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ABSTRACT Nonlocal means (NLM), a patch-based nonlocal recovery paradigm, has attracted much
attention in recent decades. The decay parameter will greatly affect restoration performance of the NLM
method. However, the existing NLM methods with decay parameter adaptation cannot determine this
parameter effectively. To address this problem, we have proposed the minimum mean square error (MSE)
based decay parameter adaptation method for the NLM denoising. In the proposed method, the globally
optimal decay parameter is determined to produce the pre-denoised image based on the derived relation
between the global minimumMSE and the decay parameter. Then, the pixel-wiseMSE is estimated based on
the pre-denoised result and the corresponding method noise. Finally, the optimal pixel-wise decay parameter
is obtained by minimizing the pixel-wise MSE to produce the estimated restored image and the boosting
strategy is implemented on this image to generate the final denoised result. Extensive simulations on the
standard test images and real images corrupted with Gaussian noise and speckle noise demonstrate that the
proposed method significantly outperforms some compared NLM methods in noise reduction and detail
preservation and can provide better restoration performance than other state-of-the-art denoising methods in
most cases in terms of objective metrics and human vision.

INDEX TERMS Nonlocal means, decay parameter, mean square error, Gaussian noise, speckle noise.

I. INTRODUCTION
Noise will affect image quality, and lead to difficulty in
pattern recognition. Therefore, denoising is a crucial step to
facilitate subsequent image processing such as segmentation,
registration and visualization. For several decades, various
denoising techniques have been presented for noise removal
such as wavelet based methods [1], partial differential equa-
tions (PDE) based methods [2], total variation based meth-
ods [3], [4], nonlocal means (NLM) methods [5] and deep
learning based methods [6]. Among these methods, the NLM
method has attracted much attention in the field of image
denoising. This method was originally designed for Gaussian
noise reduction, and it has been extended to suppress speckle
noise inherent in ultrasound (US) imaging and synthetic aper-
ture radar (SAR) imaging.

The traditional NLM method explores image self-
similarities for noise removal by replacing the local
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comparison of individual pixels with the nonlocal comparison
of image patches. In this method, the restored intensity u(x, y)
of the pixel at (x, y) in the noisy image I is presented as:

u(x, y) = NL[I ](x, y) =

∑
(p,q)∈�

I (p, q)ω(x, y, p, q)∑
(p,q)∈�

ω(x, y, p, q)
, (1)

whereNL denotes the nonlocal means, and� is a search win-
dow. The weight ω(x, y, p, q) denoting the similarity between
two pixels at (p, q) and (x, y) is calculated as:

ω(x, y, p, q) = exp
(
−
||I (P(p, q))− I (P(x, y))||22,a

h2

)
, (2)

where h denotes the decay parameter controlling the filtering
degree, P(p, q) and P(x, y) are the two similarity windows
(image patches) centered at (x, y) and (p, q), respectively;
||I (P(p, q)) − I (P(x, y))||22,a means the weighted Euclidean
distance between two image patches P(p, q) and P(x, y) of
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size (2Lp + 1)× (2Lp + 1) defined as:

||I (P(p, q))− I (P(x, y))||22,a =
Lp∑

i=−Lp

Lp∑
j=−Lp

Ga(i, j)

(I (p+ i, q+ j)−I (x + i, y+ j))2, (3)

whereGa(i, j)= 1
√
2πa

exp(− i2+j2

2a2
) is the Gaussian kernel with

the standard deviation a > 0.
The restoration performance of the NLMmethod is greatly

influenced by such parameters as the decay parameter,
the search window and similarity window sizes as well as
the weight computation strategy. To ensure good restora-
tion performance in the case of Gaussian noise, the varia-
tions of this method have been proposed such as the search
window adaptation [7]–[9], the similarity window adapta-
tion [10], the iterative [11] or collaborative filtering schemes
(e.g. BM3D [12]) as well as the improved weight computa-
tion based on principal component analysis (PCA) [13] and
orthogonal moments [14]. For the NLMdenoising of speckle-
noise corrupted images, the related strategies include the sim-
ilarity calculation methods based on the weighted maximum
likelihood estimation framework [15], [16], Bayesian frame-
work [17], [18], multiscale strategy [19], [20], maximum
a posteriori [21], PCA [22] and test statistics [23], [24] as
well as the combination of the NLM method with the sigma
filter [25], the Kalman filter [26], the Lee filter [27], the
Kuan filter [28], the guided filter [29], the total variation [30]
and the wavelet shrinkage [31].

Despite the performance improvement of the above NLM
methods over the traditional one, the optimal choice of the
decay parameter still maintains an open and challenging
problem. Recently, some decay parameter adaptation meth-
ods have been proposed. The global adaptation methods
were proposed in [5], [8], [32] to determine a linear relation
between the decay parameter h and the noise standard devia-
tion σ for the whole image, i.e., h = Cσ , where C denotes a
constant. However, some researches in [13], [33] confirmed
that the optimal h is only roughly proportional to σ in terms
of peak signal-to-noise ratio (PSNR). Ville and Kocher [34]
exploited a Stein’s unbiased risk estimate (SURE) method
to monitor the mean square error of the NLM method to
determine the globally optimal decay parameter.

Although the above global decay parameter adaptation
methods can enhance the robustness of the NLM method,
a globally optimal h still makes it difficult to denoise the
entire image without blurring any area in this image too
much [35]. Therefore, the local adaptation of the decay
parameter is an urgent need for NLM image denoising. Along
this line, Duval et al. [35] introduced the bias-variance trade-
off principle into the NLM method to highlight the need of
the local choice of h and adaptively set h relying on the
pixel-wise SURE (PSURE) method. Considering that the
pixel-wise estimation of the risk is not robust, Duval et al.
locally averaged the estimations based on the assumption that
the risk is roughly homogeneous within each image region.

This method tends to lead to the degraded restoration perfor-
mance in some edge regions. Doré and Cheriet [36] deduced
that the decay parameter corresponds to the bandwidth of a
local constant regression and optimized h for each pixel by
embedding a Cp statistic method into the Newton’s method.
However, this Cp-NLM method estimated the local MSE
based on the noisy image, thereby leading to the inaccurate
estimation of h at high noise levels.
On the whole, the existing NLM methods with decay

parameter adaptation cannot determine this parameter for
each image pixel accurately, thereby influencing their restora-
tion performance for Gaussian-noise and speckle-noise cor-
rupted images, especially at high noise contamination.
To address this problem, we have proposed the minimum
mean square error (MSE) based decay parameter adaptation
framework for the NLM method. In the proposed method,
the global minimum MSE derived from the Gaussian noise
and speckle noise models is utilized to generate the pre-
denoised image. The obtained denoised result and the corre-
sponding method noise are utilized to estimate the pixel-wise
MSE. The optimal decay parameter for each image pixel is
estimated by minimizing the pixel-wiseMSE using the steep-
est descent method to obtain the estimated restored image,
based on which the boosting strategy is implemented to
generate the final denoised image. Extensive simulations on
several standard test images show that the proposed method
outperforms several compared NLM methods in each case
and the BM3D in most cases by providing higher PSNR and
structural similarity (SSIM), and performs better than the
compared deep learning based method [6] in some cases in
terms of SSIM. Besides, testing on the real images demon-
strates the advantage of the proposedmethod over other NLM
methods in terms of SNR and contrast-to-noise ratio (CNR).
The reminder of this paper is organized as follows.

Section II provides a detailed description of our method.
Section III provides the experimental results and com-
parisons of restoration performance among the proposed
method and other evaluated methods. Conclusions are drawn
in Section IV.

II. METHOD
A. DEFINITION OF OUR METHOD
The corrupted image I can be expressed as the addition of the
noise-free image s and noise η∗, i.e., I = s+η∗. For Gaussian
noise, η∗ satisfies the Gaussian distribution of zero mean and
standard deviation of σ ∗η in the whole image. For speckle
noise inherent in US imaging and SAR imaging, η∗ will be
described as η∗ = sγ u where u is a zero-mean Gaussian
random variable with a standard deviation of σu, and it is
assumed to be stationary and independent of s [15], [37], [38].
A purely multiplicative noise with γ = 1 has been considered
for the US images [39], [40] and the SAR images [31], [41].

For the appreciation of restoration performance of the
NLM method, the MSE has been widely adopted. However,
the global MSE cannot reflect restoration performance at
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an image pixel effectively. To address the problem of the
automatic choice of the decay parameter for each image pixel,
the pixel-wise MSE will be considered. The MSE at (x, y) is
actually the local L2 risk to measure the difference between
the restored value u(x, y) and s(x, y), i.e., MSE[u(x, y)] =
E((u(x, y)−s(x, y))2)=E((u(x, y)−NL[s](x, y)+NL[s](x, y)−
s(x, y))2), where E denotes the expectation operator. Because
η∗ has zero mean and it is uncorrelated with s, the pixel-wise
MSE can be decomposed into the sum of the squared bias
bias2[u(x, y)] and the variance var[u(x, y)].

MSE[u(x, y)] = bias2[u(x, y)]+ var[u(x, y)], (4)

where bias2[u(x, y)] and var[u(x, y)] can be expressed as:

bias2[u(x, y)]=E((NL[s](x, y)−s(x, y))2)

=


∑

(p,q)∈�
s(p, q)ω(x, y, p, q)∑

(p,q)∈�
ω(x, y, p, q)

−s(x, y)


2

=


∑

(p,q)∈�
(s(p, q)−s(x, y))ω(x, y, p, q)∑

(p,q)∈�
ω(x, y, p, q)


2

(5)

var[u(x, y)]=E((u(x, y)− NL[s](x, y))2)

=


∑

(p,q)∈�
(I (p, q)− s(p, q))ω(x, y, p, q)∑

(p,q)∈�
ω(x, y, p, q)


2

=


∑

(p,q)∈�
η∗(p, q)ω(x, y, p, q)∑

(p,q)∈�
ω(x, y, p, q)


2

(6)

Obviously, bias2[u(x, y)] and var[u(x, y)] are both relevant
to h. To obtain the optimal decay parameter,MSE[u(x, y)] can
be minimized with respect to h. However, MSE[u(x, y)] can-
not be used in practice because bias2[u(x, y)] and var[u(x, y)]
in equations (5) and (6) are related to two unknown items
s and η∗. A feasible solution to this problem is to use the
optimal estimation results of s and η∗ to approximate them.

Based on the above analysis, we have proposed the MSE
based decay parameter adaptation scheme for the NLM
method as shown in Fig. 1. In this scheme, the standard
deviation of noise will be estimated firstly and it is utilized
to generate the extended ‘‘noise patch’’. Based on the input
noisy image and the extended ‘‘noise patch’’, the global MSE
of the denoised image by the NLM method is minimized to
obtain the globally optimal decay parameter hopt . The global
hopt is used for the NLMmethod to produce the pre-denoised
image. Based on the pre-denoised result and the correspond-
ing method noise defined as the difference between the noisy
image and its restored version, s and η∗ are estimated by uti-
lizing the residual image details in themethod noise which are
retrieved by the NLM method and the mean filter. The pixel-
wise MSE is computed according to the estimated results
of s and η∗ and minimized to determine the optimal pixel-
wise decay parameters hopt , based on which the estimated

denoised image is obtained and further processed using the
boosting strategy to generate the final denoised image.

B. MINIMUM MSE BASED DECAY
PARAMETER ADAPTATION
1) MINIMIZATION OF THE GLOBAL MSE
To restore s from I can be regarded as the problem of finding
two components u and v which can approximate s and η∗,
respectively, i.e., I = u + v = s + η∗, where v denotes the
residual part of I . For the denoised result u, we can rewrite
MSE[u] as:

MSE[u]=E((u− s)2) = var[u− s]+ (E(u− s))2

= var[η∗ − v]+ (E(η∗ − v))2

= var[η∗ − v]+ (E(v))2 (7)

We recall the identity var[η∗ − v] = var[η∗] + var[v] −
2cov[η∗, v], where cov[η∗, v] denotes the covariance between
η∗ and v. Therefore, equation (7) is given by:

MSE[u] = var[η∗]+ var[v]− 2cov[η∗, v]+ (E(v))2 (8)

Based on the assumption that var[η∗ − v] and E(v) are
the smooth function related to h, the necessary condition for
achieving the minimum MSE[u] will be expressed as:

∂MSE[u]
∂h

=
∂MSE[u]
∂var[v]

·
∂var[v]
∂h

= 0 (9)

Because ∂var[v]
∂h 6= 0 (see Appendix A for proof), it can be

derived from equation (9) that the minimum MSE[u] can be
achieved with the globally optimal decay parameter hopt only
if ∂MSE[u]

∂var[v] = 0. By computing the partial differential with
respect to var[v] on both sides of equation (8), we will obtain
the following condition.

∂cov[η∗, v]
∂var[v]

=
1
2
+

E(v) · ∂E(v)
∂var[v]

(10)

However, this condition in equation (10) may not appear
during the process of determining the global hopt . To ensure
that the signal and the noise are almost equally filtered so that
theminimumMSE[u] can be achieved approximately, wewill
establish the function f (h) related to h as:

f (h) =

∣∣∣∣∂cov[η∗, v]∂var[v]
−

E(v) · ∂E(v)
∂var[v]

−
1
2

∣∣∣∣ (11)

By minimizing f (h) in equation (11), hopt can be obtained
using such search algorithms as the golden section search
method [42]. The minimization of f (h) involves the computa-
tion of ∂E(v)

∂var[v] and
∂cov[η∗,v]
∂var[v] . The item ∂E(v)

∂var[v] can be computed
on the noisy image I . In order to approximate cov[η∗, v]
effectively, we refer to the direct estimation method proposed
in [43]. In this method, we will simply extend I with a ‘‘noise
patch’’ in one direction. In Figure 1, the extended ‘‘noise
patch’’ of size 512 × 50 is shown for the input image I of
size 512 × 512. Here, the ‘‘noise patch’’ is actually the sum
of a constant (e.g., 120 in this paper) and the noise of variance
σ̃ 2
η∗ , which is the estimated value of σ 2

η∗ . The item cov[η∗, v]
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FIGURE 1. The proposed adaptive nonlocal means method for image denoising.

defined as cov[η∗, v] = E((η∗−E(η∗))(v−E(v))) is estimated
on the extended ‘‘noise patch’’. For v in cov[η∗, v], it will
be calculated as the difference between the noise patch and
its denoised result obtained by the NLM method using the
considered decay parameter. For η∗− E(η∗), it can be easily
computed based on the estimated noise of variance σ̃ 2

η∗ which
will be obtained in the following way.

For Gaussian noise, σ̃η∗ is estimated using the median
absolute deviation (MAD) based method [8]. For speckle
noise, σ̃η∗ will be estimated using the edge detection based
method [36]. This method firstly creates a noisy image by
subtracting from I a smooth version Is obtained by a fast
NLM method [44] and masking the edges in Is by the Small-
est Univalue Segment Assimilating Nucleus (SUSAN) edge
detector [45]. Then the MAD based method is used on the
created noisy image to estimate σ̃η∗ .

It should be noted that although the proposed global decay
parameter adaptation based nonlocal means (GNLM)method
is similar to the scheme presented in [43] in terms of the
utilization of ∂cov[η

∗,v]
∂var[v] , our method differs from this work in

two aspects. For one thing, the latter is focused on the optimal
PDE-based denoising of Gaussian-noise corrupted images,
but our method will be used for the optimal NLM denoising
of both Gaussian-noise and speckle-noise corrupted images.
On the other hand, E(v)·∂E(v)

∂var[v] has been considered additionally
in our method. Because the imperfect image denoising will
lead to the residual image details in v, there will exist the
difference between the estimated noise component v and η∗,
i.e., E(v) 6= 0. By subtracting E(v) ·∂E(v) from ∂cov[η∗, v],
our method can attenuate the influence of the noise estimation
error and thus can ensure the good restored results.

The GNLM algorithm involves several tuned parameters
including the initial search range [hmin, hmax] for the golden
section search method and the interval 1h of the decay
parameter for computing ∂var[v]. The search range can be

chosen to be between 0 and a large value, but such a set-
ting will reduce the computational efficiency. To ensure the
efficient implementation of the GNLM method, we have
performed extensive simulations on several standard test
images corrupted with Gaussian noise and speckle noise of
various variances to determine the distribution of hopt . It is
found that hopt is almost in the range of [0.5σ̃η∗ , σ̃η∗ ] and
[0.95σ̃η∗ , 1.45σ̃η∗ ] for Gaussian-noise and speckle-noise cor-
rupted images, respectively. Correspondingly, this range will
be set for [hmin, hmax]. For1h, ideally, it should be set to be a
relatively small value to ensure the effective computation of
∂var[v]. We have tested1h in the range of [5, 25], and found
that the GNLM method is very robust for the various images
in this range. Therefore,1h = 10 is chosen in this paper. The
implementation of the GNLMmethod involves the following
steps.

Step 1: Estimate the standard deviation σ̃η∗ of noise in the
noisy image I and extend I with the ‘‘noise patch’’ of the
estimated σ̃η∗ .

Step 2: Initialize 1h = 10, and set the initial search range
[hmin, hmax] of the decay parameter for the golden section
search method as h2min = c·σ̃ 2

η∗ and h
2
max = (c+0.5)·σ̃ 2

η∗ with
the constant c chosen to be close to 0.5 and 0.95 for Gaussian
noise and speckle noise, respectively.

Step 3: Determine two intermediate decay parameters h1
and h2 as h1 = hmin+ 0.618 · (hmax − hmin) and h2 = hmax −
0.618 · (hmax − hmin).
Step 4: Calculate the denoised results u1 and u′1 of the

image I for the NLM method using h1 and h1−1h based on
equation (1), respectively. Compute the corresponding noise
components v1 and v′1 for I as v1 = I − u1 and v′1 = I − u′1.
Compute the corresponding noise components v2 and v′2 for
the ‘‘noise patch’’ in a similar way.

Step 5: Calculate ∂var[v]=var[v1]−var[v′1] and ∂E(v) =
E(v1) −E(v′1) on the image I .
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Step 6: Compute ∂cov[η∗, v] = cov[η∗, v2]− cov[η∗, v′2],
where cov[η∗, v2] and cov[η∗, v′2] are calculated on the
‘‘noise patch’’.

Step 7: Compute f (h1) and f (h2) according to equa-
tion (11).

Step 8: Update hmax , h1 and h2 as hmax = h1, h1 = h2,
and h2 = hmax − 0.618 · (hmax − hmin) while keeping hmin
unchanged if f [h1] > f [h2]. Update hmin, h1 and h2 as hmin =
h2, h2 = h1, h1 = hmin+ 0.618 · (hmax − hmin) while keeping
hmax unchanged if f [h1] < f [h2].
Step 9: If hmax − hmin < 1h, then stop the golden section

search process, and output the optimal decay parameter as
hopt = (hmax + hmin)/2 as well as the corresponding optimal
denoised result uhopt . Otherwise, go to Step 3.

2) MINIMIZATION OF THE PIXEL-WISE MSE
In our study, it has been found that some residual details
still exist in the method noise vhopt (vhopt = I − uhopt ). Thus
the global MSE based denoised result uhopt and vhopt cannot
provide the accurate estimation of s and η∗, respectively.
To obtain the accurate denoised result, the residual image
details will be extracted from vhopt and utilized to estimate
s and η∗.

Assuming that vhopt comprises the complete noise compo-
nent η∗ and residual image details r , i.e., vhopt = r + η∗,
the extraction of residual details can be regarded as the
problem of denoising vhopt . Here, the NLM method will be
adopted to address this problem. However, it will be difficult
to retrieve r from vhopt effectively if the weights in the NLM
method are directly computed from vhopt due to its low SNR.
Considering that vhopt is included in I , we resort to denoising
vhopt by the NLM method using the weights computed on I .
Accordingly, r is expressed as:

r(x, y)=NL[vhopt ](x, y)

=

∑
(p,q)∈�

vhopt (p, q)ωhopt (x, y, p, q)∑
(p,q)∈�

ωhopt (x, y, p, q)
, (12)

where ωhopt (x, y, p, q) is computed by replacing h in equation
(2) with hopt and further presented as:

ωhopt (x, y, p, q)=

{
ωhopt(x, y, p, q), if ω̃hopt(x, y, p, q)>T
0, otherwise

(13)

where ω̃hopt(x, y, p, q)=
ωhopt(x,y,p,q)∑

(p,q)∈�
ωhopt(x,y,p,q)

denotes the normal-

ized weight; T (0 ≤ T < 1) means the weight threshold used
to dismiss the pixels with very low similarity weight from
participating in the weighting averaging in the NLMmethod.
An increasing T means that fewer pixels in the searchwindow
will be introduced into the filtering procedure.We have tested
T in the range [0,0.02] and found that good denoised results
can be obtained when T takes a value close to 0.0055.
Although the residual details can be extracted from the

method noise by the NLM method, there is still some noise

component in r . To remove the remaining noise, the mean fil-
ter with a 3×3 window (MF|3×3) is adopted to provide good
image detail preservation while delivering effective noise
reduction. The estimated residual detail image r̂ is presented
as r̂ =MF[NL[vhopt ]]|3×3. Based on r̂ , the estimated original
image ŝ and noise η̂∗ are computed as ŝ = uhopt + r̂ and
η̂∗ = vhopt − r̂ .
With ŝ and η̂∗, the cost function J [h(x, y)] related to h(x, y)

is derived as the improved version of the estimated pixel-
wise MSE to guide the determination of the decay parameter,
i.e., J [h(x, y)] = ˆbias

2
[u(x, y)]+ ˆvar[u(x, y)]. Here, the esti-

mated squared bias ˆbias
2
[u(x, y)] and variance ˆvar[u(x, y)]

are computed based on equations (5) and (6) by replacing s
with ŝ and η∗ with η̂∗, i.e.,

ˆbias
2
[u(x, y)] =


∑

(p,q)∈�
(ŝ(p, q)−ŝ(x, y))ω̂(x, y, p, q)∑

(p,q)∈�
ω̂(x, y, p, q)


2

,

(14)

ˆvar[u(x, y)] =


∑

(p,q)∈�
η̂∗(p, q)ω̂(x, y, p, q)∑

(p,q)∈�
ω̂(x, y, p, q)


2

, (15)

where the weight ω̂(x, y, p, q) is computed on ŝ instead of I
to attenuate the disadvantageous influence of noise.

It is easy to understand that the optimal pixel-wise decay
parameter can be obtained when J [h(x, y)] achieves the min-
imum. Therefore, J [h(x, y)] is optimized iteratively using the
steepest descent method to produce h(x, y) as:

hn+1(x, y) = hn(x, y)− α
∂J [hn(x, y)]
∂h(x, y)

(16)

where α is the step size. The term ∂J [h(x,y)]
∂h(x,y) is computed as:

∂J [h(x, y)]
∂h(x, y)

=

(
∂ ˆbias

2
[u(x, y)]

∂h(x, y)
+
∂ ˆvar[u(x, y)]
∂h(x, y)

)
(17)

where the derivation of the two items ∂ ˆbias
2
[u(x,y)]

∂h(x,y) and
∂ ˆvar[u(x,y)]
∂h(x,y) can be found in Appendix B.

The local MSE based denoised image Y will be obtained
by the NLM method, where the weights produced from the
optimal pixel-wise decay parameters are thresholded by the
weight threshold T1 as done in equation (13). Considering
that the residual noise may still remain and some details
may be lost in Y , the boosting strategy proposed for K-SVD
denoising in [46] will be adopted. In the boosting scheme,
the denoised image Y is firstly added to I to produce the
strengthened image S, and then S is denoised by the pixel-
wise adaptive NLM method. Finally, Y is subtracted from
the restored signal-strengthened result to produce the final
denoised image F . This procedure can be be expressed as:

S(x, y) = I (x, y)+ βY (x, y), (18)

F(x, y) = NL[S](x, y)− βY (x, y), (19)
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where β denotes a constant, and NL[S](x, y) is the denoised
result by the NLM method, where the weights are com-
puted using the obtained distance between image patches
in the image ŝ and the decay parameter h′(x, y) (h′(x, y) =
βhopt (x, y)) and then thresholded by T1.
The pixel-wise decay parameter adaptation based nonlocal

means (PNLM) consists of the following steps.
Step 1: Obtain the residual detail image r̂ by implementing

theNLMmethod on themethod noise vhopt and themean filter
on the NL[vhopt ]. Estimate the original image and noise as
ŝ = uhopt + r̂ and η̂∗ = vhopt − r̂ .
Step 2: Set the maximum iteration times nmax = 60 and

T =0.0055. Set T1=0.003, h0(x, y)=6σ̃η∗ and α=6 for the
Gaussian-noise corrupted image while T1=0.002, h0(x, y)=
4.5σ̃η∗ and α=0.25 for the speckle-noise corrupted image.
Step 3: Initialize the iteration times n=0.
Step 4: Compute ∂J [h

n(x,y)]
∂h(x,y) for the pixel at (x, y) according

to equation (17).
Step 5: Update the decay parameter hn+1(x, y) using

equation (16).
Step 6: If n = nmax or || ∂J [h

n(x,y)]
∂h(x,y) || < ε (ε = 10−4), then

stop the iteration process for the considered pixel, output the
optimal pixel-wise decay parameter as hopt (x, y)=hn+1(x, y)
as well as the corresponding optimal denoised result, and go
to step 7. Otherwise, n=n+ 1 and go to step 4.
Step 7: If all image pixels have been processed, then stop

the PNLM method to generate the estimated denoised image
Y . Otherwise, process the next image pixel and go to step 3.

Step 8: Set β to be close to 0.85 and implement the boosting
strategy on the image Y according to equations (18) and (19)
to generate the final denoised image.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, we will firstly verify the effectiveness of
the proposed GNLM and PNLM methods in determining
the optimal decay parameter. Then, experiments are done on
some standard 512×512 grayscale and color images, and two
texture images Straw and Brickwall shown in Fig. 2 as well as
three real images to appreciate restoration performance of our
method. Finally, the computational efficiency of our method
is discussed.

A. ANALYSIS OF THE GNLM AND PNLM METHODS
To verify that the GNLM method can determine hopt effec-
tively, we will test different h on the standard images. Fig. 3
shows the MSE curves of the denoised results for the Lena,
Barbara and Airplane images corrupted by Gaussian noise
with ση∗ = 40 and speckle noise with σu = 0.3. The black
curves,F and H denote the MSE values resulting from using
different h, the estimated and real minimum ones, respec-
tively. From Fig. 3, we can see that the estimated hopt values
are close to the real ones, and thus there only exist the small
differences between the estimated minimumMSE values and
the real ones for the different Gaussian-noise and speckle-
noise corrupted images.

FIGURE 2. Standard grayscale and color images, and texture images.
(a)-(e) Grayscale Lena, Barbara, Boat, Peppers and Airplane images,
respectively. (f)-(h) Color Lena, Peppers and Airplane images, respectively.
(i)-(j) Straw and Brickwall images, respectively.

Furthermore, the differences between the estimated opti-
mal pixel-wise decay parameters and the ideal ones for the
Lena, Barbara and Peppers images are shown in Fig. 4.
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FIGURE 3. The MSE curve, the estimated and real minimum MSE for the
GNLM method operating on the three images. (a)-(c) MSE for the
Gaussian-noise corrupted Lena, Barbara and Airplane images with
ση∗ =40, respectively. (d)-(f) MSE for the speckle-noise corrupted Lena,
Barbara and Airplane images with σu = 0.3, respectively.

Here, the ideal decay parameters for each image are obtained
by minimizing J [h(x, y)] where ŝ and η̂∗ are replaced with
s and η∗, respectively. As shown in Fig. 4, the differences
of pixel-wise decay parameters are very small in the smooth
regions, which will facilitate sufficient noise suppression by
the PNLM method. In the edge regions, there exist some dif-
ferences of decay parameters because the complicated image
details will lead to the inaccurate estimation of the origi-
nal image and the noise component. However, the involved
differences in these regions are generally small, which can
ensure the effective preservation of image details by the
proposed method.

B. EXPERIMENTS ON THE GRAYSCALE IMAGES
For Gaussian noise, restoration performance will be com-
pared among the traditional NLM method using a fixed
decay parameter with h = σ̂η∗ [5], the SURE method [34],
the PSURE method [35], the Cp-NLM method [36],
the BM3D method [12], the denoising convolutional neural
network (DnCNN) based method [6], the GNLM method
and the PNLM method. For speckle noise, considering that
the SURE and PSURE methods are not suitable for speckle
reduction, we have chosen the NLMmethod, the probabilistic

FIGURE 4. The differences between the estimated pixel-wise decay
parameters and the ideal ones for the PNLM method operating on the
Lena, Barbara and Peppers images. (a)-(c) The differences for the three
Gaussian-noise corrupted images with ση∗ =40. (d)-(f) The differences for
the three speckle-noise corrupted images with σu=0.3.

patch-based (PPB) filter [15], the optimized Bayesian nonlo-
cal means (OBNLM)method [17], the BM3Dmethod and the
DnCNN method for comparisons with our methods. In the
proposed methods, the 17 × 17 search window is selected,
and the 9 × 9 and 25 × 25 similarity windows are chosen
for the GNLM method and the PNLM method, respectively.
For all compared NLM methods, to ensure a good trade-
off between computational efficiency and restoration perfor-
mance, we have fixed the search window and the similarity
window to be 17 × 17 and 9 × 9, respectively. It should
be noted that for the BM3D method, the parameters of the
‘‘Normal Profile’’ suggested in [12] are used except that
the search window of size 17 × 17 instead of 39 × 39 is
used to make a fair comparison with the proposed method.
Meanwhile, the BM3D has been implemented for once and
three times to suppress Gaussian noise and speckle noise,
respectively. The parameters in the DnCNN method are cho-
sen as suggested in [6] except that this method is trained
on 200 images chosen from the dataset released at [47] for
20 epochs.
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TABLE 1. Comparison of PSNR (dB)/SSIM for the various methods operating on five standard images corrupted by Gaussian noise with different standard
deviations.

TABLE 2. Comparison of PSNR (dB)/SSIM for the various methods operating on the five standard images corrupted by speckle noise with different
standard deviations.

For the quantitative appreciation of restoration perfor-
mance, we will use such indexes as PSNR and SSIM [48]
which are defined as:

PSNR[F] = 10 log10

(
2552

MSE[F]

)
, (20)

SSIM[F] =
(2s̄F̄ + C1)(2δsF + C2)

(s̄2 + F̄2 + C1)(δ2s + δ
2
F + C2)

, (21)

where s̄ and F̄ are the mean of s and F , respectively; δs and
δF are the standard deviation of s and F , respectively; δsF is

the covariance between s and F ; C1 and C2 are the small
constants to stabilize SSIM and chosen as C1 = (K1L)2

and C2 = (K2L)2, where L is the observed dynamic range,
K1 = 0.01 and K2 = 0.03. It should be noted that the SSIM
is computed locally based on the automatic downsampling as
suggested at [49].

Tables 1 and 2 list PSNR and SSIM of all evalu-
ated methods operating on the five grayscale images cor-
rupted by Gaussian noise and speckle noise, respectively.
Fig. 5 shows the mean PSNR for each evaluated method.
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FIGURE 5. The mean PSNR for each evaluated method operating on the five standard images corrupted with Gaussian noise
and speckle noise. (a) Gaussian noise. (b) Speckle noise.

FIGURE 6. Comparisons of restored results for the various denoising methods operating on the Boat image corrupted with
Gaussian noise of ση∗ = 40. (a) Noisy ROI. (b) NLM. (c) SURE. (d) PSURE. (e) Cp-NLM. (f) BM3D. (g) DnCNN. (h) PNLM.

Obviously, the PSNR and SSIM values of the PNLMmethod
are much higher than those of the NLM method and the
GNLM method, which indicates the advantage of the pixel-
wise decay parameter adaptation strategy over the strategy of
using the globally fixed parameter. Compared with the pixel-
wise adaptive NLM methods, the PNLM method, on aver-
age, provides approximate PSNR improvements of 1 dB and
1.28 dB over the PSURE and Cp-NLM methods as shown
in Fig. 5(a), respectively. Fig. 5(b) shows that the mean
PSNR improvements provided by the PNLM method over
the Cp-NLM, PPB and OBNLM methods almost amount to
2.43 dB, 1.68 dB and 1.65 dB, respectively. Compared with
the BM3D, the proposed method provides higher PSNR and
SSIM values for Gaussian noise removal in most cases and
speckle noise reduction in all cases. The DnCNN method
performs unsatisfactorily in denoising the Barbara image.
Although this method provides higher PSNR values in some
cases, it produces lower SSIM values than the PNLMmethod
in most cases, which indicates the superiority of the proposed

PNLMmethod over the DnCNNmethod in preserving image
details.

Fig. 6 shows the visual impression of all evaluated meth-
ods for the Boat image corrupted by Gaussian noise with
ση∗=40. Fig. 7 shows the comparisons of the enlarged view
of regions of interest (ROIs) chosen from Fig. 6 to further
demonstrate the advantage of the proposed method. It can
be seen from Fig. 6 and Fig. 7 that the NLM method and
the SURE method lead to obvious image over-smoothing
due to the adoption of the globally fixed decay parameter.
The PSURE and Cp-NLMmethods can preserve some image
details better than the above two methods by using the pixel-
wise adaptive decay parameters, but they remain some noise
in the denoised results. The BM3D method cannot preserve
the fine details and introduce some unwanted artifacts as
showed by the three white boxes, and it performs worse in
maintaining the sharpness of image details than the PNLM
method. Compared with the DnCNN method, the proposed
method can preserve the integrity of edges better and produce
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FIGURE 7. Enlarged view of the ROIs in the restored results shown in Fig. 6. (a) Original ROI. (b) NLM. (c) SURE. (d) PSURE. (e) Cp-NLM. (f) BM3D.
(g) DnCNN. (h) PNLM.

FIGURE 8. Enlarged view of the ROIs in the restored results for the evaluated methods operating on the Peppers image corrupted with
speckle noise of σu = 0.4. (a) Noisy ROI. (b) Original ROI. (c) PPB. (d) OBNLM. (e) Cp-NLM. (f) BM3D. (g) DnCNN. (h) PNLM.

less distortion of image edges as indicated by the three white
boxes.

Fig. 8 shows the enlarged view of ROIs chosen from
the restored results of the Peppers image corrupted by

speckle noise with σu = 0.4. Clearly, the PPB and
OBNLM methods suppress speckle noise effectively but
result in over-smoothing of image details. The Cp-NLM
method remains some speckle noise in the restored results.

VOLUME 7, 2019 130255



Y. Zhan et al.: NLM Image Denoising With Minimum MSE-Based Decay Parameter Adaptation

FIGURE 9. Denoised results of BM3D and PNLM methods operating on the color Lena image corrupted with Gaussian noise
of ση∗ = 40. (a) Noisy image. (b) Original image. (c) BM3D. (d) PNLM.

TABLE 3. Comparison of PSNR (dB)/SSIM for the BM3D and PNLM
methods operating on the two texture images corrupted by Gaussian
noise.

The BM3D method introduces obvious unwanted artifacts.
The DnCNN method damages some weak image details as
shown by the white box. By comparison, the PNLM method
delivers sufficient speckle noise reduction while preserving
some details very well.

C. EXPERIMENTS ON THE TEXTURE IMAGES
To demonstrate the advantage of the PNLM method in
denoising the corrupted texture images, we will test our
method on Straw and Brickwall images shown in Figure 2.
The two images are from the Brodatz texture images avalia-
ble at http://sipi.usc.edu/database/database.php?volume=
textures. The restoration performance of the PNLM method
is compared with that of the BM3D method. Table 3 shows
the PSNR and SSIM of the two methods for the Gaussian-
noise corrupted images. It can be seen that compared with
the BM3D method, the proposed PNLM method can provide
higher PSNR and SSIM in restoring the corrupted Straw
image and competitive PSNR and SSIM for the Brickwall
image.

D. EXPERIMENTS ON THE COLOR IMAGES
The RGB color Lena, Peppers and Airplane images corrupted
withGaussian noise of ση∗=40 and speckle noise of σu = 0.3
are used to appreciate the effectiveness of the PNLMmethod.
Similar to [12], these color images are transformed into the
luminance and chrominance channels using the opponent
color transformations. Denoising is done separately on each
transformed channel.

Table 4 lists the PSNR and SSIM of the BM3D and PNLM
methods. The observation from Table 3 shows that the PNLM
method provides higher PSNR and SSIM than the BM3D
method in most cases. Fig. 9 shows the denoised results of

FIGURE 10. Three real images. (a) MR image (224×260). (b) SAR image
(340×340). (c) US image (328×312).

the two methods operating on the Lena image corrupted with
Gaussian noise of ση∗ = 40. The visual comparisons clearly
demonstrate that the BM3D method will remain some noise
in the denoised image while the PNLM method can remove
Gaussian noise from the image more effectively.

E. APPLICATION TO REAL IMAGE DENOISING
The proposed method is also applied to denoising a real
brain magnetic resonance (MR) image available at [51],
a SAR image [52] (Courtesy of Sandia National Laboratories,
Radar ISR) and a liver US image acquired by our lab. These
images are shown in Fig. 10. It has been well known that
the Rician noise in the MR image with high SNR can be
approximated to be Gaussian one [50] and the noise in the
SAR and US images is generally regarded as multiplicative
speckle noise. Thus, the proposed method can be used for
denoising the three images. To appreciate restoration per-
formance of various denoising methods operating on these
images, we will use such no-reference metrics as contrast-to-
noise ratio (CNR) and SNR [53] defined as:

CNR=
|µ̂o − µ̂b|

σ̂b
(22)

SNR =
µ̂b

σ̂b
(23)

where µ̂o is the mean intensity of pixels in the object, µ̂b and
σ̂b denote the mean intensity and the standard deviation of
noise in the background surrounding the object, respectively.

Three pairs of ROIs marked by different colors are selected
from Fig. 10. Table 5 lists the CNR and SNR for each
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FIGURE 11. Visual comparisons of the restored results of the three chosen ROIs for the evaluated denoising methods. (a) From
top to bottom: ROIs chosen from MR, SAR and US images. (b) NLM. (c) From top to bottom: PSURE, PPB and OBNLM. (d) Cp-NLM.
(e) PNLM.

TABLE 4. Comparison of PSNR (dB)/SSIM for the BM3D and PNLM methods operating on the three color images corrupted by Gaussian noise and speckle
noise.

TABLE 5. Comparison of SNR (dB)/CNR for the various methods operating on the three real images.

evaluated method. Clearly, the PNLM method provides
higher CNR and SNR than the compared methods. Fig. 11
shows the denoised results of three ROIs for these methods.
Obviously, the other methods cannot maintain the sharp-
ness of regions of brain gyri and sulci in the MR image,

buildings and streets in the SAR image and vessels in the
US image, and cannot suppress noise superimposed in these
regions effectively. By comparison, the PNLM method can
suppress speckle noise and preserve the edges in these regions
very well.
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F. COMPUTATIONAL COMPLEXITY
In the proposed GNLM and PNLMmethods, the computation
of the distance between image patches is most time-
consuming. To address this issue, the fast distance com-
putation method proposed in [44] is utilized here, and no
repetitive distance computation will be done for determining
the global and pixel-wise decay parameters by computing the
distances only once in advance and then calling them for
the decay parameter optimization. Apart from the distance
computation, the golden search method in the GNLMmethod
and the steepest descent method in the PNLM method will
influence the efficiency of our method. In this paper, a small
initial search range for this search method and relatively few
iteration times for the steepest descent method have been
chosen to ensure the computational efficiency. Based on the
above strategy, we have implemented the proposed method
with MATLAB 2013b on the computer with 3.0 GHz CPU
and 64GB RAM. By using the fast distance computation
strategy, the mean execution time for the NLM, GNLM
and PNLM methods operating on the five Gaussian-noise
corrupted grayscale images is 18 seconds, 118 seconds and
480 seconds, respectively. Clearly, the proposed methods
are slower than the NLM method. The parallel computa-
tion strategy can be utilized in the future to accelerate our
method.

IV. CONCLUSION
This paper has proposed the decay parameter adaptation
framework for the nonlocal means method to remove Gaus-
sian noise and speckle noise. The proposed method can adap-
tively determine the decay parameter for each image pixel
by minimizing the pixel-wise MSE, which is estimated by
approximating the unknown noise-free image and the noise
with the global minimumMSE based denoised result and the
corresponding method noise, respectively.

Quantitative comparisons based on the standard images
show that the proposed method significantly outperforms
some compared NLM methods by providing higher PSNR
and SSIM values, and it performs better than the BM3D and
DnCNN methods in most cases for removing Gaussian noise
and speckle-noise. Furthermore, the proposed method has
great potential applications to denoising real SAR, MR and
US images due to its outstanding image detail preservation
performance, which is very important in pattern recognition
and medical diagnosis.

In general, the proposed method provides a universal
framework for the parameter optimization in the NLM
method. It can be easily extended to optimize such parameters
as the search window and similarity window sizes. Mean-
while, the proposed method can be combined with existing
patch-based denoising algorithms such as the PPB method
and the OBNLM method to further improve their restoration
performance. Our future work will be focused on the accel-
eration of the proposed method and its extension to remove
Possion noise, Rician noise and impulse noise.

APPENDIX A
The derivation of the inequality ∂var[v]

∂h 6= 0 is as follows.
The term ∂var[v]

∂h can be computed as:

∂var[v]
∂h

= 2 ·
∂(E(v2))−(E(v))2

∂h

= 2 ·
(
E
(
v ·
∂v
∂h

)
− E(v) · E

(
∂v
∂h

))
= 2 ·

(
E
(
v ·
∂(I − u)
∂h

)
− E(v) · E

(
∂(I − u)
∂h

))
= 2 ·

(
E(v) · E

(
∂u
∂h

)
− E

(
v ·
∂u
∂h

))
=−2 · cov

(
v,
∂u
∂h

)
(A.1)

For the convenience of computing ∂u
∂h , we will consider its

computation for any pixel at (x, y) in the image I . According
to equation (1), ∂u(x,y)

∂h is computed as:

∂u(x, y)
∂h

=

∑
(p,q)∈�

I (p, q) ∂ω(x,y,p,q)
∂h∑

(p,q)∈�
ω(x, y, p, q)

−

∑
(p,q)∈�

I (p, q)ω(x, y, p, q)
∑

(p,q)∈�

∂ω(x,y,p,q)
∂h( ∑

(p,q)∈�
ω(x, y, p, q)

)2

(A.2)

where

∂w(x, y, p, q)
∂h

= 2 · exp
(
−
||I (P(p, q))− I (P(x, y))||22,a

h2

)
·
||I (P(p, q))− I (P(x, y))||22,a

h3

=−2 ·
w(x, y, p, q)ln(w(x, y, p, q))

h
(A.3)

According to equations (A.2) and (A.3), ∂u(x,y)
∂h is

expressed as:

∂u(x, y)
∂h

=

∑
(p,q)∈�

(I (p, q)−u(x, y))w(x, y, p, q)ln(w(x, y, p, q))

−
h
2

∑
(p,q)∈�

ω(x, y, p, q)

(A.4)

Because 0 < w(x, y, p, q) ≤ 1 and ln(w(x, y, p, q)) ≤ 0,
it follows that∑
(p,q)∈�

I (p, q)w(x, y, p, q)ln(w(x, y, p, q))

≥

∑
(p,q)∈�

I (p, q)w(x, y, p, q)
∑

(p,q)∈�

ln(w(x, y, p, q)) (A.5)
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According to the inequality (A.5), we have

∂u(x, y)
∂h

≤
2
h

( ∑
(p,q)∈�

w(x, y, p, q)ln(w(x, y, p, q))∑
(p,q)∈�

ω(x, y, p, q)

−

∑
(p,q)∈�

ln(w(x, y, p, q))
)
u(x, y) (A.6)

From the inequality (A.6), it can be seen that therewill exist
a constant K (x, y) which will meet the following condition.

∂u(x, y)
∂h

= K (x, y)u(x, y) (A.7)

where

K (x, y) ≤
2
h

( ∑
(p,q)∈�

w(x, y, p, q)ln(w(x, y, p, q))∑
(p,q)∈�

ω(x, y, p, q)

−

∑
(p,q)∈�

ln(w(x, y, p, q))
)

(A.8)

According to equation (A.7), it is easy to derive that

∂var[v]
∂h

= −2 · H · cov(v, u) (A.9)

where H is a two dimensional matrix of constants K
expressed as:

H =


K (1, 1) K (1, 2) · · · K (1,N )
K (2, 1) K (2, 2) · · · K (2,N )
...

...
. . .

...

K (M , 1) K (M , 2) · · · K (M ,N )

, (A.10)

whereM and N denote the number of pixels in the horizontal
and vertical dimensions of the image I , respectively.
For H , H 6= 0 holds because the noisy image I will not be

completely homogeneous.Meanwhile, cov(v, u) 6= 0 because
u and v are correlated. According to equation (A.9), it can be
derived that ∂var[v]

∂h 6= 0.

APPENDIX B
The two items ∂ ˆbias

2
[u(x,y)]

∂h(x,y) and ∂ ˆvar[u(x,y)]
∂h(x,y) are derived by

computing the partial differential with respect to h(x, y) on
both sides of equation (14) and equation (15) as:

∂ ˆbias
2
[u(x, y)]

∂h(x, y)
=
∂ ˆbias

2
[u(x, y)]

∂ω̂(x, y, p, q)
·
∂ω̂(x, y, p, q)
∂h(x, y)

= 2 ·

∑
(p,q)∈�

(ŝ(p, q)−ŝ(x, y))ω̂(x, y, p, q)∑
(p,q)∈�

ω̂(x, y, p, q)

·

( ∑
(p,q)∈�

(ŝ(p, q)−ŝ(x, y))∂ŵ(x,y,p,q)
∂h(x,y)∑

(p,q)∈�
ω̂(x, y, p, q)

−

∑
(p,q)∈�

(ŝ(p, q)−ŝ(x, y))ω̂(x, y, p, q)( ∑
(p,q)∈�

ω̂(x, y, p, q)
)2

·

∑
(p,q)∈�

∂ŵ(x, y, p, q)
∂h(x, y)

)
, (A.11)

∂ ˆvar[u(x, y)]
∂h(x, y)

=
∂ ˆvar[u(x, y)]
∂ω̂(x, y, p, q)

·
∂ω̂(x, y, p, q)
∂h(x, y)

= 2 ·

∑
(p,q)∈�

η̂∗(p, q)ω̂(x, y, p, q)∑
(p,q)∈�

ω̂(x, y, p, q)

·

( ∑
(p,q)∈�

η̂∗(p, q) ∂ŵ(x,y,p,q)
∂h(x,y)∑

(p,q)∈�
ω̂(x, y, p, q)

−

∑
(p,q)∈�

η̂∗(p, q)ω̂(x, y, p, q)( ∑
(p,q)∈�

ω̂(x, y, p, q)
)2

·

∑
(p,q)∈�

∂ŵ(x, y, p, q)
∂h(x, y)

)
, (A.12)

where

∂ŵ(x, y, p, q)
∂h(x, y)

=2 · exp
(
−
||ŝ(P(p, q))−ŝ(P(x, y))||22,a

(h(x, y))2

)
·
||ŝ(P(p, q))−ŝ(P(x, y))||22,a

(h(x, y))3
(A.13)
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