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ABSTRACT Ambient assisted living in smart home environments is becoming an important goal in an aging
society with challenges in elderly care. A key component in such environments is the accurate recognition of
activities of daily living from various sensor data. Recent research directions explored several classification
methods, including hidden Markov models. This research presents a hidden Markov model-based system
for activity recognition, and extends it with a second-order Markov chain model of activity sequences to
achieve long-term dependency in the model. We also introduce an activity transition cost to counteract
the tendency of hidden Markov models to make a large number of transitions. The proposed models are
used for activity recognition, with their scores being combined using heuristically determined weights for
optimal performance. We also present a modified Viterbi algorithm, which incorporates both models and the
activity transition cost. We used a dataset from the CASAS project to test and evaluate the proposed models.
A comparison of the results shows the potential of introducing long term dependencies and the managing the
number of activity transitions. We show results regarding the modeling ability to predict activity sequences,
a comparison of predicted and actual activity transitions, and final recognition accuracy results. The results
show an increase of total activity recognition accuracy from 93.9 % to 94.52 % on individual activities, and
from 68.89 % to 70.95 % over the combination of all concurrent activities. The results also show a reduction
of predicted activity transitions from 741 to 236, whereas the number of actual activity transitions in the
evaluation set is 141.

INDEX TERMS Activities of daily living, hiddenMarkovmodels,Markov chain, pattern recognition, Viterbi
algorithm.

I. INTRODUCTION
Smart home technologies promise many opportunities in the
area of ambient assisted living, which may become especially
useful for elderly or cognitively impaired people. The goal
here is to assist the elderly to live longer independently,
to provide remote health monitoring for physicians, and give
distant family members peace of mind. The importance of
smart environments is also emphasized by the ongoing trend
of population aging in most developed countries.

An essential function in many smart home environments is
the ability to recognize the activities of daily living (ADL)
of residents. The predicted activity data (i.e., the activity
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recognition algorithm’s output) can be used either to assist the
residents from the smart home, or for monitoring the residents
for unusual activity patterns, or even a lack of activities.
Further processing of recognized activity patterns can then
be used to determine residents’ habits and deviations from
them. Unusual activity patterns may then suggest the need
for checking on the residents, or for intervention.

The range of possible activities that can be recognized is
quite broad. Activities can be related to a person’s movement
or position (e.g., walking, running, sitting, standing), to the
use of house appliances (e.g., cooking, eating, watching TV),
or the use of more specific items (e.g., taking medicine).
Activities can also be overlapping, i.e., more than one activity
can occur at the same time, especially in homes with several
residents.
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Different machine learning methods can be used for ADL
recognition, including the hidden Markov models (HMMs)
[1]–[5], which are often used for modeling time series.

In this research, we propose an extension to the standard
HMM using a Markov chain model (MCM) of the activity
sequences, enabling us to model longer dependencies than
with the standardHMM.Aswe found a tendency of theHMM
to make a large number of transitions between activities,
we also propose the use of an activity transition cost (ATC)
into the model to counteract this tendency. To our knowledge,
those approaches have not been used in HMM-based ADL
recognition yet.

To test the proposed system, we used a dataset
with spontaneous living data and overlapping activities.
We present results in terms of the accuracy of individual activ-
ities, a total accuracy score across all individual activities,
and an accuracy score for the combination of all concurrent
activities. We also present results regarding the number of
state transitions in the HMM with a graphical example.

We also address briefly the issue of probability smoothing
for HMM parameter estimation.

The paper is organized as follows. In Section II,
we describe modeling techniques used in ADL recognition
and an overview of previous research. Section III describes
the dataset, which was used to build the proposed models
and perform experiments. In Section IV, we describe the
design and the stepwise development of the experimental
system, and in Section V we present and compare the final
results with regard to the different steps in the experimental
system. We also discuss the results with regard to previously
published research. The conclusion follows in Section VI.

II. BACKGROUND
Sensor data must be collected in order to recognize activi-
ties. Additionally, the gathered sensor data must be labeled
with activity tags. This process may result in a considerable
expense when using observers to label activities [6]. The sen-
sor data and activity annotations are used to train the models
of the recognition system – estimate the model’s parameters.

Then, the models are used with a new set of sensor data.
The task of the system is to determine the most likely
sequence of activities which would generate the observed
sensor data. The accuracy of the system is evaluated by
comparing the predicted activity sequence with the actual
activity sequence.

As this problem involves time series, suitable pattern
recognition algorithms are used.

A. SENSORS
The complexity of sensor setups can have a wide range, from
simple binary sensors [7] to more complex setups with a
large number and different types of sensors [8], [9]. Often
the choice of sensors depends on the type of activities to be
recognized.

Simple sensors can be on-off switches on doors, cabinets,
or certain items. Using item sensors on selected items can be

very useful for recognizing specific activities, e.g., kitchen
items to recognize meal preparation. More complex data
can be gathered from temperature sensors and humidity sen-
sors, water and electricity counters, or strain sensors in the
floor [10].

Cameras [2], [11] and microphones [12] can be mounted in
smart homes, or they can be wearable devices, e.g., a camera
on a person’s glasses [13]. However, microphones or cameras
can be considered too invasive to the privacy of residents.
Recognizing activities from video recordings also can be
computationally expensive [11]. Video recognition has also
been shown to perform better on videos with depth percep-
tion rather than 2D videos [14]. However, depth perception
requires more than one camera, and even more computational
power.

Wearable kinematic sensors can also be used. Zhu and
Sheng [5] showed results using a single wearable inertial
sensor on a task with 8 activities regarding a person’s position
or movement. Another method is to use sensors embedded in
mobile devices [15]. However, those approaches suffer from
person-to-person variability. Also, wearable sensors might
be uncomfortable, and the residents must not forget to wear
them. Less intrusive sensors, e.g., fixed motion sensors in the
household, seem more appropriate for research and usage in
real-live settings.

Some research is concerned specifically with the
possibility of using non-intrusive methods [16], [17].
Fogarty et al. [12] presented a non-intrusive system where
only microphones were placed at key locations in a home’s
water distribution system. Based on the water usage patterns,
they inferred related activities, such as showering, toilet
flushing, or using the dishwasher. Other research is aimed
towards optimal feature selection and feature generation from
sensor data [18], [19].

B. RECOGNITION ALGORITHMS
Simple handcrafted algorithms can be used in activity recog-
nition. Tan et al. [20] used two simple algorithms to classify
events regarding the apartment front-door into three classes:
enter, exit, and brief-return-and-exit. The experiments were
performed on datasets gathered from apartments with elderly
residents to detect an early sign of dementia: Brief returns
home due to forgetfulness. Urwyler et al. [17] developed two
ad-hoc classifiers, and compared them to naïve Bayes and
Random Forrest classifiers.

The k-nearest neighbor classifier works by calculating the
distance (in terms of feature values) between a new data-
point and the data-points from the training set. The new data-
point is then classified to the most frequent class in the set of
k nearest data-points. Gupta and Dallas [21] compared the
k-nearest neighbor classifier with the naïve Bayes classi-
fier in recognition of movement activities with a triaxial
accelerometer.

Support vector machines may be chosen with smaller
datasets. This classifier works by determining a hyperplane
in the vector space of features. When a new data-point
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is observed, its position relative to the hyperplane deter-
mines the classification. This model must then be expanded,
in order to discriminate more than two states. Using SVMs,
Fleury et al. [22] achieved accuracies between 64.3 % and
97.8 % on a task with 7 different activities.

Wu et al. [14] used both support vector machines and
HMMs in an effort to leverage the advantages of both meth-
ods, and obtained a higher recognition accuracy compared to
both methods used individually.

Conditional random fields are a graph-based model, where
the nodes are the observations and random variables. The
random variables conditional to the observations must obey
the Markov property. Vail et al. [23] used conditional random
fields and compared them with HMMs on a simulated robot
tag domain.

Recently, artificial neural networks have been used in ADL
recognition with good results [5], [15], [24]. However, care
must be taken to reduce the computational cost of using
neural networks [18]. Neural networks can also be used in
conjunction with other methods like HMMs, e.g., as a method
for modeling emission probability distributions of HMM
states [25].

Other methods are rule-based approaches [26], the topic
model [27], positional temporal logic [28], and decision
trees [29].

C. PREVIOUS WORK IN HMM BASED RECOGNITION
In [30], the authors used Markov chain models to model
each activity while using sensors as states. Such models can
distinguish between isolated activities. However, as those
models are not appropriate for recognizing interleaved activ-
ities, the authors further used HMMs with activities as the
hidden states. The authors then compared the naïve Bayes
classifier and the HMM, finding that the HMM outperforms
the naïve Bayes classifier by 5 % in accuracy (71.01 %
vs. 66.08 %). They also managed to improve the accu-
racy to 84.18 % further using a sliding window for sensor
events.

In [31], the authors compared naïve Bayes, HMM, and
neural network classifiers, while also having an emphasis
on feature selection. They found that multilayer perceptron
neural networks give an accuracy of 91.8 %when the optimal
feature subset was selected, whereas naïve Bayes and HMM
systems performed with accuracies of 87.5 % and 86.3 %
respectively.

Cheng et al. [1] proposed an Adaptive Learning HMM
to improve accuracy in a setting where the test data have
significantly different characteristics than the training data.
Karaman et al. [2] introduced a two-level hierarchical HMM
for activity recognition from video features. Lu et al. [3] used
Beta process HMMs to extract features which were later used
in a support vector machine system.

To our knowledge, previous research into using HMMs for
ADL recognition has not addressed long term dependencies
of activities, or the issue of the number of activity transitions
in HMMs.

D. NAÏVE BAYES CLASSIFICATION
Let X be the set of all activities, and let y be the value of
a given feature vector – a vector containing all used sensor
data. The naïve Bayer classifier works by classifying the data-
point to the activity x̂, which is most likely to occur given the
feature vector. This is done using the conditional probability
relation:

x̂ = argmax
x∈X

P(x|y) = argmax
x∈X

P(y|x) · P(x)
P(y)

. (1)

As the denominator in the above equation is independent
of the activity x, only the numerator must be considered to
use the naïve Bayes classifier. The conditional feature vector
probability P(y|x) is calculated using a probability distribu-
tion estimated from the training data. The activity probability
P(x) is estimated based on the frequency of this activity in the
training set.

The naïve Bayes classifier considers only the value of the
given feature vector and does not incorporate history into its
model. Therefore, it is typically considered less appropriate
for modeling time series, unless temporal data are incorpo-
rated into the feature vectors themselves.

E. MARKOV CHAIN MODEL
A Markov chain is a probabilistic model for modeling time
series. It is defined by a set of states and probabilities for
any state to occur in the chain. Although continuous-time
and continuous-state Markov chains exist, we consider only
discrete-time Markov Chains with a finite number of states.

A Markov chain is a Markov process, i.e., a process in
which the probability of any state to occur is conditional on
the finite history of previous states. The number of states in
the considered history determines the order of the Markov
chain.

Let X = X0, . . . ,XT be a series of states of length T + 1,
where each state belongs to a set ofN different states, denoted
by integers:

Xt ∈ S = {1, ..,N } ∀t = 0, . . . ,T . (2)

A Markov Chain Model (MCM) models the probability of a
given sequence of states to occur P(X ).

The simplest chain is the first-order chain, which is defined
by the number of statesN , the start probabilities for each state

πi = P(X0 = i) ∀i ∈ 1, . . . ,N , (3)

and conditional transition probabilities between states

λi,j = P(Xt = j|Xt−1 = i) ∀i, j ∈ 1, . . . ,N . (4)

In an n-th order chain, the start probabilities must be
defined for all possible combinations of n or less starting
states, and the transition probabilities are conditional on n
previous states.

MCMs are used to model the probability of an observed
chain given a population of chains. Another possibility is to
have several MCMs, to determine which most likely fits an
observed state sequence.
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A first-order MCM estimates the probability of a state
sequence with

P(X ) = πX0 ·
T∏
j=1

λXj−1,Xj . (5)

This estimate can be generalized to an n-th order MCM:

P(X ) =
n−1∏
j=0

πX0,...,Xj ·

T∏
j=n

λXj−n,...,Xj . (6)

MCMs are often used in language processing, although,
in that area, they are called n-gram models, as a sequence of
n words (states), is called an n-gram. They estimate the prob-
ability of a sequence of words to occur in a given language,
which is modeled.

F. HIDDEN MARKOV MODEL
A hidden Markov model is an extension to the Markov chain.
Again, a sequence of states X from a first-order Markov
chain is considered. However, this sequence is now hidden.
Additionally, a sequence of observed feature vectors Y =
Y0, . . . ,YT of the same length is given.

Like anMCM, an HMM is defined by the number of states,
start probabilities, and transition probabilities for the hidden
Markov chain. Additionally, a set of feature vector probability
distributions

8 = {φi(y)|i = 1, . . . ,N }, (7)

is part of the model, where

φi(y) = P(Yt = y|Xt = i) (8)

is the conditional probability distribution of the feature
vector having value y given the state i. These probability
distributions are time-independent.

In the context of HMMs, one says that states generate the
observed feature vectors, and feature vector probabilities are
called emission probabilities.

Given a sequence of observed feature vectors Y =

Y0, . . . ,YT and a sequence of hidden states X = X0, . . . ,XT
the conditional emission probability is

P(Y|X ) =
T∏
t=0

φXt (Yt ). (9)

The HMM can be used to estimate the joint probability
that the state and feature vector sequences occurred using the
probability of the hidden Markov chain and the conditional
emission probability as

P(Y,X ) = πX0 ·
T∏
j=1

λXj−1,Xj ·

T∏
t=0

φXt (Yt ). (10)

This estimation can be useful in determining how well a
model fits the observed data (features and states).

While using HMMs in any form of pattern recognition,
the ultimate goal is most often decoding – determining the

sequence of states X̂ that most likely resulted in the given
sequence of observed feature vectors Y:

X̂ = argmax
X

P(X |Y) = argmax
X

P(Y|X ) · P(X )
P(Y)

, (11)

where P(X ) is the first-order Markov chain probability
defined in (5). As this expression is independent of the
denominator, one can consider only values in the numerator,
thus making the cost function for the HMM decoder:

P(Y|X ) · P(X ), (12)

The decoding problem – finding the sequence which
maximizes the cost function – is solved using the Viterbi
algorithm [32].

G. MODEL TRAINING AND PROBABILITY SMOOTHING
During training, all the model’s parameters must be
estimated. Start and transition probabilities for an MCM can
be estimated based on counts. For example, the transition
probability from state i to state j can be estimated by the
fraction

λi,j =
Ci,j
Ci
, (13)

where Ci,j is the count of states i and j occurring
consecutively, and Ci is the count of state i occurring in the
training data.

While training HMMs, the state sequence can be hidden
in some applications, even in the training data. Therefore,
for training HMMs, the Baum-Welch algorithm is most often
used [33] to determine transition and emission probabilities.

In annotated ADL datasets where the HMM states repre-
sent the activities, start and transition probabilities can be
estimated in the same manner as in MCMs. Next, emission
probabilities can be estimated in the same manner as in the
naïve Bayes classifier.

However, using estimates based on counts has a potential
issue. If a combination of 2 consecutive states or the value
of a discrete-valued feature does not occur in the training
data, the model will contain zero probabilities. If this state
combination or feature value occurs in the test data, the model
will estimate the probability of the entire activity sequence to
be 0.

There are several methods for smoothing probability
estimations to avoid zero probabilities. We used additive
smoothing in the proposed system, as described later in this
paper.

Considering (13), additive smoothing by using a new
probability estimation was included:

λi,j =
Ci,j + a
Ci + a · N

, (14)

where a is the additive count and N is the number of states.
The addition in the numerator ensures its value to be positive.
The addition in the denominator is necessary so that the
probabilities sum up to 1.
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The same method can be applied to starting probabilities
for MCMs and HMM, and the emission probabilities of dis-
crete features.

III. DATABASE PREPARATION
A. THE CASAS DATASETS
In order to train and evaluate any pattern recognition system,
we need to build appropriate datasets. Residential rooms
should be equipped with sensors, and the collected data have
to be annotated further with activities. This can be a time-
consuming and costly process. Not many appropriate datasets
are available.

Given the purpose and design of the proposed system,
it was decided to use the publicly available datasets from
CASAS (Center for Advanced Studies in Adaptive Systems)
[8], [9], which are publicly available for download on their
webpage.1

Several datasets were created in the CASAS project. Some
contain sensor data, where residents were instructed to per-
form a specific task with or without errors and with or without
interleaving, whereas others contain daily living data span-
ning several months. The latter datasets are interesting for the
experiments. We used a dataset with overlapping activities
to perform experiments with a sufficient amount of data
(number 8). It consists of sensor and activity data fromMay to
July 2009. During this time, the three-bedroom apartment was
occupied by two residents.

The apartment from the selected dataset has different types
of sensors: 51 motion sensors, 4 item sensors on selected
items, 15 door sensors, 5 temperature sensors in the different
rooms of the apartment, and an electricity usagemeter.Within
the datasets, there are 8 different activities.

The activities are: Bed to toilet transition, cleaning, cook-
ing, grooming, shower, sleep, wakeup, and work. Either of
the two residents can perform the activities. The last four
activities are annotated for either resident separately, thus
giving a total number of 12 activities. As both residents can
be present at the same time, activities in this dataset are often
overlapped.

B. REFORMATTING
The original dataset is a text file, where each line contains
one event – a data-point. Events are changes in sensor values,
or starts and ends of activities. Each line contains a time-
stamp (date and time), the name of the sensor changing its
value, and the new value itself. If, at this time, an activity has
also begun or ended, this is also noted in the same line.

We reformatted the dataset into a form suitable for further
computer processing. In the reformatted form each line rep-
resents one data-point, such that the time-stamp, all sensor
data, and all activity data, are present in each line.

We merged activities from the residents, i.e., we no longer
distinguished between the same activity being performed
by either of the residents. This reduces the number of

1http://casas.wsu.edu/

TABLE 1. Sizes of training, development, and evaluations sets from the
selected CASAS dataset.

activities back to 8. However, as activities can be overlapping,
the number of possible combinations of activities is again
higher.

We also changed all text-described sensor values to
numerical values for easier processing, e.g., the sensor value
‘‘ON’’ was changed to ‘‘1’’ and ‘‘OFF’’ was changed to ‘‘0’’.

C. SPLITTING
The reformatted dataset contained approximately 300,000
data-points – one for each event in the dataset. The data
ranges from May 29th to July 31st, 2009. The data were
split into three non-overlapping subsets: The training data,
the development data, and the evaluation data.

The training data were used to train both models,
the HMM and the MCM. The development set was used
for model weight optimization and other examination of
the performance of the system. Lastly, the evaluation data
were used to obtain the final performance results for all
models.

Approximately 25 % of the dataset was used as the
development and evaluation sets, whereas all other data were
used for the training set. Table 1 shows the exact sizes of the
three sets, including the number of data-points with activities
present.

IV. ADL RECOGNITION SYSTEM
We decided to use activity combinations as states for the
HMM.Activity combinations were used since a few activities
could (and in fact do) occur concurrently in the dataset.
Therefore, using one state for each activity would not be
appropriate.

Using separated HMMs for all activities would also not be
appropriate, as one cannot expect activities to be independent.
For example, a large number of activities cannot occur in an
apartment with only two residents.

The training set contains 23 different activity
combinations, with frequencies from 20 to 180,322. This
set of activity combinations is the set of HMM states, and,
therefore, the set of possible classifications for the proposed
system.

The set of all sensor data at a given data-point is the feature
vector. The sequence of feature vectors represents the input
data for the classifiers.

After classification, the results were evaluated in terms of
accuracy. This was done for each activity individually, as a
total value across all activities, and as an activity score for
the combination of all concurrent activities.
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Algorithm 1 The Viterbi Algorithm
1: for all j from 1 ≤ j ≤ N do
2: δ0(j)← πj · φj(Y0)
3: end for
4: for all t from 1 ≤ t ≤ T do
5: for all j from 1 ≤ j ≤ N do
6: δt (j)← max

1≤i≤N
δt−1(i) · λi,j · φj(Yt )

7: ψt (j)← argmax
1≤i≤N

δt−1(i) · λi,j

8: end for
9: end for

A. NAÏVE BAYES CLASSIFICATIONS
One of the main characteristics of HMMs is their ability
to model time series with dependencies on previous states.
To assess whether this property of HMMs is useful, the naïve
Bayes classifier was used for comparison.

To train the naïve Bayes classifier, we needed frequencies
of all activity combinations from the training set. This was
done by counting them and then using additive smoothing on
those counts.

Next, we needed distributions of all variables in the feature
vector for each activity combination in the training set. This
was done by estimating the probability distribution for each
sensor individually, and aggregating the distributions into one
multivariate distribution for the feature vector.

Given the value of the current feature vector, the classifier
then classifies the data-point into one of the possible activity
combinations using (1).

B. BASIC HMM RECOGNITION
We designed an HMM with 23 states – one state for each
activity combination appearing in the training set. State start
and transition probabilities were determined from the training
set using counts and additive smoothing.

The feature vector probability distributions for all states
were determined in the same manner as with the naïve Bayes
classifier.

The time-steps for the HMM are determined by a change
in at least one sensor value. These are the data-points in the
dataset. Hence, at each new value, a transition is made to
another state or the same state.

In a basic HMM-based recognition system, the Viterbi
algorithm is used to find the most likely state sequence that
would result in the observed feature vector sequence. The
basic Viterbi algorithm given in Algorithm 1, where δt (j)
is the best-path-probability of being in state j at time t ,
and ψt (j) is the backtrack indicator, indicating from which
state at the previous time-step the best-path-probability was
found. All other notations in Algorithm 1 are adopted from
subsections II-E and II-F.

The best-path-probability of a given state is the probability
of the most likely partial sequence of states from time 0 to
the current time which ends in the given state. The backtrack

indicator points to the state at one time-step back in this
partial sequence.

The algorithm works by assigning each state at time 0 its
probability according to the start and emission probabilities.
Then, from time 1 onwards, the algorithm finds the best
possible probability for each state at each time using best-
path-probabilities from the previous time-step, transition
probabilities (to account for the transition to the current time-
step), and emission probabilities of the feature vector at the
current time-step. The highest probability is determined at
each time-step and for each state. Also, the backtrack indi-
cator is set to the state (one time-step back) from which this
highest probability was achieved.

After the Viterbi algorithm calculates the best-path-
probabilities for the last time-step, the best path is determined
by finding the state with the highest best-path-probability at
the last time-step, and then following the backtrack pointer
back to time 0.

C. HMM RECOGNITION WITH MCM AND ATC
Since the basic HMM makes transitions at each new
data-point and activities spanmultiple data-points, many tran-
sitions are done to the same state. Therefore, the basic HMM
does not consider longer dependencies.

We add theMCM to theADL recognition system to capture
longer dependencies of activities. Therefore, we define a new
sequence of activities, which is derived from the sequence of
activities used in the basic HMM recognition by removing
repetitions.

For example, if the activitiesmeal preparation, eating, and
watching TV appear in the dataset, they span several sensor
events. Our basic sequence of activitiesX , therefore, contains
repetitions. By removing repetitions from this sequence and
building an MCM, we model actual sequences of activities.

The sequence of activities from the basic HMM is denoted
with X = X1, . . . ,XT . Let us denote the new sequence with
X ′ = X ′1, . . . ,X

′

T ′ . Since the new sequence has repetitions
removed, it is shorter: T ′ ≤ T .
We combine scores from the HMM, described in (12), and

the MCM, described in (6), into a new cost function. Note
that (6) is now used for the sequence X ′.

We also introduce the activity transition cost (ATC), which
adds a fixed probability factor for each transition between
activities in the sequence X ′. The new cost function is then

P∗ = PHMM · PMCM · ATCT ′ , (15)

where PMCM and PHMM are the cost functions from (6)
and (12), respectively.

In the practical implementation, log-probabilities are used,
since the use of standard probabilities might exceed the
value range of variable types in computer systems. The cost
function then becomes:

logP∗ = logPHMM + logPMCM + γ · T ′, (16)

where γ = logATC . As one cannot expect both models to
have the same effect on the recognition accuracy, weights to
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both probability estimates were added. Hence, the final cost
function is defined as:

logP∗ = α · logPHMM + β · logPMCM + γ · T ′

= α · log

(
πX0 ·

T∏
t=1

λXt−1,Xt ·

T∏
t=0

φXt (Yt )

)

+β · log

π ′X ′0 ·
T ′∏
t=1

λ′X ′t−1,X
′
t

+ γ · T ′. (17)

The objective of the decoder is to find the state sequence
which maximizes the new cost function:

X̂ = argmax
X

(
logP∗

)
. (18)

The use of an MCM and the ATC was inspired from
the field of continuous speech recognition. For several
years, HMMs were used as acoustical models for phonemes,
n-grammodels (MCMs of order n−1) were used as language
models, and the so-called word insertion penalty was used to
counteract the system’s tendency to prefer a larger number of
shorter words over a smaller number of longer words.

D. PARAMETER OPTIMIZATION
We can look at the cost function (17) as a function of 3 scores:
The HMM probability, the MCM probability, and the number
of non-repeated activities in the sequence. Those scores are
combined as a weighted sum, using 3 weights: α, β, and ATC .

An optimization proceduremust be used to find the optimal
values of the weights. This is done during the parameter opti-
mization steps using the development set. For optimization,
one of the weights, say α, can be fixed to a constant value
(normally 1), resulting in 2 free variables for optimization:
the MCM weight β and the ATC value.
TheMCMs can have different orders, and different additive

counts for the start and transition probabilities can be used.
We can determine optimal values for the additive counts
by using MCMs to estimate the activity sequences in the
development set.

E. THE MODIFIED VITERBI DECODER
To use the new cost function, we must modify the standard
Viterbi algorithm to incorporate the MCM and the ATC into
the recognition system. Fig. 1b shows a graphical represen-
tation of state transitions in the modified algorithm, and a
comparison to the standard Viterbi algorithm (Fig. 1a) on an
HMM with three states.

In the modified Viterbi algorithm, there are several pos-
sibilities for the best-path- probability at each state. We call
these possibilities hypotheses. Let us denote the best-path-
probability of hypothesis h in state j at time t with δt (j, h).
Hypotheses are not necessary for first-order MCMs, where

the state transition probabilities are conditional only on the
immediately preceding state. TheMCM transition probability
can be multiplied with the HMM transition probabilities.

FIGURE 1. A graphical representation of the main part of (a) the standard
Viterbi algorithm and (b) the modified Viterbi algorithm for an HMM with
three states.

Similarly, the state start probabilities can be multiplied. Thus,
the standard Viterbi decoder can be used in this case.

Hypotheses are necessary for second-order and
higher-order MCMs. Let us consider a transition from state
i to state j. The transition probability is conditional on more
than just the immediately preceding state i. The set of dif-
ferent hypotheses at state i must account for all sequences
without repetitions of O − 1 states, where O is the MCM’s
order. If a state sequence in the hypothesis ends with the same
state as the state to which this hypothesis belongs, it is also
excluded, since it would generate a repetition at the current
transition.

Considering repetitions in the state sequence is not
necessary, since the definition of the activity sequence X ′
excludes repetitions. However, onemust also consider shorter
sequences of activities in the set of hypotheses to account for
the first few transitions inX ′, where the state history is shorter
thanO. We can derive the number of necessary hypotheses as

H =
O∏
o=1

(N − 1)o−1. (19)

In the example in Fig. 1 we have three hypotheses at
each state. The hypotheses are numbered in a way that their
number h represents the state from X ′ to be considered by
the MCM, besides i and j. The MCM transition probability
λ′h,i,j is the probability of state j occurring in the sequence X ′,
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conditional on the previous two states being h and i.
The state-number 0 indicates shorter histories at the
beginning of X ′.

Examining Fig. 1b, we can determine all possible transition
into each hypothesis of a given state.
• Any transition from a state to the same state has one
possible transition for each hypothesis. Since there is no
transition in X ′ in this case, the transitions are always
from a hypothesis to the same hypothesis, and the transi-
tions consider only the HMM transition probability. See
the middle three transitions in Fig. 1b.

• Hypothesis 0 indicates that there were no transitions in
the sequenceX ′ before – the path was never in any other
state. There are no other possible transitions into this
state, as this would contradict the hypothesis. See the
very middle transition in Fig. 1b.

• Other hypotheses can have transitions into them from
other states. Let us consider transitions to state j into
hypothesis h. Since the hypothesis number h is used
as an indicator of the previous state, transitions to this
hypothesis can only come from state h. For example,
transitions into hypothesis 1 come only from state 1
(see the top three transitions in Fig. 1b). In those tran-
sitions, we consider the HMM’s transition probability λ,
the MCM’s transition probability λ′, and the ATC.

• Regardless of state and hypothesis, the emission
probability is taken into account the same way as in the
standard Viterbi algorithm.

• No state j has a hypothesis h with the same number
(j 6= h). This would mean a repetition in X ′ and con-
tradict its definition.

• Additionally, at time 0, only transitions into hypothesis
0 are possible, as there are no previous states.

Considering the stated rules and restrictions for state/
hypothesis transitions, we derive the modified Viterbi algo-
rithm, presented in Algorithm 2.

The algorithm starts at time 0 and determines best-path-
probabilities for hypothesis 0 of all states (line 2) using the
HMM start probability (π ), the HMM emission probability
(φ), the MCM start probability (λ′), and the ATC. All other
hypotheses are assigned a probability of 0 (line 4), making
them inactive – any transition from them will again result in
a zero probability.

Next, we determine best-path-probabilities for all other
time-steps t for all states j. Determining the probability for
hypothesis 0 is always done directly as a transition from the
same hypothesis (line 9). Accordingly, the backtrack pointer
ψ is set (line 10). The pointer in the modified algorithm
must contain not only the state, but also the hypothesis at the
previous time-step.

For all other hypotheses h, we can first set the best-
path-probability and backtrack as a transition from the same
hypothesis (lines 12 and 13). Then, we consider transitions
from state h. If we find a higher best-path-probability (line
16), we correct its current value and the backtrack pointer
(lines 17 and 18).

Algorithm 2 The Modified Viterbi Algorithm Using an
HMM, a Second-Order MCM, and the ATC
1: for all j from 1 ≤ j ≤ N do
2: δ0(j, 0)← πj · φj(Y0) · π ′j · ATC
3: for all h from 1 ≤ h ≤ H do
4: δ0(j, h)← 0
5: end for
6: end for
7: for all t from 1 ≤ t ≤ T do
8: for all j from 1 ≤ j ≤ N do
9: δt (j, 0)← δt−1(j, 0) · λj,j · φj(YT )
10: ψt (j, 0)← (j, 0)
11: for all h from 1 ≤ h ≤ H , h 6= j do
12: δt (j, h)← δt−1(j, h) · λj,j · φj(Yt )
13: ψt (j, h)← (j, h)
14: for all h′ from 0 ≤ h′ ≤ H , h′ 6= h do
15: δ′← δt−1(h, h′) · λh,j · φj(Yt ) · λ′h′,h,j · ATC
16: if δ′ > δt (j, h) then
17: δt (j, h)← δ′

18: ψt (j, h)← (h, h′)
19: end if
20: end for
21: end for
22: end for
23: end for

After the main part of the decoder completes the modified
Viterbi algorithm, the highest best-path-probability at the last
time-index is found, and, from there, the state sequence is
determined using the backtrack pointers.

It should be noted that it would be possible to construct an
equivalent HMMwithN ·

∏O
o=1(N−1)

o−1 states representing
the hypotheses. In this case, the standard Viterbi decoder
can be used. However, this would require the combination of
the HMM, MCM, and the ATC into one HMM – a process
we estimate to be similarly complex as the modified Viterbi
algorithm.

V. RESULTS
A. ADDITIVE SMOOTHING
Before training the final HMMs and MCMs for activity
recognition, we tested different additive count for the prob-
ability smoothing in these models.

We tested the performance of MCMs by estimating the
probability of the activity sequence in the development set.
The obtained log-probabilities are listed in Table 2. We also
listed results with a zero-order model, which represents only
the probabilities of activities themselves, without consider-
ing previous activities. Since zero-order models give sig-
nificantly worse results, the results do show a dependency
between consecutive activities.

The highest log-probability (−126.69) belongs to a model
with a 2nd order MCM, which was built using an additive
count of 0.1. Since higher probabilities indicate that the
model fits the development set data better, we consider this
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TABLE 2. Log-probabilities on the development set of MCMs with
different additive counts and of different orders. The best result is noted
in bold.

model to be the best performing. Therefore, it was used in all
further experiments.

The results show that higher-order models perform less
well on the development set. We assume that the activities
do not exhibit dependencies over distances above a certain
limit. Also, worse model performance can be a result of data
sparsity for high-order model estimation, since the number of
parameters in the model increases exponentially with model
order.

Next, we can conclude that only a minimal additive
smoothing constant is necessary for the model, as higher
values slowly decrease the performance of the model.

We found that the same method of optimizing additive
counts cannot be applied for the state and emission proba-
bilities in the HMM. In an attempt to optimize these values,
we found that increasing them towards infinity results in a
better estimation score using (10). However, this results in an
HMM with no discriminative ability in the decoding process
– the probabilities of all possible paths would approach the
same value. Still, a minimum additive count must be applied
to avoid zero probabilities. We used an additive count of 1
for all counts during the estimation of the HMM’s parameters.
This minimum count can be higher than the count for MCMs,
as there is a significantly higher number of counts for the
HMM parameter estimation.

B. THE NAÏVE BAYES AND HMM CLASSIFIERS
The second column in Table 3 shows recognition accuracy
results for the naïve Bayes classifier. Since no parameter
optimization for this classifier was used, only final results on
the evaluation set are presented.

The Table gives individual accuracies for the 8 activities
present in the dataset, an average or total score across all
individual activities in the dataset (Total), and an accuracy
score of the combination of all concurrent activities (Activity
combination). The combination accuracy is the proportion of
data-points where all activities were recognized correctly at
the same time. We see that the overall accuracy using the
naïve Bayes classifier is 92.54 %, whereas the combination
accuracy is 59.01 %.

While the overall accuracy can be considered good, further
analysis of the recognition outputs shows 12,562 predicted

TABLE 3. Accuracy results on the evaluation set for the naïve Bayes
classifier and the HMM classifier interpolated with the naïve Bayes
classifier. Shown are accuracies for individual activities, the total accuracy
of all individual activities, and the combined activity accuracy. The
number of predicted activity transitions is 12,562 using the naïve Bayes
classifier and 741 using the HMM classifier.

activity transitions, whereas the actual evaluation set has only
141 actual activity transitions.

First experiments with the basic HMM decoder showed
a significant drop in recognition accuracy. We suspected
the reason for this to be the highly unbalanced nature of
the activities in the datasets. Therefore, we interpolated the
HMM with the naïve Bayes classifier by including the state
probability from the Bayes classifier (P(x)) into each state in
the decoding process.

The results of the interpolated classifier are shown in the
third column in Table 3. We see an increase in accuracy with
most activities, most notably for cooking and for the com-
bined activity score. With the interpolated model, the results
showed 741 predicted activity transitions in the decoder out-
put, which is still over five times the amount of actual activity
transitions in the evaluation set.

C. INCLUSION OF THE ACTIVITY TRANSITION COST
Next, the ATC was added to the decoding algorithm.
Given the fact that we want to reduce the amount of activ-
ity transition, and because of the formulation of γ in (16),
the ATC value must be a negative number. To find the optimal
value, we tested several values (6 values per decade from
−0.1 to−100) and compared accuracy results and the number
of activity transitions on the development set. The results are
shown in Fig. 2.

We tested the performance on the development set
regarding the total accuracy, the combined accuracy, and the
number of predicted activity transitions, compared to the
number of actual activity transitions in the development set,
which is 161.

Examining the result, we decided to use −33 as an
optimized ATC value, as a compromise regarding the three
graphs in Fig. 2. The selected ATC value gives the best result
of the combined accuracy, and the second-best result of the
total accuracy. Regarding the number of predicted activity
transitions, the results are considered to be better if they
are closer to the number of actual activity transitions. The
selected optimal ATC value gives a better result than selecting
the ATC value, which gives the best total accuracy.
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FIGURE 2. ACT optimization results on the development set in terms of
(a) the total accuracy over individual activities, (b) the combination
accuracy of all activities, and (c) the number of predicted activity
transitions (blue) compared with the number of actual activity transitions
in the development set (green). Results with the selected optimal value
are marked in red.

TABLE 4. Accuracy results on the evaluation set for the HMM classifier
extended with the ATC. The number of predicted activity transitions with
these results is 136.

This optimal ATC value was then used on the evaluation
set, obtaining the results in Table 4. Again, one can see an
improvement in accuracy with most activities, including the
total and combined accuracy.

The most significant difference is in the number of
predicted activity transitions, which is now reduced to 136.
That result is much closer to the 141 actual activity transitions
in the evaluation set.

D. INCLUSION OF THE MARKOV CHAIN MODEL
Next, we added the MCMmodel into the recognition system,
firstly, without the ATC. We repeated the optimization

FIGURE 3. MCM weight (β) optimization results on the development set
in terms of (a) the total accuracy over individual activities, (b) the
combination accuracy of all activities, and (c) the number of predicted
activity transitions (blue) compared with the number of actual activity
transitions in the development set (green). Results with the selected
optimal weight are marked in red.

processes from the ATC optimization, albeit with positive
values. The results are shown in Fig. 3.

The MCM introduces probabilities for each transition
between activities, similar to the ATC. However, transition
probabilities between activities in the MCM have different
values, whereas the ATC is constant. Nevertheless, there is a
similar effect on the number of transitions in the recognition
output.

Examining the results, we decided to use 4.7 as the optimal
MCM weight. Again, this was done as a compromise regard-
ing the three graphs in Fig. 3. The selected MCM weight
gives the best result on the total accuracy and the second-
best result on the combined accuracy. This values also gives
a better result of predicted activity transition than selecting
the best result on the combined accuracy. Using the selected
MCMweight on the evaluation set, the results in Table 5 were
obtained. The results, again, show an improvement over the
basic HMM recognized and are very similar to the results of
using the ATC.

An examination of the MCM shows that most log-
probabilities in the model have values between −6 and −12.
These values are added at each activity transition to the cost
function. Hence, it is not surprising that the ratio between the
optimal ATC value and the optimal MCM weight is in the
same range (−33/4.7 ≈ −7).
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TABLE 5. Accuracy results on the evaluation set for the HMM classifier
extened with the MCM. The number of predicted activity transitions with
these results is 130.

TABLE 6. Accuracy results on the evaluation set for the HMM classifier
with the ATC and the MCM. The number of transitions with these results
is 236.

E. COMBINATION OF THE ACTIVITY TRANSITION COST
AND THE MARKOV CHAIN MODEL
Finally, we included both the MCM and the ATC into
the HMM recognition algorithm. Since both of them affect
the number of predicted activity transitions in the results,
we expected an interdependence between the optimal MCM
weight and the optimal ATC value.

We expected optimal MCM values to be positive since
the results from the previous subsection show improvement
when adding the MCM. Like the negative values of the ATC,
the positive values of theMCMalso cause a tendency to lower
the number of predicted activity transitions in the recognition
output. We suspected that this would cause an increase in the
optimal value of the ATC. Given high enough MCMweights,
optimal ATC values might even become positive numbers.
Therefore, positive and negative values have to be tested
while searching for optimal weights on the development set.

We found that an MCM weight of 220 and a positive ATC
of 33 give the best accuracy results on the development set,
both in terms of the total accuracy (95.51 %) and the com-
bined accuracy (76.27 %). The number of predicted activity
transitions in the recognition output was 204, whereas the
number of actual activity transitions in the development set
is 165.

We then used these weights in the recognition system on
the evaluation set. The results are shown in Table 6. We again
see an increase in recognition accuracy on most activities
when compared to previous results.

Table 7 shows a summarization of the results. We see that
the inclusion of both the MCM and the ATC gives the best
results in terms of accuracy, whereas adding only the ATC to

TABLE 7. A summary of the recognition results with different models on
the evaluation set.

FIGURE 4. Partial timeline of the activity sleeping in the evaluation set as
(a) the reference annotation in the dataset and (b) the predicted activity
using the HMM recognizer with the ATC and the MCM.

the systems gives the best result in terms of the number of
predicted activity transitions.

A closer examination of the recognition results shows a
plausible explanation of why the best accuracy results occur
with a higher amount of predicted activity transitions. Fig. 4b
shows a typical recognition example with comparison to the
reference annotation in Fig. 4a. We see brief interruptions
in the recognized activity as a possible reason for an excess
amount of predicted activity transitions in the recognition
output.

Taking an emphasis on the recognition accuracy rather than
the number of predicted activities, we consider the model
using the HMM, the ATC, and the MCM to be the best
performing.

Comparing the obtained results with previously published
research, one can see that comparable accuracy results in the
same area of approximately 90 % were achieved. However,
for a direct comparison, one would need a experimental setup
using the same dataset, with the same data separation (into the
train, development and evaluation data), and the same imple-
mentation of evaluation metric. Although research using the
CASAS datasets is published, implementation details are
usually not publicly available to that extent.

Therefore, we emphasized only the comparison between
the basic HMM-based system and the extended system,
as this was the principal intent of this paper.

VI. CONCLUSION
In this article, we presented two extensions of HMM-based
ADL recognition, as well as an extension to the Viterbi
algorithm to use the proposed models. The use of an MCM
of activities enables us to model longer dependencies in the
recognition algorithm, and the use of the ATC enables us to
prevent an excess amount of predicted transitions.
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Both extensions showed improvements in recognition
accuracy when being used as individual extensions to the
HMM-based system, whereas the use of both extensions
simultaneously gave the overall best results.

Our approach considered the use of oneHMM,with several
states representing combinations of all possible activities.
Possible future work on this approach includes the examina-
tion of whether the proposed extensions can be applied to a
system with separate models for separate activities.

Also, the examinations of the timeline representation of the
recognition results suggest the need for a more comprehen-
sive evaluation of ADL recognition results, rather than using
the accuracy score alone.

Another future research direction is the examination of
whether HMMs with time-depended transition probabili-
ties can be used to prevent brief interruptions of predicted
activities in the results.
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