \(e_1, e_2 \in [r_1, r_2] \), and choosing \(\lambda = 1, \mu = 1 = k \) together with \(\alpha = 1 = n \), we have the following inequality
\[
\Pr(X \leq \frac{r_1 + x}{2}) + \frac{r_2 - x}{r_2 - r_1} \Pr(X \leq \frac{x + r_2}{2})
- \frac{r_2 - x}{r_2 - r_1} (r_2 - E(X)) \leq \frac{(x - r_1)^2}{8} \left[\left(\frac{1}{3} |\tau(r_1)|^q + \frac{2}{3} |\tau(x)|^q \right)^{\frac{1}{3}}
+ \left(\frac{2}{3} |\tau(r_1)| + \frac{1}{3} |\tau(x)| \right)^{\frac{1}{3}}
+ \left(\frac{1}{3} |\tau(x)| + \frac{2}{3} |\tau(r_2)| \right)^{\frac{1}{3}}. \right.
\]
In particular, taking \(q = 1 \), we have that
\[
\Pr(X \leq \frac{r_1 + x}{2}) + \frac{r_2 - x}{r_2 - r_1} \Pr(X \leq \frac{x + r_2}{2})
- \frac{r_2 - x}{r_2 - r_1} (r_2 - E(X)) \leq \frac{(x - r_1)^2}{8} \left[|\tau(r_1)| + |\tau(x)| \right]
+ \left(\frac{1}{3} |\tau(x)| + \frac{2}{3} |\tau(r_2)| \right)^{\frac{1}{3}}.
\]

Proposition 33: In Theorem 19, taking \(\eta(e_1, e_2, m) = e_1 - me_2 \) with \(m = 1 \) for \(e_1, e_2 \in [r_1, r_2] \), and choosing \(\lambda = 0, \mu = 1 = k \) together with \(\alpha = 1 = n \), we have the following inequality
\[
\Pr(X \leq x) + \frac{r_2 - x}{r_2 - r_1} \left(\frac{2}{r_2 - r_1} (r_2 - E(X)) \right)^{\frac{1}{3}}
\leq \left(\frac{x - r_1}{r_2 - r_1} \right) \left[\frac{1}{4} |\tau(r_1)|^q + \frac{3}{4} |\tau(x)|^q \right]^{\frac{1}{3}}
+ \left(\frac{2}{3} |\tau(r_1)| + \frac{1}{3} |\tau(x)| \right)^{\frac{1}{3}}
+ \left(\frac{1}{3} |\tau(x)| + \frac{2}{3} |\tau(r_2)| \right)^{\frac{1}{3}}.
\]

Proposition 34: In Theorem 19, taking \(\eta(e_1, e_2, m) = e_1 - me_2 \) with \(m = 1 \) for \(e_1, e_2 \in [r_1, r_2] \), and choosing \(\lambda = 1, \mu = 1 = k \) together with \(\alpha = 1 = n \), we obtain the following inequality
\[
\Pr(X \leq \frac{r_1 + x}{2}) + \frac{r_2 - x}{r_2 - r_1} \Pr(X \leq \frac{x + r_2}{2})
- \frac{r_2 - x}{r_2 - r_1} (r_2 - E(X)) \leq \frac{(x - r_1)^2}{8} \left[|\tau(r_1)| + |\tau(x)| \right]
+ \left(\frac{1}{3} |\tau(x)| + \frac{2}{3} |\tau(r_2)| \right)^{\frac{1}{3}}.
\]
\[
\left(\frac{1}{p+1} \right)^{\frac{1}{2}} \left\{ \frac{1}{4} \left[\frac{1}{4} \left(r_1 \right)^{q} + \frac{3}{4} \left(r_2 \right)^{q} \right] \right. \\
\left. + \frac{3}{4} \left[\frac{1}{4} \left(r_1 \right)^{q} + \frac{1}{4} \left(r_2 \right)^{q} \right] \right\} + \frac{(r_2 - r_1)^2}{4} \left\{ \frac{3}{4} \left| \left(r_1 \right)^{q} + \frac{1}{4} \left| \left(r_2 \right)^{q} \right| \right\} \right\}.
\]

B. SPECIAL MEANS

Let us recall certain means as follows.

1. The arithmetic mean:
 \[A(e_1, e_2) = \frac{e_1 + e_2}{2}, \quad e_1, e_2 \in \mathbb{R}. \]

2. The harmonic mean:
 \[H(e_1, e_2) = \frac{2}{\frac{1}{e_1} + \frac{1}{e_2}}, \quad e_1, e_2 \in \mathbb{R} \setminus \{0\}. \]

3. The logarithmic mean:
 \[L(e_1, e_2) = \frac{e_2 - e_1}{\ln|e_2| - \ln|e_1|}, \quad \text{where} \quad e_1, e_2 \in \mathbb{R}, \quad |e_1| \neq |e_2|, \quad e_1, e_2 \neq 0. \]

4. The generalized logarithmic mean:
 \[L_s(e_1, e_2) = \left[\frac{e_2^{s+1} - e_1^{s+1}}{(s+1)(e_2 - e_1)} \right]^{\frac{1}{s}}, \quad \text{where} \quad e_1, e_2 \in \mathbb{R}, \quad s \in \mathbb{Z} \setminus \{-1, 0\}, \quad e_1 \neq e_2. \]

Remark 37: Certain applications based on the obtained results to trapezoidal formulae can also be provided, and we omit the details.

V. CONCLUSION

Based on a new identity with multiple parameters, we have obtained certain estimation-type results pertaining the \(k \)-fractional integral inequality for the first-order differentiable mappings. More results can be deduced by choosing different mappings \(\eta \) and the special parameter values such as \(\mu, k, n \) and \(\lambda \). It is an interesting topic to apply these estimations to random variables and to special means.

REFERENCES

C. Luo et al.: Certain Bounds Related to Multi-Parameterized k-Fractional Integral Inequalities and Their Applications

CHUNYAN LUO received the B.S. degree from the Department of Mathematics, College of Science, China Three Gorges University, in 2018, where she is currently pursuing the master’s degree with the Department of Mathematics, College of Science. She has published several research articles in different international journals. Her research interests include convex analysis, especially mathematical inequalities and their applications.

BO YU received the Ph.D. degree from the Academy of Mathematics and System Sciences, China Academy of Sciences, in 2006. He is currently an Associate Professor with the Department of Mathematics, College of Science, China Three Gorges University. His research interests include computational and applied harmonic analysis, mathematical inequalities and their applications, and mathematical problems in engineering.

YAO ZHANG received the B.S. degree in mathematics from Henan University, in 2016, and the M.S. degree in mathematics from China Three Gorges University, Yichang, China, in 2019. He has published several articles in some international journals of mathematics. His research interests include convex analysis and mathematical inequalities.

TINGSONG DU received the B.S. degree in applied mathematics and the M.S. degree in computational mathematics from Wuhan University, Wuhan, China, in 1991 and 2001, respectively. He is currently a Professor with the Department of Mathematics, College of Science, China Three Gorges University, China. He has presided over several related research projects. He has published many high-impact articles in the International Journal of Mathematics and the International Journal of Engineering Sciences. His research interests include convex analysis, mathematical inequalities, systems engineering, and numerical optimization.