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ABSTRACT Glowworm swarm optimization (GSO) and bacterial foraging optimization algorithm (BFOA)
are two popular swarm intelligence optimization algorithms (SIOAs). However, both GSO and BFOA
show some difficulties when solving many-objective optimization problems (MaOPs). To challengeMaOPs,
a coupling approach based on GSO and BFOA is proposed in this paper. To implement the coupling method,
an external archive is established to save the best solutions found so far. The internal populations in GSO and
BFOA can exchange the search information with the external archive in the evolutionary process. Simulation
experiments are verified on two benchmark sets (DTLZ andWFG) with 3 to 15 objectives. The performance
of our approach is compared with five other famous algorithms including NSGA-III, KnEA, MOEA/D-DE,
GrEA and HypE. Results prove the effectiveness of our approach.

INDEX TERMS Swarm intelligence, glowworm swarm optimization, bacterial foraging optimization
algorithm, external archive, many-objective optimization.

I. INTRODUCTION
SIOAs are mostly encouraged by the behaviors of bio-
logical swarm systems (e.g. bird flocking, foraging and
courtship). There are several popular SIOAs [1], [2], such
as bacteria foraging optimization algorithm (BFOA) [3], [4],
cuckoo search (CS) [5]–[7] and glowworm swarm opti-
mization (GSO) [8], [9]. In the past decades, these SIOAs
have been widely applied to diversiform optimization prob-
lems [10], [11]. When projects or systems in real-life become
large, some very complex optimization problems have
emerged, such as large-scale optimization problems [12], [13]
and MaOPs [14], [15]. For these problems, the performance
of most SIOAs encounters great challenges [16]–[18]. There-
fore, strong and effective SIOAs are required [19], [20].

For MaOPs, the non-dominated proportion of individuals
in the population will rise quickly [21]. With increasing
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of objectives, most individuals in the population become
non-dominated solutions [22]–[24]. Hence, most multi-
objective evolutionary algorithms (MOEAs) is difficult to
handle MaOPs. Meanwhile, the number of optimal solu-
tions covering Pareto Front (PF) increases exponentially,
and this makes it impossible to find the complete PF [25].
To solve MaOPs, some researchers have proposed different
methods in the last few years. Deb and Jain [26] designed
a non-dominated sorting algorithm based on preference
points (NSGA-III). Combining with spatial decomposition,
NSGA-III employs preference points to guide the popula-
tion evolution. Fewer preference points in a two-layer mode
are used to obtain relatively uniform solution sets. In [27],
Xiang et al. used a vector angle EA (VaEA) to solve the
unconstrained MaOPs, which adopts the angle between the
minimum vectors to find a pair of similar individuals. A dele-
tion strategy is employed to delete those with poor conver-
gence or distribution. Lin et al. [28] introduced the idea of
clustering to classify the population intomany clusters, which
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will divide similar individuals into a cluster to show the pop-
ulation’s diversity. And the convergence will be guaranteed
by employing the simple convergence indicator.

Although SIOAs have shown good performances on single
and multi-objective optimization problems (MOPs) having
up to 3 objectives, their performance is seriously influenced
when the number of objectives exceeds three [29], [30]. For
the abovementionedmany-objective optimization algorithms
(MaOEAs), few of them are SIOAs. In order to make SIOAs
possible for solving MaOPs, some improved strategies were
proposed [31]–[33]. In [34], Xiang et al. introduced decom-
position into ABC to solve MaOPs. Moreover, indicator-
based set and reference-point are combined with PSO for
many-objective optimization [35]–[37]. The above improved
SIOAs were extended to handle MaOPs, but there still exist
some issues. The performance of balancing the convergence
and diversity is usually not ideal. Moreover, the time com-
plexity cost is unacceptable because of needing a lot of func-
tion evaluations.

In this paper, we focus on improving SIOAs for solving
MaOPs. It is difficult to use one algorithm to solve all kinds
of optimization problems. Each algorithm has distinctive
search characteristic. Therefore, it is possible to combine
different algorithms to solve more optimization problems.
To challenge the MaOPs, a coupling approach based on GSO
and BFOA is proposed. To implement the coupling method,
an external archive is established to store the best solutions
found so far. The internal populations in BFOA and GSO
can exchange the search information with the external archive
during the evolutionary process. Simulation experiments are
verified on two benchmark sets (DTLZ and WFG) with 3 to
15 objectives. The performance of our approach is compared
with five other outstanding algorithms including NSGA-III,
KnEA [38], MOEA/D-DE [39], GrEA [40] and HypE [41].

The rest of the paper is organized as follows. The related
work about MaOPs are given in Section 2. In Section 3,
the standard GSO and BFOA are briefly explained. The
related knowledge of the coupling algorithm is listed
in Section 4. Simulation experiment is implemented in
Section 5. Finally, the work is summarized in Section 6.

II. RELATED WORK
In general, the MOPs can be explained as follows:

min f (Y ) = min [f1(Y ), f2(Y ), . . . , fM (Y )]{
gi(Y ) ≥ 0, i = 1, 2, . . . , k
hj(Y ) = 0, j = 1, 2, . . . , s

(1)

where Y is the decision variables,M is the objective numbers,
fM is the M th objective, gi(Y ) ≥ 0 and hj(Y ) = 0 denote
the ith inequality and jth equality constraint, respectively.
For MOPs, M ≥ 2 should be satisfied. When M > 3,
MOPs are called as MaOPs. Many MOEAs that work well
for only a few objectives have difficulties in high-dimensional
objective spaces. Therefore, how to effectively solve MaOPs
is a challenging task.

In the last few years, some excellent approaches have been
developed to solve MaOPs. On the basis of their selection
approaches, those approaches can be categorized into three
types: Pareto approach, decomposition approach, and indica-
tor approach.

The Pareto method aims to overcome the problem that
the selection pressure is reduced in MaOPs. The traditional
Pareto dominance method is difficult to distinguish candi-
date solutions. To tackle this issue, some modified dom-
inance methods were developed to strength the selection
pressure. Moreover, some researchers designed new diver-
sity mechanisms based on the Pareto dominance to enhance
the selection pressure, such as NSGA-III, GrEA [40] and
SPEA2+SDE [42]. Coevolutionary technique [43] was also
used to explore the effective information of objective space.
Wang et al. [44] presented the algorithm for solving MaOPs
by integrating Pareto dominance and adaptive objective spa-
tial distribution information. Zhang et al. [38] proposed a
knee point driven evolutionary algorithm (KnEA), in which
the knee point was introduced into the search process of the
population. In [45], [46], Zhang et al. designed two efficient
non-dominated sorting strategies to overcome many needless
dominance comparisons. Although the selection pressure is
enhanced by using the Pareto-based approach, the corre-
sponding diversity mechanism still needs to be improved.

The decomposition-based approach achieves a set of
Pareto optimal solutions by transforming MaOPs into sin-
gle objective sub-problems. Zhang and Li [47] proposed
an MOEA based on decomposition (MOEA/D), in which
the uniform weight vectors in the objective space is gener-
ated and the problem is decomposed to make the individual
converge toward the PF along the direction of the weight
vector. With the in-depth exploration of decomposition strat-
egy, many excellent many-objective optimization algorithms
based on decomposition were designed. According to the
improved strategies, these algorithms can be divided into four
types: 1) modify scaling function; 2) design weight adaptive
strategy; 3) select candidate solutions with good conver-
gence and distribution; and 4) generate candidate solutions
with superior performance. Some representative algorithms
are MOEA/D-M2M [48], DBEA [49], MOEA/DD [50],
MaOEA/D-2ADV [51], and RVEA [52].

The indicator-based approach focuses on weighing
the comprehensive performance of candidate solutions
and giving the decision makers preference information.
Zitzler and Künzli [53] proposed the IBEA, which can be
combined with a variety of indicators. In IBEA, the conver-
gence and diversity are taken into accounts and the additional
diversity preservation mechanism does not required fitness
sharing. Bader and Zitzler [41] designed a fast hypervolume-
based algorithm (HypE) for solving MaOPs, in which the
candidate solutions chosen by hypervolume-based are strictly
Pareto optimal, but it is difficult to balance the calculation
load and the calculation accuracy. To tackle this issue, some
modified indicators methods were proposed to replace hyper-
volume indicators, such as 1p indicator [54], IGD [55],
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GD [56], [57] and maxi-min indicators [58], [59]. The
performance evaluation indicators based on distance mea-
surement have been widely used in solving MaOPs because
they have simple and effective calculation and compre-
hensively consider the convergence and distribution of the
solution [60], [61].

From the above discussions, we have found that there are
few SIOAs for solving MaOPs. According to the No-Free-
Lunch theorem, it is inevitable to sacrifice the diversity to
improve the convergence. Similarly, sacrificing the partial
convergence may improve the diversity. Therefore, it is valu-
able to use the coupled SIOAs to solve MaOPs. In addition,
a coupling approach based on GSO and BFOA is signed to
solve MaOPs.

III. THE BASIC GSO AND BFOA
GSO and BFOA are two kinds of swarm intelligence opti-
mization algorithms. Due to the strong global and local search
capability, they have been triumphantly applied to various
optimization problems [62]–[68]. In this section, we briefly
introduce the above two basic algorithms.

A. GLOWWORM SWARM OPTIMIZATION (GSO)
GSO [8], [9], [69] is one of novel SIOAs, which simulates the
social behaviors of fireflies in nature by using fluorescein to
make communications. Generally speaking, the fluorescein
is related to the attractiveness of a firefly. Higher fluorescein
means larger attractiveness. As a result, most fireflies will
move towards other fireflies with higher fluorescein. The
standard GSO consists of four steps: initialization, updating
fluorescein, updating position and updating perception range,
which are described as follows.

1) INITIALIZATION
At this stage, fireflies are randomly generated in the objective
feasible region. In addition, the initial fluorescein and the
sensing radius are the same for each firefly.

2) UPDATING FLUORESCEIN
The fluorescein of firefly is directly related to its position
in the search space. The higher the evaluation value of the
firefly’s spatial position, the larger the growth after updating
fluorescein. The specific updating fluorescein model is given
as follows.

flui(t) = γEva(xi(t))+ (1− µ)flui(t − 1) (2)

where µ denotes the fluorescein volatility of fireflies; flui(t)
is the fluorescein value of the firefly i; γ is the updating
fluorescein rate of fireflies; Eva(xi(t)) means the evaluation
value of firefly i at position xi(t); and t indicates the current
iterations number.

3) UPDATING POSITION
At the updating position stage, each firefly needs to find
a better one in its sensing range. The updating direction is

determined by a roulette approach. In addition, the selec-
tion probability of the neighboring firefly is also calculated
according to the fluorescein value. The specific equation for
the selection probability of the neighboring firefly is defined
as follows.

probij(t + 1) =
fluj(t + 1)− flui(t + 1)∑

k∈Ni(t+1)
fluk (t + 1)− flui(t + 1)

(3)

where Ni(t + 1) = {j : disi,j(t + 1) < radi(t + 1);
flui(t + 1) < fluj(t + 1)} denotes the neighborhood set of
firefly i and j ∈ Ni(t + 1); radi(t + 1) is the decision radius
of firefly i; disi,j(t + 1) indicates the space distance between
fireflies i and j; and probij(t + 1) means the probability of
firefly i to firefly j.
In the neighborhood of firefly i, if firefly j is selected,

firefly i will change its position as follows.

xi(t) = xi(t − 1)+ step(
xj(t − 1)− xi(t − 1)∥∥xj(t − 1)− xi(t − 1)

∥∥ ) (4)

where step represents the moving step size of firefly; and∥∥xj(t − 1)− xi(t − 1)
∥∥ indicates the Euclidean space dis-

tance between firefly i and firefly j.

4) UPDATING PERCEPTION RANGE
After the position of the firefly is updated, the range of
perception is dynamically adjusted. The size of the perceived
radius is determined by the number of fireflies in the per-
ceived radius.

radi(t) = min{srp,max{0, δ(ε − |Ni(t − 1)|)+ radi(t − 1)}}

(5)

where srp represents the perception radius; ε indicates the
threshold for firefly neighborhood set; and δ is the parameter
to adjust the size of firefly’s dynamic perception range.

B. BACTERIAL FORAGING OPTIMIZATION
ALGORITHM (BFOA)
BFOA [3] simulates the foraging behavior of Escherichia
coli, which has three typical patterns, they can be described
as follows.

1) CHEMOTAXIS
The foraging behavior of Escherichia coli is mainly based
on its own characteristics. The flagella rotates in the direc-
tion during the process of foraging. If the flagella rotates
counterclockwise, the bacteria will move forward rapidly.
The chemotaxis behavior is generally recognized by tumble
and swim. Tumble operation can determine the direction of
bacteria foraging, and swimming operation is the continuous
movement of bacteria in the same direction during the for-
aging process. The specific equation for foraging behavior is
given as below.

x i(j, k, l) = C(i)
1(i)√

1T (i)1(i)
+ x i(j− 1, k, l) (6)
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where x i(j, k, l) denotes the location of the ith bacteria when
it approaches the jth reproduction and the lth elimination
and dispersal; T is the largest number iterations; C(i) is the
step size of chemotaxis; and 1(i)

√
1T (i)1(i)

is a random forward

direction of movement.

Algorithm 1MaGSO(P) Operator
Begin
Initialize the fluorescein values in P;
for i = 1 to N
Calculate the objective values of the ith individual;
Update the fluorescein values of the ith individual
according to Eq. (2);
Execute the non-dominated sorting according to the
fluorescein values;
Randomly select an individual from the first rank based
on the non-dominant sorting;
Update the position of the ith individual
according to Eq. (8);

end for
Output the updated population P;
End

Assume that the objective function value of the ith bacteria
at x i(j, k, l) is f (x i(j, k, l)), and it will continue to move in the
same direction, and stop when the objective function value
no longer decreases or the largest steps number is reached
when f (x i(j, k, l))< f (x i(j−1, k, l)). In a sense, the chemotaxis
operation is a complex movement process combining the
operations of tumble and swimming. The tumble represents
the direction of optimization and the swimming indicates the
degree of searching feasible solutions in a certain direction.

2) REPRODUCTION
With the continuous absorption of nutrients, Escherichia coli
will gradually grow longer. Under appropriate conditions,
each bacteria will asexually split into two bacteria. However,
the bacteria will be eliminated for those bacteria with poor
nutrition. In the reproduction, J ihealth is used to represent
the energy value of the ith bacteria, which determines the
foraging ability of bacteria. And then the bacteria are sorted
according to their energy values. The bacteria with energy
values ranked in the first half are used for reproduction, and
the other half of bacteria are eliminated. The new repro-
duction has exactly the same foraging ability as the original
bacteria. The value of J ihealth is calculated by:

J ihealth =
Nc∑
j=1

f (x i(j, k, l)) (7)

where J ihealth represents the energy value of the ith bacteria;
Nc indicates the number of chemotaxis; f (x i(j, k, l)) is the
fitness value o f the ith bacteria after the jth chemotaxis,
the kth reproduction and the lth elimination and dispersal
operations.

3) ELIMINATION AND DISPERSAL
After the reproduction, the bacteria will execute the elim-
ination and dispersal operation with a certain probability.
The basic principle of elimination and dispersal operation is
similar to the mutation operation in genetic algorithm, which
can continue to search in unexploited areas and prevent the
population from falling into local minima.

IV. A COUPLING APPROACH BASED ON GSO AND BFOA
FOR SOLVING MaOPs
In this section, a coupling approach based on GSO and
BFOA is proposed to solve MaOPs. The new approach is
called MaGSO-MaBFOA, which employs three important
operators: many-objective based GSO (MaGSO) and many-
objective based BFOA (MaBFOA), and archive updating.
The details of MaGSO-MaBFOA are described as follows.

A. MaGSO OPERATOR
The original GSO was employed to solve simple problems.
Although many different GSO variants have been proposed
in previous research, few of them focuses on solving MaOPs.
To extend GSO to solve MaOPs, a new operator based on
GSO (called MaGSO) is proposed as below.

In MaOPs, the dominant percentage of individuals in the
population will rise rapidly. Most individuals in the popu-
lation turn into non-dominated solutions with increasing of
objectives. To determine the updating direction of fireflies,
GSO needs to compare the fluorescein values in the range of
the perception of fireflies. But the original position updating
method is not suitable for solving MaOPs. To improve this
case, a modified method for position updating is defined by

xi(t)=xi(t − 1)+step(
xj(t − 1)−xi(t − 1)∥∥xj(t − 1)−xi(t − 1)

∥∥ )+ϕr1(T − tT
)

(8)

where ϕ controls the range of disturbance and it is set to
0.001; r1 is an uniformly distributed random value; t is the
number of iterations; T is the largest number of iterations;
xj(t) is an individual that is randomly selected from the first
rank based on the non-dominated sorting at the tth iteration.
It is helpful to guide other fireflies to update their positions.
Moreover, the disturbance aims to balance diversity and con-
vergence.

The main steps of the MaGSO operator are listed in
Algorithm 1. In addition, P and Q1 are the input and output
population, respectively. As seen, the fluorescein values are
updated in the same way as GSO. In addition, the non-
dominated sorting can be obtained by executing on the basis
of the fluorescein values.

B. MaBFOA OPERATOR
Like GSO, the original BFOA is usually employed to solve
MOPs. To handle MaOPs, some operations in BFOA should
be modified. In the following, we design an operator based
on BFOA (called MaBFOA) to solve MaOPs.
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Algorithm 2MaBFOA(V) Operator
Begin
Set the parameters Ned , Nre, Nc, and Ns;
for L = 1 to Ned
for k = 1 to Nre
for j = 1 to Nc
for i = 1 to N

Evaluate the objective values of Vi as fitlast ;
Generate a random vector 1i ∈ [−1, 1];
Tumble: Make movement for ith bacterium in
direction of the tumble using Eq. (6);

Evaluate the tumble objective values of
Vi as fitnew;

Flag = Domination(fitlastfitnew);
if Flag==1 or sum(fitnew − fit last ) >0 then

The tumbling solution is replaced with the
solution of not tumbling;

else
Remain the tumbling solution unchanged;

end If
Swim: Let con=0 (initialize the swim length

counter);
while con< Ns
con=con+1;
Conduct the tumbling according to Eq. (6);

if the next tumbling solution is superior than
the last tumbling solution
Exchange the last tumbling solution with

the next tumbling solution;
else
Remain the last tumbling solution
unchanged and set con= Ns;

end if
end while

end for
end for
A = UpdateArchive(A, V);
Conduct the DE strategy on the current
population V according to Eq. (9);

end for
Conduct the PM strategy on the current population V;

end for
Output the updated population V;
End

For the chemotaxis , if the new individual Xnew dom-
inates the original individual Xorigin, Xorigin is replaced
by Xnew. If Xorigin dominates Xnew, Xorigin is retained.
In addition, if they do not dominate each other and
M∑
i=1

(
fi(Xnew)− fi(Xorigin)

)
> 0, Xorigin remains unchanged

(fi(.) is the ith fitness function andM is the objective number).
For the reproduction, if the original reproduction strategy

in BFOA is used in MaBFOA, it will be not be helpful to

keep the diversity of population. In order to maintain the
population diversity, the idea of differential evolution (DE)
is introduced to execute the reproduction operation. The spe-
cific method is described as follows.

Xi =

{
Xi + Con(Xj − Xi)+ Con(Xk − Xi), if rc ≤ cross
XjorXk , otherwise

(9)

where Con is the contraction factor; Xi is randomly selected
from the current population; Xj and Xk are randomly chosen
from the top 10% individuals in the external archive; rc is
an random number within [0,1]; and cross is called crossover
probability.

Polynomial mutation (PM) [70] has been widely adopted
to solve MaOPs and it provides a promising search ability.
To keep the solution having better quality on convergence
and diversity, PM is used for the elimination and dispersal.
Due to the page limitations, we did not give the detailed
implementation of PM.More information of PM can be found
in [70].

The main process of the MaBFOA operator are
given in Algorithm 2, where V is the input population,
UpdateArchive() is the external archive updating operator,
Ned , Nre, and Nc are the elimination-dispersal, the replicate,
chemotactic number, respectively. Ns is the swim length.
As seen, the updating methods for the tumble and swim are
not changed in MaBFOA.

C. ARCHIVE UPDATING OPERATOR
Our coupling approach employs two important operators:
MaGSO(P) and MaBFOA(V), which are run on two inde-
pendent populations P and V, respectively. To exchange the
search experiences of these two populations and store some
best solutions, an external archive A is established based on
a balanceable fitness estimation (BFE) technique [71]. For
MaOPs, the BFE method has been proved to be effective
for overcoming the limitations of both Pareto ranking and
decomposition approache s [71]. The convergence distance
and the diversity distance are considered in the BFE method
t o balance the convergence and diversity of population.

Assume that the population P = {P1, P2, . . . ,PN} consists
of N individuals and the BFE method c an be described as
follows.

fit(Pi,P) = αCd(Pi,P)+ βCv(Pi,P) (10)

where fit(Pi,P) is the BFE value,Cv(Pi,P) represents the con-
vergence distance of the ith individual Pi,Cd(Pi, P) is the
normalized diversity of the ith individual Pi. α and β are
two weighting factors, which are employed to coordinate the
impacts of the distance diversity and convergence, respec-
tively. The weighting factors α and β are adaptively adjusted
to balance the diversity and convergence distance. Here we
only briefly introduce the BFE method and more details can
be found in [71], [72].

It is worth noting that the largest and smallest objective
values should be used for normalization when evaluating the

120252 VOLUME 7, 2019



J. Zhang et al.: Coupling Approach With GSO-BFOA for Many-Objective Optimization

BFE value. The normalization can help to reduce the impact
of different amplitudes on many objectives.

Algorithm 3 UpdateArchive(A, K) Operator
Begin
for i = 1 to |K|

for j = 1 to |A|
Check the dominance relation between Ai and Ki;

if Ai dominates Ki then
Mark Ki as a dominated solution;
Mark Ai as a non-dominated solution;

else
Mark Ai as a dominated solution;
Mark Ki as a non-dominated solution;

end If
end for
Remove the dominated solutions from A;
Add the non-dominated solutions to A;
if |A| > |N| then

Calculate the fitness values using the BFE method;

Remove some solutions with the worst fitness
values;

end if
end for
Output the updated external archive A;
End

Based on the updating method, some excellent solutions
are chosen from P and V to form the external archive A.
If the size of A more than the population size, a selection
method is adopted to decide which solutions are retained or
deleted. This can guide the search direction to close the true
PF. For the current external archive A and the new population
K, the selectionmechanismfirstly checks the dominance rela-
tion between the solutions in A and the solutions in K. Then,
the dominated solutions and the non-dominated solutions are
labeled, respectively. Thirdly, the non-dominated solutions
are added to A and the dominated solutions are delated from
A. Finally, the worst solution is deleted according to the
BFE value. When the size of the external archive equals the
population size, the iteration will stop.

The main steps of the archive updating operator
UpdateArchive(A, K) are listed in Algorithm 3. In addition,
A is the external archive, and K is the internal population.

D. FRAMEWORK OF THE COUPLING ALGORITHM
As mentioned before, the proposed algorithm MaGSO-
MaBFOA combines two basic algorithms MaGSO and
MaBFOA for solving MaOPs. By exchanging the search
information of GSO and BFOA, an external archive is con-
structed to save some best solutions during the search pro-
cess. First, MaGSO-MaBFOA defines two initial populations
P and V. The MaGSO and MaBFPA operators evolve the
populations P and V, respectively. Then, the archive updating

operator is employed to update the external archive A. Some
better solutions in P and V are selected and stored in A.

Algorithm 4 Framework of the Coupling Algorithm
Begin
Initialize the populations P and V, respectively;
Initialize the external archive A;
while t < T do

P=MaGSO(P);
A=Update Archive(A P);
V=MaBFOA(V);
A=Update Archive(A V);
Applying the SBX and PM on A to gain a new
population R;
Evaluate the objectives of solutions in R;
A=Update Archive(A, R);
t = t+2;

end while
Output the external archive A;

End

To further enhance the quality of solutions in the external
archive, two well-known evolutionary operators, simulated
binary crossover (SBX) [73] and polynomial mutation (PM),
are utilized. By the suggestions of [74], these evolutionary
operators can effectively improve the search ability on var-
ious MOPs. By conducting the SBX and PM on A, a new
population R is gained. In the next step, the archive updating
operator is used between A and R to update the external
archive A.

TABLE 1. The population size setting.

TABLE 2. The MOEA/D-DE and NSGA-III settings.

The framework of our approach MaGSO-MaBFOA is
showed in Algorithm 4. In addition, the t and T are the current
and largest iteration number, respectively.

E. COMPLEXITY ANALYSIS
In our proposed approach MaGSO-MaBFOA, the circulation
time is set by the largest number of generations. There are
three major components in the loop sequences, i.e., MaGSO
operator, MaBFOA operator and archive updating operator.
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TABLE 3. IGD value of different algorithms on the DTLZ test set.

For the MaGSO operator, the complexity is O(MN2), which
is governed by the non-dominated sorting approach . For the
archive updating operator, the step of dominance checking
and ranking are involved and the entire process takes at most
O(MN2) time. For the MaBFOA operator , the complexity
is O(Nc(N + NsN )) after the chemotaxis. Then the archive
updating operator and DE strategy are implemented in turn,
and the complexity will change toO(M (Nc(N+NsN )+N 2

+

N 2)Nre) after the reproduction. Therefore, the complexity
of the whole MaBFOA operator is O(M ((Nc(N + NsN ) +
N 2
+ N 2)Nre + N 2)Ned ). However, the complexity will be

depended on the maximum computational complexity. And it
is no doubt that the product of Nc and Ns will be less than the
population size N. As a result, the complexity of MaBFOA
operator will be approximately denoted as O(MN2).
Therefore, it is easy to summarize that the overall com-

plexity of the MaGSO-MaBFOA is O(MN2
+MN2

+MN2

+MN2
+MN2

+MN2). Therefore, the total complexity will be
expressed as O(MN2) by simplifying.

V. SIMULATION STUDY
A. TEST FUNCTIONS
To verify the effectiveness of our approach, two famous
benchmark functions, DTLZ and WFG, are adopted in the

following experiments. The first benchmark set consists of 7
test problems (DTLZ1-DTLZ7) and the second one contains
9 test functions (WFG1-WFG9). The objective number of
these functions varies from 3 to 15. For the test problem
DTLZ1, its objective functions fi ∈ [0, 0.5]. For other test
problems of the DTLZ set, the objective functions fi ∈ [0, 1].
The true PF of WFG1 is mixed and biased. For WFG2,
its true PF is convex and disconnected. For WFG3 and
WFG4-WFG9, their true PFs are linear and concave,
respectively.

B. PERFORMANCE METRICS
To measure the performance of MaOEAs, Inverse generation
distance (IGD) [55] and hypervolume (HV) [75] are two
popular indicators, which have been proved to consider both
convergence and diversity of non-dominated individuals [76].
In this paper, the IGD is deemed as the performance evalua-
tion indicator. The specific IGD is described as follows.

IGD =

√
n∑
i=1

d2i

PF∗
(11)

where n is the solutions number in the true PF∗, and di
denotes the Euclidean distance from the solution i of PF∗ to

120254 VOLUME 7, 2019



J. Zhang et al.: Coupling Approach With GSO-BFOA for Many-Objective Optimization

FIGURE 1. The solution of different algorithms on DTLZ1 with 8 objectives.

FIGURE 2. The solution of different algorithms on DTLZ5 with 10 objectives.

the closest solution of the approximated PF. The value of IGD
is smaller, the performance is the better.

C. INVOLVED ALGORITHMS AND PARAMETER SETTINGS
In the experiments, our approach is compared with five
advanced many-objective evolutionary algorithms. The
involved algorithms are listed as below.
• NSGA-III [50];
• MOEA/D-DE [39];
• KnEA [38];
• GrEA [40];
• HypE [41];
• Our approach MaGSO-MaBFOA.

To compare in an appropriate environment, the same
parameter value are employed by the suggestions of
[38]–[41], [50]. For problems with different objective num-
bers, different values of population size are employed.

Table 1 presents the population size settings, where Point1
denotes the boundary layer number of divisions and Point2
indicates the inside layer number of divisions. Table 2 shows
the parameter settings of NSGA-III andMOEA/D-DE, where
prc represents the probability of the SBX, prm denotes the
probability of the PM, drc is the distribution index of pop-
ulation crossover, drm is the distribution index of popu-
lation mutation, and Nvar is the number of variables. For
all algorithms, the largest iterations (T ) number is viewed
as the stopping condition. For DTLZ1 and DTLZ3, T is
set to 700 and 1000, respectively. For the rest of 5 prob-
lems (DTLZ2 and DTLZ4-DTLZ7), T is equal to 250.
T = 1000 and T = 700 are used for WFG1 and WFG2,
respectively. For the rest of 7 problems (WFG3-WFG9), T
is set to 250. For other parameters of GrEA, KnEA, and
HypE, the same settings are adopted for these algorithms
as in their original papers [38], [40], [41]. In the MaGSO

VOLUME 7, 2019 120255



J. Zhang et al.: Coupling Approach With GSO-BFOA for Many-Objective Optimization

FIGURE 3. The solution of different algorithms on WFG5 with 10 objectives.

FIGURE 4. The solution of different algorithms on WFG9 with 15 objectives.

operator, the fluorescein volatilityµ, the updating fluorescein
rate γ , and the moving step size step are set to 0.4, 0.6, and
0.03, respectively. In the MaBFOA operator, the step size
of chemotaxis C(i) is equal to 0.001. For the reproduction
operation, cross = 1.0 and Con = 0.5 are used. For each test
problem, each algorithm is run 20 times.

D. RESULTS ON DTLZ FUNCTION
Table 3 described the comparison results of MaGSO-
MaBFOA, NSGA-III, KnEA, MOEA/D-DE, GrEA and
HypE on the DTLZ benchmark set. For each test problem,
the best result is highlighted and the labels ‘+’, ‘−’, and ‘=’
express that the compared algorithm is significantly better,
worse, and equal than (to) our approach. The comparison

results on the whole DTLZ benchmark are summarized ‘Bet-
ter/Worse/Similar’, which means that the competitor is better,
worse, and similar than (to) our approach on Better, Worse,
and Similar problems, respectively. Figs. 1 and 2 list the non-
dominated fronts obtained by each algorithm on DTLZ1 with
8 objectives and DTLZ5 with 10 objectives, respectively.

From the results of Table 3, MaGSO-MaBFOA exceeds
NSGA-III on 14 problems, while NSGA-III achieves bet-
ter solutions than MaGSO-MaBFOA on 5 problems. For
the rest of 16 problems, both of them obtain similar per-
formance. Compared to KnEA, our approach is better on
13 problems, but KnEA achieves better results on 5 prob-
lems. MOEA/D-DE is mildly better than MaGSO-MaBFOA,
because MOEA/D-DE executes better on 13 problems and
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TABLE 4. IGD value of different algorithms on the WFG test set.

MaGSO-MaBFOA is better on 11 problems. GrEA is supe-
rior to our approach on 4 problems, while it achieves worse
results on 15 problems. Both HypE and MaGSO-MaBFOA
obtain similar performance on this benchmark set.

From Fig.1 and Table 3, NSGA-III and GrEA have
better distribution than other algorithms on DTLZ1, and
MOEA/D-DE and HypE fail to obtain a set of well
distributed solutions. It demonstrates that NSGA-III and
GrEA can achieve good diversity, while MOEA/D-DE and
HypE obtain good convergence. Among six algorithms, our
approach MaGSO-MaBFOA obtains better convergence than
other algorithms on this problem. For DTLZ2 and DTLZ4,
MaGSO-MaBFOA is better than other five algorithms and

NSGA-III, KnEA and HypE obtain similar performance.
MOEA/D-DE achieves poor convergence and diversity on
DTLZ2. Both GrEA and MOEA/D-DE have a similar per-
formance on DTLZ4. For DTLZ3 and DTLZ6, MaGSO-
MaBFOA is better than the four algorithms, but it is mildly
worse than MOEA/D-DE. The main reason is that the dif-
ferential evolution strategy is introduced to make the solu-
tion quickly approach the true PF. For DTLZ5, it is hard
to obtain solutions having good convergence and distribu-
tion. From Fig. 2, NSGA-III, KnEA, and GrEA can achieve
uniformly distributed solutions, but the solution distribu-
tions of MOEA/D-DE and HypE are poor. For DTLZ7,
the PF is discontinuous, which is challenge to keep diversity
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TABLE 5. IGD value of MaGSO, MaBFOA and MaGSO-MaBFOA on the WFG test set.

and convergence. From the above analysis, our approach
can achieve promising performance on most problems of the
DTLZ benchmark set. It confirms the effectiveness of the
proposed coupling method.

E. RESULTS ON WFG FUNCTION
Table 4 described the comparison results of MaGSO-
MaBFOA, NSGA-III, KnEA, MOEA/D-DE, GrEA and
HypE on the WFG benchmark set. The comparison results
on the whole WFG benchmark are summarized ‘Bet-
ter/Worse/Similar’, which means that the competitor is better,
worse, and similar than (to) our approach on Better, Worse,
and Similar problems, respectively. Figs. 3 and 4 present the

approximate PF gained by different algorithm onWFG5 with
10 objectives and DTLZ9 with 15 objectives, respectively.

From the results of Table 4, MaGSO-MaBFOA exceeds
NSGA-III on 29 problems, while NSGA-III achieves better
solutions than MaGSO-MaBFOA on 5 problems. For the rest
of 11 problems, both of them obtain similar performance.
Compared to KnEA, our approach is better on 28 problems,
but KnEA achieves better results on 7 problems. For the rest
of 10 problems, both of them obtain similar performance. Our
approach performs better thanMOEA/D-DE on 36 problems,
but MOEA/D-DE obtains better results on 5 problems. GrEA
is superior to our approach on 8 problems, while it achieves
worse results on 19 problems. For the rest of 18 problems,
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both of them obtain similar performance. HypE achieves
better solutions thanMaGSO-MaBFOA on 6 problems, while
our method is better than HypE on 28 problems.

For WFG1, MaGSO-MaBFOA obtains better convergence
than MOEA/D-DE. The four other algorithms is better
than MaGSO-MaBFOA on this problem. For WFG2 and
WFG3, MaGSO-MaBFOA outperforms other five algo-
rithms. MOEA/D-DE is the best of six algorithms on
WFG4 with 3, 8 and 15 objectives, and MaGSO-MaBFOA
obtain a better convergence than other four algorithms. For
the rest of WFG test problems, MaGSO-MaBFOA performs
better than, or at least similar to other five algorithms. From
Fig. 3, NSGA-III, KnEA, GrEA, and MaGSO-MaBFOA
have similar performance on WFG5 with 10 objectives. For
WFG9 with 15 objectives, NSGA-III, KnEA and MaGSO-
MaBFOA have similar performance. From the above results,
it can be found that the proposed MaGSO-MaBFOA has
better performance than other five algorithms on the WFG
benchmark set.

F. INVESTIGATE THE EFFECTIVENESS OF
OUR COUPLE APPROACH
It is difficult to use a single GSO or BFOA to solve MaOPs.
To challenge the MaOPs, a coupling approach based on GSO
and BFOA is proposed in this paper. Our coupling approach
employs three important operators: many-objective based
GSO (MaGSO), many-objective based BFOA (MaBFOA),
and archive updating. To implement the coupling method,
an external archive is established to store the best solutions
found so far. The internal populations in BFOA and GSO
can exchange the search information with the external archive
during the search process.

To test the effectiveness of our coupling approach, we com-
pare it with the single GSO (MaGSO) and BFOA (MaB-
FOA) on MaOPs. Table 5 shows the comparison results of
MaGSO-MaBFOA, MaGSO, and MaBFOA.

It is obvious that the proposed coupling approach is better
than the single GSO and BFOA on most test problems.

MaGSO-MaBFOA outperforms MaGSO on the WFG
functions with all objectives. MaBFOA is slightly better than
the MaGSO-MaBFOA on WFG3 and WFG9 with 5, 8, 10
objectives, while MaGSO-MaBFOA is superior to MaBFOA
on other WFG functions with all objectives. The above
results demonstrate that the coupling approach can effectively
improve the performance of GSO and BFOA on MaOPs.

VI. CONCLUSION AND FUTURE WORK
The original GSO or BFOA shows some difficulties in
solving MaOPs. To challenge these problems, a coupling
approach on basis of GSO and BFOA is designed. The
new approach is called MaGSO-MaBFOA, which employs
two populations. Based on GSO and BFOA, two modified
operators MaGSO and MaBFOA are designed for handling
MaOPs. Each operator evolves a population to generate new
solutions. By exchanging the search information of these two
populations, an external archive is constructed. An archive

updating method is proposed to update the external archive
and store some best solutions in the evolutionary process.
Simulation are guided on two benchmark sets (DTLZ and
WFG) with 3 to 15 objectives.

For the DTLZ benchmark set, MaGSO-MaBFOA per-
forms better than NSGA-III, KnEA, and GrEA on
most test functions. MOEA/D-DE is slightly better than
MaGSO-MaBFOA. Both HypE and MaGSO-MaBFOA
obtain similar performance. For the WFG benchmark set,
MaGSO-MaBFOA obtains better results than other five algo-
rithms on the most test problems. Results confirm that the
coupling strategy can effectively help GSO and BFOA to
solve MaOPs. In the future work, the coupling approach will
be applied to solve some practical problems [77]–[79].
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