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ABSTRACT The aim of mining fuzzy association rules is to find both the association and the casual
relationships between the itemsets. With the arrival of dynamic data, the fuzzy association rules should be
updated in real time. However, most of the existing algorithmsmust remine the updated database and can only
be applied in classification. This paper proposes an incremental fuzzy association rule mining algorithm to
solve classification and regression problems. First, the sliding window is adopted to divide the fuzzy dataset.
Second, the dynamic fuzzy variable selection algorithm is adopted to select variables for reducing the search
space of the fuzzy association rule mining. Finally, in each sliding window, the result of variable selection
is used to incrementally mine the causal fuzzy association rules with the fuzzy Eclat algorithm. When new
data are added, the process judges whether concept drift occurs, and if so, the rule set is updated; otherwise,
the original rule set is still applied. The weights of the rules are calculated to find the evolving relationship.
The simulation result shows that this algorithm can improve accuracy and efficiency.

INDEX TERMS Fuzzy association rules, incremental, classification, regression, Eclat algorithm.

I. INTRODUCTION
In data mining, the technique of association rule min-
ing (ARM) aims to find frequently occurring data items
with minimum support and minimum confidence constraints,
thus discovering the associations existing among data items
without any predetermined target. Several studies in the
data mining community have shown that classification
based on associations rule mining (as known as associa-
tive classification mining (ACM)) is able to build accu-
rate classifiers [1]–[3], which involves the prediction of a
categorical (discrete unordered) label in the consequent of
the rules and is comparable to traditional methods such as
decision trees, rule induction and probabilistic approaches.
Classification based on associations (CBA) [1] supplies the
first algorithm that integrates association rule mining and
classification and uses the apriori approach to discover the
association rules. The best association rules within any of
targeted rules are selected based on the confidence, sup-
port and size of antecedent. Classification based on multiple
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association rules (CMAR) [2] uses the FP-growth approach
to find the association rules. The classification rules are
stored in a prefix tree structure, known as a CR tree. The
CR tree offers effective storage and rapid retrieval of rules
in the classifier. Classification based on predictive associa-
tion rules (CPAR) [4] is a greedy associative classification
approach. The best rule is measured by the FOILgain of the
rules generated among the available rules in the dataset. Asso-
ciative classifiers have been found [1], [2], [5] to work better
than other traditional classifiers in terms of accuracy and
interpretability.

However, associative classifiers focus on a special subset
of association rules whose right-hand sides are restricted to
the categorical attribute, which cannot predict the contin-
uous attribute. In fact, practitioners and researchers intend
to explore these rules to predict quantitative output (future
behavior of certain variables) based on selected other known
variables. Thus far, the mined association rules are not used
to solve such regression estimation problems by mining the
relationship between variables. Considering the aim for clas-
sification and regression, we strive to acquire the association
rules that clearly display the potential information in the
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dataset according to the causal relations between the vari-
ables, while the redundant and nonpredictive rules are pruned
and removed.

To address the quantitative attributes in mining associa-
tion rules, the classical association rule mining algorithms
discretize the continuous attributes into several intervals
as a Boolean vector, but it is possible to encounter the
sharp boundary problem. Fuzzy association rules mining
approaches based on the fuzzy set concept [6]–[9] are pro-
posed to overcome such disadvantages. These approaches are
based on fuzzy extensions of the classical association rules
mining by defining the support and confidence of the fuzzy
rule. In recent years, a lot of researchers have focused atten-
tion on the use of fuzzy association rules to realize classifica-
tion. In [6], a novel associative classification model based on
a fuzzy frequent pattern mining algorithm (AC-FFP) is pro-
posed that uses the membership function to fuzzify the input
variables and further mine the classification association rules
based on FP-growth. An efficient mining algorithm known as
fuzzy association rules for high-dimensional problems (FAR-
HD) was proposed in [7], which processes frequent itemsets
using a two-phased multiple-partition approach especially
for large high-dimensional datasets. The FAR-HD process
improves the accuracy in terms of associative soft category
labels by building a framework for the fuzzy associative clas-
sifier to leverage the functionality of fuzzy association rules.
These approaches all involve two basic steps:1) the genera-
tion of classifiers consisting of a set of class association rules,
and 2)the prediction of new data with the classifier. However,
to the best of our knowledge, fuzzy associative classifiers
make decisions based on the results of a data-mining algo-
rithm instead of based on fuzzy inference rules [10]–[14].
The question of how to address the fuzzy association rules
to realize fuzzy inference prediction is a challenging issue.
In addition,the performance and accuracy of most association
classifiers are affected by new objects imported into the sys-
tems over time. Therefore, considering future performance,
the complexity and accuracy of these systems should be our
key focus.

In these above mentioned systems, the extracted rules
should be updated based on newly added objects or changes
that take place in the existing objects over time. Hence, it is
a challenge to find a suitable methodology to efficiently
identify, store and match a large number of rules that clas-
sify historical data incrementally. In addition, it could be an
extra burden if we wanted to keep it up-to-date dynamically.
Thus far, the incremental mining problem has been studied
extensively for fuzzy association rules [15]–[17]. For exam-
ple, an algorithm known as the incremental update fuzzy
association rules (IUAC) is proposed in [15], which needs to
scan the original transaction database once and scan the new
portion of the database several times. The algorithm is highly
efficient when the size of the new portion of the database is
relatively smaller than that of the original database. In [16],
a fuzzy association rules incremental mining algorithm is
proposed that can immediately obtaion the latest fuzzy

association rules. In [17], a rapid incremental mining algo-
rithm used to generate fuzzy association rules is proposed
in which the transactions or data records are instantly col-
lected online from live packets. In other words, as one data
record is collected online, the latest fuzzy rules can be
obtained immediately, but all of the support counts of the
itemsets need to be stored, which leads to a large space cost.
Similarly, when the fuzzy association classifier is used to
analyze the dynamic datasets, the time complexity in the
mining process remains an important issue. Once the new
data are added, the incremental mining algorithm consid-
ers the past mining results and the current dataset to gen-
erate the latest fuzzy association rule set. Minimal work
has been performed on the incremental fuzzy associative
classifier.

This paper presents a novel incremental fuzzy association
rule mining approach for classification and regression. First,
the sliding window is used to partition the data, and an incre-
mental clustering algorithm is adopted to fuzzify the data in
each sliding window to solve the sharp boundary. Second,
the fuzzy variable is fetched by a dynamic fuzzy variable
selection algorithm to decrease the search space for the cur-
rent slidingwindow. Finally, an incremental fuzzy association
rule mining algorithm for classification and regression is
applied in the current sliding window.

Themain contributions of the current paper can be summed
up as follows:

• Classification and regression are implemented based on
causal fuzzy association rules. If the output is a categor-
ical attribute, the mined fuzzy association rules can be
used directly to solve the classification problems. If the
output is a continuous variable, quantitative prediction
can be achieved by fitting with the consequent of the
fuzzy rule.

• In the process of incremental mining fuzzy association
rules, the expected frequent itemsets are obtained by
calculating the probability of the nonfrequent itemsets
in the current sliding window and judging whether an
itemset is expected to be a frequent itemset in the next
sliding window. Based on this information, the dataset
only needs to be scanned once to obtain compact and
comprehensive fuzzy association rules.

• When new data are added, the existing rules are updated
by considering the previously expected frequent item-
sets and the new data of the current sliding window if
concept drift occurs.

The remainder of this paper is organized as follows.
Section 2 outlines the basic concept and introduces the fuzzy
association rule mining based on Eclat and the causal fuzzy
association rules for the classification and regression algo-
rithm. Section 3 details the incremental fuzzy association rule
mining. Section 4 elaborates numerical examples in various
datasets, encompassing discussions on the performances of
benchmarked algorithms. Conclusions and future work are
presented in Section 5.
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II. FUZZY ASSOCIATION RULES
A. BASIC CONCEPT
Suppose the dataset D contains n samples, L input features
and one output feature, which can be represented as:

D =


x11 · · · x1L y1
x21 · · · x2L y2
...

...
...

...

xn1 · · · xnL yn

 (1)

The input variable set is denoted as X = [X1,X2, · · · ,Xj,
· · · ,XL], the output feature is denoted as Y . xij represents the
jth (1 ≤ j ≤ L) input variable Xj of the ith (1 ≤ i ≤ n) sample
at the current moment, and yiis the value of the output feature
of the ith sample.
To improve the performance of the fuzzy association rules,

fuzzification must be applied before mining the fuzzy associ-
ation rules. Therefore, in this paper, an incremental clustering
algorithm of Bayesian adaptive resonance theory based on
local distribution [18] is adopted to automatically transform
each quantitative value into a fuzzy set.
Definition 1: Feature fuzzification. Assume that the input

featureXj is discretized after clustering to form
∣∣Sj∣∣ partitions,

which can be fuzzified as the fuzzy features vector

X̃j = {X̃j1, X̃j2, · · · , X̃j|Sj|} (2)

where X̃jq is the qth (1 ≤ q ≤
∣∣Sj∣∣) fuzzy item of the

jth(1 ≤ j ≤ L) input feature at the current time, which can be
represented as:

X̃jq =
µX̃jq

(x1j)

x1j
+

µ
X̃jq
(x2j)

x2j
+ · · · +

µX̃jq
(xij)

xij

+ · · · +

µX̃jq
(xnj)

xnj
(3)

where

µX̃jq
(x) = exp(−

(x − cX̃jq )
2

2σ 2
X̃jq

), 1 ≤ j ≤ L, 1 ≤ q ≤
∣∣Sj∣∣

(4)

and cX̃jq and σ
2
X̃jq

are respectively the mean and the variance
of samples of the qth fuzzy item of the jth input feature at
the current time. Similarly, the output features Y can also be
fuzzified as the fuzzy feature vector

Ỹ = {Ỹ1, · · · , Ỹ|SY |} (5)

where Ỹq is the qth (1 ≤ q ≤ |SY |) fuzzy item of the output
feature at this time, which can be represented as:

µỸq
(yi) = exp(−

(yi − cỸq )
2

2σ 2
Ỹq

) (6)

where cỸq and σ
2
Ỹq

are respectively the mean and the variance
of samples of the qth fuzzy item of the output feature at the
current time.

Definition 2: Fuzzy support count. Let the fuzzy itemset be
written as shown

X̃ = {X̃11, X̃12, · · · X̃1q, · · · , X̃1|S1|, X̃21, X̃22, · · · X̃2q,

· · · , X̃2|S2|, · · · , X̃j1, X̃j2, · · · X̃jq, · · · , X̃j|Sj|, · · · , X̃L1,

X̃L2, · · · X̃Lq, · · · , X̃L|SL |} (7)

and the support count of X̃ is defined as follows:

Supc(X̃ ) =
n∑
i=1

(
∏
X̃jq∈X̃

µX̃jq
(xij)) (8)

where n is the number of the samples collected at the current
time.
Definition 3: Fuzzy support and fuzzy confidence. Suppose

the hth fuzzy association rule is

Rh : X̃h→ Ỹh (9)

where X̃h ∈ X̃ is a conjunction of multiple items and the
multiple antecedent of the hth rule. Ỹh ∈ Ỹ is the consequent
of the hth rule; here, it is the single categorical attribute, and
Rh can be represented as

if X1,h is X̃1,f1,h , · · · ,Xj,h is X̃j,fj,h , · · · ,Xrh,h is X̃rh,frh,h
then Yh is Ỹfh (10)

where rh(1 ≤ rh ≤ L) is the number of variables contained
in the antecedent, X̃j,h is the jth variable in the hth fuzzy
rule, X̃j,fj,h is the fj,h-th fuzzy item value corresponding to the

variable Xj,h is the hth fuzzy rule, and Ỹfh is the fh-th fuzzy
item value corresponding to the variable yh in the hth fuzzy
rule. The support and confidence can be expressed for a fuzzy
association rule as follows:

sup
(
X̃h ∪ Ỹh

)
=

n∑
i=1

(
∏

X̃jq∈(X̃h∪Ỹ )h

µX̃jq
(xij))

n
(11)

Conf (X̃h→ Ỹh) =
Sup(X̃h ∪ Ỹh)

Sup(X̃h)
(12)

Fuzzy itemsets with at least a minimum support are known
as frequent fuzzy itemsets. Fuzzy rules with at least a mini-
mum support and confidence are known as interesting rules.

According to the principle of Bernoulli trials [19],
the probability of an infrequent itemset to appearing in l
transactions out of n transactions, denoted by P(l)itemset , can
be found by the following equation:

p(l)itemset =
(
n
l

)
· plitemset · (1− pitemset )

n−l (13)

where Pitemset is the probability of an itemset appearing in
a transaction, n is the number of transactions in current
database. According to Eq.(13),Pitemset is approximated from
the support count of an itemset in a current database. Thus,
if min Supc is a minimum support count after inserting new
transactions into an original database, the probability of an
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itemset to be a frequent itemset in the updated database can
be obtained as the following equation:

p(l ≥ min Supc)itemset = 1− p(l < min Supc)itemset (14)

According to Eq.(13), p(l ≥ min Supc)itemset can be found as
the following equations:

p(l ≥ min Supc)itemset

= 1−
min Supc−1∑

l=0

(
n
l

)
· plitemset · (1− pitemset )

n−l (15)

Let l be the number of observed success in n Bernoulli trials,
then the possible values of l are 0, 1, 2, ..., n. If l (l =
0, 1, 2, ..., n) successes occur, then n− l failures occurs. The
number of ways of selecting l positions for the l success in
the n trials is (

n
l

)
=

n!
l!(n− l)!

(16)

Definition 4: Expected frequent probability. Let F̄ be an
infrequent itemset, and minSupc is a minimum support count
for current dataset. The probability that F̄ becomes a frequent
itemset is

P(l ≥ minSupc)F̄ = 1− P(l < minSupc)F̄

= 1−
minSupc∑
x=1

n!
i!(n− i)!

pl
F̄
(1− pF̄ )

n−l

(17)

where pl
F̄
is the probability of F̄ appearing in l transactions

and can be calculated by:

pl
F̄
=

n∑
i=1
µX̃1

(xi) ∧ · · · ∧ µX̃j (xi) ∧ · · · ∧ µX̃c (xi)

n
,

({X̃1, · · · , X̃j, · · · , X̃c} ∈ F̄) (18)

where c is the counts of the infrequent itemset F̄ , and n is
the number of all data samples collected, where µX̃j (xi)(j =
1, · · · , c) is the membership of the ith sample corresponding
to the fuzzy item X̃j. Any infrequent itemsets that have a prob-
ability greater than the threshold can be treated as promising
frequent itemsets.
Definition 5: Threshold of expected frequent itemsets [20].
Let β indicates the minimum probability threshold with

which an infrequent itemset in current moment may be
become a frequent itemset in the next sliding window, which
is defined as:

β = 1−
∫ v−0.5

−0.5

1

σβ
√
2π

e
−

1
2 (

x−cβ
σβ

)
2

dx (19)

where v is the number of possible successes which an infre-
quent itemset in current moment may be become a frequent
itemset in the next sliding window.

cβ = n(ρ + 0.95

√
ρ(1− ρ)
n(t−1)

) (20)

σβ =

√
n(ρ + 0.95

√
ρ(1− ρ)

n
)(1− (ρ + 0.95

√
ρ(1− ρ)

n
))

(21)

ρ = Supc(X̃K ) (XK ∈ F̄, K = 1, · · · , j, · · · , c) (22)

K = arg
K

c
min
j=1

(pX̃j ) (23)

where n is the number of all data samples, and ρ is the support
count of the minimum expected frequent probability of the
infrequent itemset X̃K .

B. FUZZY ASSOCIATION RULES BASED ON ECLAT
As a component of association rule mining, frequent item set
mining is a highly popular method for discovering interest-
ing relationships between sets of items in large databases.
The Eclat algorithm [21] was proposed to generate all fre-
quent item sets in a depth-first manner based on vertical
data representation. For vertical data layout, each item is
represented by a tidsets (a set of transaction IDs whose
transactions contain the item). This layout could be main-
tained as a bit vector. Different from the a priori algorithm
based on horizontal data representation (ie. each transaction
consists of a set of items and the database is a set of trans-
actions), the Eclat algorithm only reads the database twice
to find the frequent items and reduces the memory used to
count the support when the sample size is not particularly
large.

The search space in the Eclat algorithm is divided into k-
equivalence classes. After finding all frequent sets of length
k , the algorithm organizes them into disjoint groups with
identical k−1 partial prefixes. If two sets of lengths k+1 have
a common prefix of length k , they are in the same equivalence
class. Frequent itemset candidates of length k + 1 are gener-
ated by intersecting sets of transactions identifiers (tidsets)
of every two frequent itemsets of length k from a given
equivalence class. After k iterations, all equivalence classes
of k size are analyzed. The algorithm stops when all the
candidates can be generated.

However, the Eclat algorithm can only work with Boolean
data, but in the real world, most data are numerical and
need to be discretized before the mining association rules
are applied. To avoid the hard boundary problem, the data
need to be fuzzified. In this paper, a fuzzy association
rule mining algorithm based on the Eclat algorithm is
proposed.

To find all frequent itemsets with fuzzy Eclat, the inter-
section operation is applied to the vertical database. In this
work, the dataset in current time t are viewed as a local sliding
window SW to count the support of items and compute the
frequent item pairs. Table 1 presents the vertical dataset of the
current sliding window, X̃j ∈ X̃ is the jth item of the dataset,
and the membership set {µ(X̃j)} includes the membership
of each item for each data. An item can appear in multiple
samples, and a sample also contains multiple items. The
purpose of mining frequent itemsets is to find the association
between items based on the vertical dataset. By scanning the
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TABLE 1. vertical dataset.

vertical dataset one time, the support count is defined as:

Supc(X̃j) =
n∑
i=1

µX̃j
(xi) (24)

where
n∑
i=1
µX̃j

(xi) is the membership of item X̃j for the ith data

sample in the current sliding window.
If Supc(X̃j) is less than the minimum support count

minSupc, then X̃j is a frequent 1-itemset of the current win-
dow. After finding all frequent k − 1 itemsets, the algorithm
organizes them into disjoint groups with identical k−2 partial
prefixes. If the two k − 1 itemsets have a common prefix of
length k − 2, they are in the same equivalence class. The
candidate frequent k-itemset are generated by intersecting
every two k − 1 itemsets from a given equivalence class,
meaning

Supc(Ck ) =
n∑
i=1

(µFk−1 (xi))
⋂

(µFk−1 (xi)) (25)

where µFk−1 (xi) is the membership of the frequent item Fk−1
for the ith data xi in the current sliding window.

According to definition 4 and definition 5, the expected fre-
quent itemsets are obtained by finding the frequent itemsets
in the vertical dataset. Based on the fuzzy Eclat algorithm,
the frequent itemsets and expected frequent itemsets mining
process are shown in algorithm 1.

C. CAUSAL FUZZY ASSOCIATION RULE MINING FOR
CLASSIFICATION
Most existing fuzzy associative classifiers only focus on
generating rules with the support-confidence framework and
without considering the predictive ability of the features
involved in a classification rule. Thus, extraction of a minimal
set of rules with a strongly predictive capability is criti-
cal to building an efficient incremental associative classifier
from the high-dimensional data that are prevalent in many
real-world applications. To meet these challenges, we pro-
pose a new framework that integrates causality into fuzzy
associative classification.

Traditional associative classification algorithms identify
relationships between the class label and its antecedents
using statistical correlation. However, correlation is not
causation [22]. For example, we not only want to know
whether a particular operation parameter is associated with
a process fault (a typical fault class), but we also want to
know definitively whether the association is due to an adverse

Algorithm 1 Frequent itemsets mining algorithm
1. Scan the fuzzy horizontal dataset and transforms it
into a vertical dataset;
2. By scanning the vertical dataset one time, calculate the
support count of each item
Supc

(
X̃u
)
=
∑n

i=1 µX̃u (
xi)

3. If Supc
(
X̃u
)
≥ min Supc

X̃u is a frequent 1-itemset F1
Otherwise

X̃u is a frequent 1-itemset F1
End

4. While (Fk is nonnull)
Ck = Fk × Fk−1
Calculate the support count Supc (Ck)

5. If Supc (Ck) ≥ min Supc
Then Ck is an infrequent itemset Fk = Fk ∪ Ck
If each of itemset Ck == frequent

Ck is a frequent itemset
Otherwise

Ck is an infrequent itemset Fk = Fk ∪ Ck
end

end
6.Calculate the expected frequent possibility pF̄k of the
infrequent
itemset F̄k and the minimum expected frequent possibility
β of the current sliding window.
7 If pF̄k ≥ β

Fk is the expected frequent itemset, EF (i)
k = EFk ∪

Fk
end

reaction. Without knowing the true relationship, plain associ-
ations can lead to false conclusions, e.g., the operation param-
eter causes special process fault class label. Consequently,
by detecting the causal relationships between the class label
and its antecedents, we can uncover causal or consequential
factors with respect to the class label. In generating the set of
classification rules, the only features considered are those that
belong to this causal feature space instead of the combina-
tions of all features. Thus, this process can greatly reduce the
computational cost and large resource demands in the stage of
rule extraction. Furthermore, the extracted rules are not only
causally interpretable but also causally informative. Thus,
the causal index can be introduced into fuzzy association rule
mining to solve classification problems.

Suppose the hth fuzzy association rule is Rh :

X̃h→ Ỹh, the antecedent X̃h can be represented as
{X̃1,f1,h , · · · , X̃j,fj,h , · · · , X̃k,fk,h , · · · , X̃rh,frh,h}(1 ≤ j < k ≤
rh), and Ỹh ∈ Ỹ is the consequent of the hth rule.
When the rule X̃h→ Ỹh has more than three antecedents,

any subrules containing two antecedents must discriminate
the conditional dependence relationships with the conse-
quence.
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In addition, the interestingness of rule X̃h→ Ỹh is depen-
dent on the weakness of its subrules, so the causal index for
X̃h→ Ỹh is defined as

CI (X̃h→ Ỹh) = min
(X̃j,fj,h ,X̃k,fk,h )∈X̃h

CI (X̃j,fj,h , X̃k,fk,h → Ỹh)

(26)

where ∀X̃j,fj,h , X̃k,fk,h (j 6= k), and the causal index between
two items for CI (X̃j,fj,h , X̃k,fk,h → Ỹh) is defined as

CI (X̃j,fj,h , X̃k,fk,h → Ỹh)

= 2H (X̃j,fj,h )+ 2H (X̃k,fk,h )

+ 3H (Ỹh)− H (X̃j,fj,h , Ỹh)− H (X̃k,fk,h , Ỹh)

−H (X̃j,fj,h , X̃k,fk,h , Ỹh) (27)

where X̃j,fj,h and X̃k,fk,h are the memberships applied for vari-
able Xj and Xk in the antecedent of hth fuzzy rule respectively,
and H (.) is the information entropy.
The information entropy of {X̃j,fj,h , X̃k,fk,h , Ỹh} is defined

as:

H ({X̃j,fj,h , X̃k,fk,h , Ỹh}) = −
1
n

n∑
i=1

log
Bi,h
n

(28)

where Bi,h is the cardinality of the ith sample corresponding
to the hth fuzzy rule, as derived in Appendix A. The entropy
of other fuzzy items can be calculated in the similar manner.

The mining process of the causal fuzzy association rule is
given in algorithm 2, and the obtained rule for classification
can be described as follows.

Rh : if X1,h is X̃1,f1,h · · · ,Xj,h is X̃j,fj,h · · · ,

Xrh,h is X̃rh,frh,h then Yh is classh (29)

Algorithm 2 Causal fuzzy association rule mining algorithm

1. For X̃ ∈ Fk , Ỹ ∈ (Fk − X̃ )(k ≥ 2)
calculate the confidence level conf (X̃ −→ Ỹ ) of the

rule X̃ −→ Ỹ
2. If conf (X̃ −→ Ỹ ) ≥ min conf

Then X̃ −→ Ỹ is an interesting fuzzy association
rule
3.Calculate the casual index CI (X̃ −→ Ỹ ) of the rule
X̃ −→ Ỹ
4. If CI (X̃ −→ Ỹ ) ≥ minCI

Then X̃ −→ Ỹ is a casual fuzzy association rule

In this work, the single categorical attribute classh is the
class labels of the hth rules.

D. CAUSAL FUZZY ASSOCIATION RULE MINING FOR
REGRESSION
To realize the regression prediction accuracy of the fuzzy
association rules mining models, the causal fuzzy association
rules are reconstructed by combining the TS fuzzymodel [23]

with the extracted quantitative association rules, and on this
basis, the best rule is directly identified to match the new
sample and predict its output. The existing fuzzy association
rules are rewritten with a similar expression by combining
with the TS fuzzy inference rules to predict the output values
to realize fuzzy inference with the regression function (see
Eq.(30))

Rh : if X1,h is X̃1,f1,h , · · · ,Xrh,h is X̃rh,frh,h

then Yh =
nh∑
i=1

(αi,h − α∗i,h)K (Exi,h, Ex)+ bh, with RWh

(30)

The antecedent of the hth fuzzy association rule is same
as in (29), the consequent of the hth fuzzy association rule
is shown in (30), Yh is the output variable in the hth fuzzy
association rules at the current moment, and the consequent is
expressed as a regression function by using the support vector
regression method (SVR) [24]. SVR may be used for TS
structure learning [25], [26], parameter learning [27]–[30],
or both [31]. The use of SVR for TS parameter learning is
helpful for improving the generalizability of TS fuzzy infer-
ence model. In this work, the fuzzy rule weight is proposed,
which is another important index used to measure the fuzzy
association rule in [0, 1], which can reflect the evolution
process of the fuzzy rules in different sliding windows. The
closer the fuzzy rule weight is to 1, the more important it is;
otherwise, the less important it is. The weight of fuzzy rules
is defined as:

RWh =

nh∑
i=1

wh(xi)

n∑
i=1

wh(xi)
(31)

where wh(xi) is the degree of activation of the hth rule

wh(xi) = T (µX̃1,h (xi), · · · , µX̃j,h (xi), · · · , µX̃rh,frh,h
(xi)) (32)

where µX̃j,h (xi) is the membership of the hth rule for the ith
data xi at the current moment, nh is the number of samples
matching with the hth rule, and T is the t-norm.

The input-output mapping becomes

f (Ex) =
∑m

h=1
RWhYh (33)

where Ex = [x1, · · · , xi, · · · , xrh ]
T is the input sample.

The support vector regression algorithm [32] is applied to
predict the output. As is known, the support vector regression
learning mechanism is based on statistical learning theory,
which has strong generalization ability and can avoid overfit-
ting. The SVR approach is described as follows. Let nh be the
number of the data samples matching with the hth association
rule, 0.7nh of the data samples are used in training, and the
remaining 0.3nh samples are used only to verify the identified
model. We construct the kernel function of SVR based on the
fuzzy basis function to realize the fuzzy inference system.
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The Mercer kernel is defined as

K (xj, Ex) =
rh∏
i=1

exp

−1
2

(
xi − cxjq
σxjq

)2
 (34)

where cxjq and σxjq are respectively the mean and the variance
of samples of the qth (q = 1, ...,

∣∣sj∣∣) fuzzy item of the jth
(j = 1, ..., rh) input variable at the current sliding window.
The decision function is defined as

Yh(Ex) =
nh∑
i=1

(αi,h − α∗i,h)K (Exi,h, Ex)+ bh (35)

To obtain the decision function, the SMO algorithm is
adopted to solve the quadratic program and obtain the
Lagrange multipliers αi,α

∗
i .

min{− 1
2

0.7nh∑
i,j=1

(αi,h − α∗i,h)(αj,h − α
∗
j,h) < Exi,h, Exj,h >

+ ε

0.7nh∑
i=1

(αi,h + α∗i,h)−
0.7nh∑
i=1

(αi,h − α∗i,h)Yi,h}

s.t.
nh∑
i=1

(αi,h − α∗i,h) = 0, 0 ≤ αi,h, α∗i,h ≤ Ch

(36)

bh =
1
nh
∑

0<αi,h<ch

[Yh −
∑
xi,h∈sv

(αi,h − α∗i,h)k(Exi,h, Ex)− εh]

+

∑
0<α∗i,h<ch

[Yh −
∑
xi,h∈sv

(αi,h − α∗i,h)k(Exi,h, Ex)+ εh]

(37)

The algorithm does not stop the training until the error and
SVs are satisfied with the given conditions.

III. INCREMENTAL FUZZY ASSOCIATION RULE MINING
The fuzzy association rule approach can combine the data
mining results with human expertise and background knowl-
edge, in the form of rules, to attain labeled classes for classifi-
cation of data streams. Another advantage of the fuzzy logic
approach is that it gives classification results that include a
degree of probability.

Traditional fuzzy association rules are designed in batch
mode, i.e., by using the complete training data all at once.
For stationary processes, this approach is sufficient, but for
time-based and complex nonstationary processes, efficient
techniques for updating the induced models are required.
To avoid starting from scratch every time, fuzzy association
rule mining techniques must be able to learn online and
incrementally by adapting the current model using only the
new data and without referring to the old model.

To improve the efficiency and rapidity of incremental fuzzy
association rules mining, the incremental fuzzy association
rules based on Eclat (IFARE) is proposed. The basic frame-
work of this algorithm is shown in Fig. 1. First, the sliding
window strategy presented inAppendix B is adopted to divide

the data, and the data are fuzzified using an incremental
clustering algorithm [18] in each sliding window. Based on
all of the fuzzy variables, the dynamic fuzzy variable selec-
tion algorithm [33] is adopted to select the fuzzy variable
to reduce the searching space. Based on the fuzzy variable
selection results of each sliding window, incremental fuzzy
association rules mining is conducted. In the first sliding
window SW 0, the causal fuzzy Eclat algorithm is adopted
to obtain the frequent itemsets and the expected frequent
itemsets in the next sliding window. In the next sliding win-
dow SW (t)(t ≥ 1), if the concept drift occurs, the frequent
1-itemset and expected frequent 1-itemset obtained in the
current window are combined with the expected frequent k-
itemsets in the previous sliding window to renew the frequent
k-itemsets and the expected frequent k-itemsets of the current
sliding window. According to the updated association rules,
a new fitting function is constructed to predict the output;
otherwise, the current existing rules are adopted to predict
the output until the next window is available.

The difficultly of incremental learning lies in of course
the inability to accurately estimate the statistical character-
istics of the incoming data in the future. In nonstationary
changing environments, the challenge is daunting because the
rule system may change drastically over time due to concept
drift [34].

A. CONCEPT DRIFT DETECTION
Concept drift [34] means that the structure or the distribution
of the data changes over time in unforeseen ways. Con-
cept drift detection must find the similarities and differences
between the current data and previous data and help us to
judge whether the association rules in the rule set are matched
with the current data.

Two criteria used to detect the concept drift are given as
follows:

1) Rule matching with outliers.
Because the idea of rule matching is to make use of the

existing rules to classify the incoming data points [17], out-
liers that are not able to match to any rule may be generated
based on new concepts. Therefore, if too many outliers are
detected by the rule matching step, the drifting concept may
occur in the current sliding window. As a result, a threshold
known as the outlier threshold θ is set in this step, which is
adopted to judge the ratio of outliers in the current sliding
window. In this paper, we set this value as [0.1,0.3]. If the
ratio of outliers in the current sliding window is larger than
the outlier threshold, concept drift occurs.

The ratio of outliers in the current sliding window is:

OR(t) =
#outliiers(t)

n(t)
(38)

where #outliers(t) is the number of the outliers in the current
sliding window.

2) Clustering with the ratio of data points.
Moreover, another type of drift concept is also detected

in the data fuzzification step in which each variable of the
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FIGURE 1. The framework of the algorithm.

original dataset is clustered separately. The ratio of data
points in a cluster may be changed dramatically by a drifting
concept, e.g., the current cluster only contains a small portion
of the data points within the last cluster. To detect the change,
we adopt a double-threshold method. One threshold is known
as the cluster variation threshold γ , which is adopted to
determine whether the variation of the ratio of data points
in the current cluster is sufficient large. In this paper, we set
γ = [0.7, 1]. The cluster that exceeds the cluster variation
threshold is viewed as a new and different cluster.

The variation of the ratio of data points for the qth clus-
tering of the jth variables in the current sliding window is
denoted as:

DR[t−1,t]
X̃ (t)
jq

=

∣∣∣∣∣n
(t−1)
jq

n(t−1)
−
n(t)jq
n(t)

∣∣∣∣∣ (39)

where n(t−1)jq is the number of data points of the qth clustering
that belong to the jth variable in the sliding window SW (t−1),
and n(t)jq is the number of samples of the qth clustering that
belong to the jth variable in the sliding window SW (t).
This threshold is referred to as the cluster distribu-

tion threshold, which is adopted to determine whether the

variation of the ratio of the entire cluster distribution in the
current sliding window is sufficiently large. In this paper,
we set η = [0.7, 1]. If the variation of the ratio of the entire
cluster distribution in the current sliding window is larger
than the distribution threshold, then concept drift occurs in
the current sliding window.

The variation of the ratio of the entire cluster distribution
in the current sliding window is shown as follows:

CR(t) =

L∑
j=1

∣∣∣S(t−1)j

∣∣∣∑
q=1

d(X̃ (t−1)
jq , X̃ (t)

jq )

L∑
j=1

∣∣∣S(t−1)j

∣∣∣ (40)

where
∣∣∣S(t−1)j

∣∣∣ is the number of clusters of the jth variable

in the sliding window SW (t−1), and the variation of the ratio
of data points for the qth cluster of the jth variable between
the previous sliding window SW (t−1) and the current sliding
window SW (t) is calculated as:

d(X̃ (t−1)
jq , X̃ (t)

jq ) =

{
1, DR[t−1,t]

X̃jq
≥ γ

0, otherwise
(41)
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If the concept drift occurs in the current sliding window
SW (t), the data points in the current sliding window are
subjected to remining. In constrast, the rule set is updated by
adding the current mining results into the last mining result.

According to the above two criteria, as long as any criteria
are satisfied, concept drift occurs. The entire concept drift
detection process is shown as follows:

concept drift =


yes, if OR(t) ≥ θ
yes, if CR(t) ≥ η
no, otherwise

(42)

B. INCREMENTAL FUZZY ASSOCIATION RULE MINING
FOR CLASSIFICATION AND REGRESSION
To enhance the effectiveness and real-time nature of incre-
mental rule mining, the algorithm is proposed with parti-
tioned sliding windows. In the first sliding window, frequent
itemsets are obtained to mine the causal fuzzy association
rules, and the expected frequent itemsets are generated for
the frequent itemsets of the next sliding window. In the
following sliding window, concept drift detection is deter-
mined with two measurement criteria. If concept drift occurs,
the expected frequent itemsets in the previous sliding win-
dow and the frequent itemsets in the current sliding window
are considered simultaneously to update the causal fuzzy
association rules and the implemented fuzzy inference by
reconstructing the consequent of the fuzzy rule; otherwise,
the current existing rules are adopted to predict the output
until the next window is available. Finally, the evolving
relationship of the fuzzy rules is analyzed according to the
weights of the rules.

The detailed steps of the algorithm are described as fol-
lows:

Step 1. Transform the horizontal dataset into a vertical
dataset.

Step 2. Generate the frequent itemset F (0) and expected
frequent itemset EF (0) of the sliding window SW 0.
Step 3. Generate the causal fuzzy association rules of the

sliding window SW 0.
Step 4. Calculate the ratio of outliers OR(t) and the ratio

of the entire cluster distribution CR(t) of the current sliding
window SW (t)(t ≥ 1). IfOR(t) ≥ θ orCR(t) ≥ η then concept
drift occurs; go to Step5. Otherwise, the current existing rules
continue to be adopted.

Step 5. Generate the frequent itemset of the tth sliding
window SW (t).

Step 5.1. Generate the frequent 1-itemset and expected
frequent 1-itemset of the tth sliding window SW (t).

Step 5.2. Update the frequent k-itemset and expected fre-
quent k-itemset of the tth sliding window.
Step 5.2.1. The frequent k-itemset candidates are generated

by intersecting every two (k − 1)-itemsets from a given
equivalence class.

C (t)
k = (F (t)

k−1 ∪ EF
(t)
k−1)× (F (t)

k−1 ∪ EF
(t)
k−1)

TABLE 2. The details of the dataset.

Step 5.2.2. ∀C (t)
k ∈ F

(t−1)
k ∪ EF (t−1)

k , and if Supc(C (t)
k ) ≥

minSupc then C (t)
k becomes a frequent k-itemset F (t)

k of the
current sliding window SW (t), Otherwise, the expected fre-
quent possibility pC (t)

k
of the C (t)

k is calculated, and if pC (t)
k
≥

β(t),then C (t)
k becomes an expected frequent k-itemset EF (t)

k
of the current sliding window SW (t).
Step 5.2.3. ∀C (t)

k /∈ F (t−1)
k ∪EF (t−1)

k , and if 1−β(t) ·
∣∣n(t)∣∣ ≤

0, then the support count of C (t)
k is calculated. If Supc(C (t)

k ) ≥
minSupc then C (t)

k becomes a frequent k-itemset F (t)
k of the

sliding window SW (t). Otherwise the expected frequent pos-
sibility pC (t)

k
is calculated, and if pC (t)

k
≥ β(t), then C (t)

k

becomes an expected frequent k-itemset EF (t)
k of the current

sliding window SW (t).
Step 6. Generate the causal fuzzy association rules of the

sliding window SW (t).
Step 7. Realize the classification and regression for new

samples based on the causal fuzzy association rules.

C. TIME COMPLEXITY ANALYSIS
To verify the efficiency of the incremental fuzzy association
rule mining algorithm, we analyzed the time complexity. The
time complexity of first scanning the dataset of the sliding
window SW (t)(t = 0) to obtain the frequent 1-itemsets
is O(m × n(t)). The time complexity for calculating the
expected frequent possibility of the infrequent 1-itemset F̄ (t)

1

is O(
∣∣∣F̄ (t)

1

∣∣∣), where ∣∣∣F̄ (t)
1

∣∣∣ represents the number of the infre-
quent 1-itemset. The time complexity for generating the can-
didate k-itemsets by intersecting every two (k − 1)-itemsets
from a given equivalence class is O(

∑
k≥1

∣∣∣F (t)
k

∣∣∣× ∣∣∣F (t)
k

∣∣∣). The
time complexities for calculating the support count of the
candidate (k + 1)-itemset C (t)

k+1 and the expected frequent

possibility of the infrequent (k+1)-itemset areO(
∑
k≥1

∣∣∣C (t)
k+1

∣∣∣)
and

∣∣∣F̄ (t)
k+1

∣∣∣, respectively. Where
∣∣∣F̄ (t)

k+1

∣∣∣ is the number of the
infrequent (k + 1)-itemset. The time complexity needed to
obtain the interesting rules is O(

∣∣R(t)∣∣), where ∣∣R(t)∣∣ denotes
the number of the rules. The time complexity needed to
obtain the causal association rules is O(

∣∣R(t)∣∣). The time
complexity needed to reconstruct the rules consequence is
O(
∣∣R(t)∣∣). If concept drift occurs, the current sliding window
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TABLE 3. The comparison of the classification performance (Acc/RI) on the different window size.

TABLE 4. The comparison of the prediction performance (MAPE/RMSE) on the different window size.

is processed in the same way with the first sliding window,
and the only difference is the method that generates the
candidate (k+1)-itemset C (t)

k+1 by intersecting every frequent
k-itemset F (t)

k and the expected frequent k-itemset EF (t)
k .

From K , a given equivalence class, the time complexity is
O(
∑
k≥1

(
∣∣∣F (t)

k

∣∣∣+ ∣∣∣EF (t)
k

∣∣∣)×(∣∣∣F (t)
k

∣∣∣+∣∣∣EF (t)
k

∣∣∣)). In the worst case,
the time complexity of the algorithm for the tth sliding win-
dow is O(m×n(t)+

∑
k≥1

((
∣∣F tk ∣∣+ ∣∣∣EF (t)

k

∣∣∣)×(∣∣F tk ∣∣+ ∣∣∣EF (t)
k

∣∣∣)+∣∣∣C (t)
k+1

∣∣∣+ ∣∣∣F̄ (t)
k+1

∣∣∣)+ 3
∣∣R(t)∣∣).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the IFARE algorithm is verified in terms
of execution efficiency, interpretability and accuracy by
comparison with other algorithms such as the IUAC
algorithm [21], AC-FFP algorithm [6], FPS algorithm [35],
and QART algorithm [36]. In addition, all experiments
were performed on the datasets in Table 2, in which the
datasets [37] such as BCH/SEA/Weather/Glass/Wine are
viewed as binary classification datasets, and datasets [38]
such as Airfoil Self-Noise/Energy Efficiency/White Wine
Quality/Beijing PM2.5 data and PPPTS are viewed as regres-
sion datasets. As noted, the dimensions become higher than
those of the original datasets after fuzzification.

In this paper, four criteria are adopted to evaluate the incre-
mental fuzzy association rules mining algorithm as follows:

1) Classification accuracy (Acc)

Acc =

|C|∑
k=1

ak

n
(43)

where ak represents the number of data that have the correct
classification results corresponding to the kth category, |C| is

the number of categories, and n is the number of data in the
dataset.

2) Rand index (RI)

RI =
ad + ak
n(n− 1)/2

(44)

where ad represents the number of data that have false clas-
sification results corresponding to the actual class label, ak
represents the number of data that have the correct classifica-
tion results corresponding to the correct class label, and n is
the number of data contained in the dataset.

3)Mean absolute percentage error (MAPE)

MAPE =
1
n

n∑
i=1

∣∣ŷi − yi∣∣
yi

(45)

where yi is the actual value of the ith data, and ŷi is the
prediction output of ith data.

4) Root mean square error (RMSE)

RMSE =

√√√√√ n∑
i=1

(ŷi − yi)
2

n
(46)

where yi is the actual value of the ith data, and ŷi is the
prediction output of ith data.

A. PERFORMANCE WITH DIFFERENT SLIDING WINDOW
To evaluate the effect on the IFARE algorithm with different
sliding window sizes, different dataset are partitioned to form
different sliding windows, where 70 percent of the data are
used in model training and 30 percent of the data are selected
to test the classification and prediction performance of the
model. Table 3 and Table 4 respectively show the classifi-
cation performance and the prediction performance of the
fuzzy association rules obtained by the IFARE algorithmwith
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TABLE 5. The evolution performance for classification with different dataset.

FIGURE 2. Classification Accuracy for dataset SEA.

different slidingwindow sizes. As observed, the classification
and prediction performances of the IFARE algorithm are
better than those of the predefined window size because our
proposed method can adaptively determine the window size
according to the Hoeffding boundary, which improves the
classification and prediction performance of the fuzzy data.

B. EVALUATION ON EFFICIENCY AND ACCURACY
To verify the effectiveness of IFARE algorithm, the classifi-
cation and prediction accuracy are compared with those of
the IUAC algorithm, AC-FFP algorithm, FPS algorithm and
QART algorithmwith multiple datasets. As shown in Table 5,
compared with the IUAC algorithm and AC-FFP algorithm,
the IFARE algorithm has the best classification performance
with the maximum Acc and RI for the same dataset. First,
the size of the sliding window is automatically determined

by our algorithm, and based on this information, the number
of evolution times of the five datasets are determined to be
2 times, 3 times, 2 times, 4 times and 2 times, respectively.
Because the IFARE algorithm considers the concept drift of
the data and updates the ruleset according to the variation of
the data distribution, the classification accuracy of the rules
is improved.

Similarly, as shown in Table 6, compared with the FPS
algorithm and QART algorithm, the IFARE algorithm has
the best regression prediction performance, producing the
minimum MAPE and RMSE with different supports and
confidences for the same dataset. First, the size of the sliding
window is automatically determined by our algorithm, and
based on this information, the number of evolution times of
the five datasets are determined as 2 times, 2 times, 3 times,
7 times and 6 times, respectively. The QART algorithm is a
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TABLE 6. The evolution performance for regression with different dataset.

quantitative association rule mining algorithm based on the
hard partition for discretization, which reduces the prediction
accuracy for the interval boundary. The FPS algorithm is a
quantitative fuzzy association rule mining algorithm, but it
does not address the concept drift problems. In contrast, con-
cept drift detection is integrated into the IFARE algorithm,
which improves the prediction accuracy.

In addition, the number of rules derived from every algo-
rithm corresponding to the best classification and prediction
performance and the running time are compared with a dif-
ferent algorithm in different datasets. As noted in Table 5 and
6, the IFARE algorithm obtains the least number of rules
because the causal indicators ensure that the causal fuzzy
association rule mining generates fewer rules with sufficient
accuracy. It can be observed that the time cost of the IFARE
algorithm is less than that of the other algorithms because the
IFARE algorithm adopts concept drift detection to reduce the
time cost for remining the rules.

To verify the effectiveness of IFARE in the mining asso-
ciation rules, the classification accuracy, prediction error and
number of rules are compared with those of other algorithms

with datasets SEA and Beijing PM2.5 for each sliding win-
dow. It can be observed from Fig. 2 that compared with IUAC
and AG-FFP, the IFARE algorithm has a higher classification
accuracy with the best Acc and RI for dataset SEA. As noted
from Fig. 3, when compared with the FPS and QART algo-
rithms, the IFARE has lower prediction error with the lowest
MAPE and RMSE for dataset Beijing PM2.5. From Fig. 4,
it can be observed that the number of rules derived from the
IFARE algorithm is lower than those of the other classifi-
cation and regression prediction algorithms. For the dataset
SEA, the number of the rules in the sliding windows SW 2 is
the same as that in SW 3. Similarly, for the dataset (Beijing
PM2.5 data), the number of rules in the sliding windows
SW 6 is the same as that in SW 7 because concept drift does
not occur in the current sliding window during the mining
process, and classification and regression prediction can be
implemented with the previous rules.

Further, to verify the validity of the rules proposed in this
paper, the mined partial fuzzy association rules derived from
the IFARE algorithm are compared with those from the other
algorithms. The datasets Wine and Beijing PM2.5 are taken
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FIGURE 3. The prediction errors of dataset Beijing PM2.5.

FIGURE 4. The number of rules in different sliding windows.

FIGURE 5. The membership function of the variable DEWP.

as examples. As shown in Table 7, the fuzzy association
rules obtained by the IFARE algorithm are shorter than those
obtained by the AG-FFP algorithm and are more interpretable
and easier to match with the data to improve the classifica-
tion accuracy of the rules. Similarly, as shown in Table 8,
the antecedent of the rules obtained by IFARE is shorter than
those of FPS and QART. According to the consequent of the
rules, the fitting error obtained by IFARE is less than that
of the other algorithms. The generation of the antecedent of
the fuzzy rule is described as follows. For example, in Fig. 5,
after discretization, the variable DEWP is clustered into three
categories, which can be represented by the three states,

low,middle, high, by a membership function. For Beijing
PM2.5, the fuzzy association rule obtained in Table 6 can be
described as follows:

DEWP is middle, TEMP is low

→ pm2.5 = 0.89+ 0.59× DEWP+ 0.75× TEMP

If the medium dew point (DEWP) is accompanied by
low temperature (TEMP), then the pollutant concentration
(PM2.5) can be predicted with the consequent function of the
rules.

C. THE RULE WEIGHT ANALYSIS
The weighting concept of incremental rules is an attempt to
reduce the curse of rules. Continuous weights are assigned in
[0, 1], which represents the importance levels of the rules in
the dynamic systems. The weights of rules close to 0 means
that their importance level is relatively lower than others that
have weights near 1. The main advantage of rules weighting
over rules selection becomes clear within an incremental
learning scenario.

Here, we analyze the effect of the variable weight of
different rules. The dataset PPPTS is partitioned by eight
sliding windows, and each window consists of 6000 samples.
As shown in Fig. 6, the weight of rule 1 increases at the
beginning and decreases gradually. Rule 2 does not appear in
the sliding window SW 1, and with data updating, the weight
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TABLE 7. Comparison of rules for different algorithms in dataset Wine.

TABLE 8. Comparison of rules for different algorithms in dataset Beijing PM2.5.

FIGURE 6. Evolution of weights of partial fuzzy association rules in dataset PPPTS.

of rule 2 increases at the beginning and decreases gradually
from SW 2. The weight of rule 3 shows a downward trend
and does not appear from SW 6 to SW 8. The weight of rule
4 decreases at the beginning and increases gradually.

V. CONCLUSION
Our proposed algorithm can significantly improve the classi-
fication and prediction performance based on the fuzzy asso-
ciation rule. In the process of the incremental mining fuzzy
association rules, the expected frequent itemsets are obtained
by calculating the probability of the non-frequent itemsets in
the current sliding window and are assessed as to whether
they are expected to be frequent itemsets in the next sliding
window. Based on this information, the dataset only needs to
be scanned once to obtain compact and comprehensive fuzzy
association rules. In particular, the fuzzy association rules

can be incrementally mined and reconstructed to realize clas-
sification and regression according to the causal index and
concept drift detection, which improves the interpretability
of the mining rules. The experimental results show that the
IFARE algorithm can significantly improve the classification
and prediction performance, and the execution time of the
algorithm is greatly shortened.

The main contribution of this paper is that the fuzzy asso-
ciation rules can be incrementally mined and reconstructed
to realize classification and regression according to causal
index and concept drift detection. However, certain problems
remain to be solved. First, the optimal minimum support con-
fidence and causal relationship threshold should be studied.
Second, the threshold of concept drift needs to be set by
experience. Third, we plan to apply our proposed algorithm
to other domains to solve more complex problems.
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APPENDIX A
Let Di be the i-th sample in the dataset D, and h be the subset
{X̃j,fj,h

, X̃k,fk,h
, Ỹh}. The fuzzy equivalence class generated by

Di, and h is represented as [Di]h.

[Di]h =
s (D1,Di)h

D1
+
s (D2,Di)h

D2
+ . . .+

s (Dk ,Di)h
Dk

+ . . .+
s (Dn,Di)h

Dn
(47)

where s(Dk ,Di)h is the relation value between Dkand Di
generated by h:

s (Dk ,Di)h

=
1
3

∑L

j=1

∑Cj

q=1

(
1−

∣∣∣µX̃jq (xij)− µX̃jq (xkj)∣∣∣) ,(
X̃jq ∈ h, k 6= i

)
(48)

where X̃jq is the qth fuzzy feature of the jth feature, µX̃jq
(
xij
)

is the membership value of the jth feature value of the ith
sample corresponding to the fuzzy feature X̃jq, µX̃jq

(
xkj
)
is

the membership value of the jth feature value of the kth
sample corresponding to the fuzzy feature X̃jq, and Bih is the
cardinality of subset h corresponding to the ith sample:

Bih = |[Di]h| =
∑n

k=1
s (Dk ,Di)h

=

∑n

k=1

1
3

∑L

j=1

∑Cj

j=1

(
1−

∣∣∣µX̃jq (xij)− µX̃jq (xkj)∣∣∣) ,(
X̃jq ∈ h, k 6= i

)
(49)

where n is the number of the samples collected, X̃jq is the
qth fuzzy item of the jth variable, µX̃jq

(xij) is the membership
value of the jth variable of the ith sample corresponding to the
fuzzy item X̃jq, and µX̃jq

(xij) is the membership value of the
jth variable of the ith sample corresponding to the fuzzy item
X̃jq. In a similar manner, the entropy of other fuzzy items can
be calculated.

APPENDIX B
The sliding window is a technique that is widely applied in
dynamic circumstances. Each sliding window reads the new
samples and discards the past data. In this work, the range of
features R is considered with the Hoeffding bound ς [39] to
adjust the mean value of samples in the sliding window and
determine the size of the window. Suppose that there are n(t)

samples in the current sliding window, and the conference is
1 − δ(δ is generally set to 0.05). The difference between the
calculatedmean value and actual mean value of a feature does
not exceed ς , which is computed by the following:

ς =

√
R · RT In(1/δ)

2n(t)
(50)

where R is the range of the characteristic:

R = [x1.max − x1.min, x2.max − x2,min, · · · , xj,max

− xj,min, · · · , xL,max − xL,max] (51)

where xj,max is the max value of the variable j, xj,min is the
minimum value of the variable j, and L is the number of
variables in the data set.

From the Hoeffding bound, the minimum window size NH
[36] can be determined by:

NH =
R2ln(1/δ)

2ζ 2
(52)

As shown, the Hoeffding boundary ζ is the key factor.
To obtain ζ , we assume that SW (t−1) and SW (t) are two
adjacent sliding windows, and that SW

(t−1)
and SW

(t)
are

their respectivemeans, with probabilities of 1−δ respectively.
If
∣∣∣SW (t−1)

− SW
(t)
∣∣∣ ≤ 2ζ , from (51) and (52), we have

NH =
2R2 ln(1/δ)

(SW
(t−1)
− SW

(t)
)
2 (53)

If the number of samples contained in the current sliding
window n(t) is not less than NH , n(t) is referred to as a fixed
sliding window size. During the process of incremental fuzzy
association rule mining, the sliding window manages the
input data and stores the information in an efficient manner.
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