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ABSTRACT In 2016, dolphin swarm algorithm (DSA) that has received sustained research interest due
to its simplicity and effectiveness was proposed. However, when solving high-dimensional function opti-
mization problems, DSA is prone to fall into local optimization problems, which leads to low optimization
accuracy or even failure. In this paper, to solve this problem, chaotic mapping is introduced into DSA, and
chaotic dolphin swarm algorithm (CDSA) is successfully proposed. Based on high-dimensional Rastrigin
function, the optimal chaotic map is determined among eight chaotic maps (e.g., Logistic). Then, in view of
high-dimensional Levy function, Rotated Hyper-Ellipsoid function and Sum Squares function respectively,
the performance of CDSA and that of the state-of-the-art algorithms (e.g. (whale optimization algorithm)
WOA) are compared. The results show that the performance of CDSA based on Kent map is best and the
performance of CDSA outperform that of the state-of-the-art algorithms considered to be compared. Finally,
it is concluded that such a new meta-heuristic algorithm could help to improve the shortcomings of DSA
and increase the applied range of DSA.

INDEX TERMS Chaotic maps, dolphin swarm algorithm, high-dimensional function, optimization.

I. INTRODUCTION
As an important branch in the field of optimization,
the optimization problems of high-dimensional functions
have always been a hot issue for scholars at home and
abroad [1]. High-dimensional function optimization has a
significant application in theory and engineering field. Many
practical optimization problems which may be solved can be
transformed into optimization problems of high-dimensional
functions through certain transformations, such as multi-
variable function fitting [2].

However, in the process of optimizing high-dimensional
functions, with the increase of their dimensions, the scale
of search space increases exponentially, this lead to that
traditional optimization methods can’t meet the needs of
solving [3]. Therefore, in recent years, scholars at home
and abroad have tried to use the meta-heuristic algorithm
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to solve the optimization problem of high-dimensional func-
tions, these research results are shown in TABLE 1.

From TABLE 1, we can see that all kinds of meta-
heuristic algorithms are inspired by particle swarm optimiza-
tion (PSO). Although the above-mentioned meta-heuristic
algorithms obtain the optimal solution of the function in
a certain scale, the algorithms above still have the prob-
lem of easily falling into the local optimum. At the same
time, the algorithms above are still limited to scale prob-
lems, e.g., with less than 30 decision variables. Therefore,
some improved algorithms are proposed, which are shown in
TABLE 2.

For TABLE 2, some scholars have proposed some
improved meta-heuristic algorithms, but these enhanced
meta-heuristic algorithms only solve functions in low-
dimensional space, for example, some functions have only
two or three variables, so it is very significant to find meta-
heuristic algorithms that can be solved in high-dimensional
space.
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TABLE 1. Some mete-heuristic algorithms for solving high-dimensional fuction optimization problem in recent years.

TABLE 2. Some imoroved meta-heuristic algorithms in recent years.

In 2016, a novel meta-heuristic algorithm ([27]–[29])
called dolphin swarm algorithm (DSA) is proposed and
applied. But like other meta-heuristic algorithms, DSA still
has the problem of an optimal balance between explo-
ration and exploitation, Therefore, to solve this problem and
enhance the convergence speed and the ability to obtain the
global optimal solution of DSA, a new algorithm named
chaotic dolphin swarm algorithm (CDSA) is put forward by
introducing chaotic map into DSA in this study.

The rest of the paper is organized as follows: Chaotic
theory and chaotic map are presented in Section II; The DSA
is explained in detail in Section III; Also, the combination of
DSA and chaoticmap ismeticulously described in Section IV.
Based on Section II, Section III, and Section IV, Section V
gives result and discussion; Last, the conclusions and future
work are provided in Section VI.

II. CHAOTIC THEORY AND CHAOTIC MAP
A. CHAOTIC THEORY
Chaos refers to seemingly random irregular motions occur-
ring in deterministic systems. The behavior of a system
described by deterministic theory can be expressed as
uncertainty, which is the chaotic phenomenon. Furthermore,
the theory of studying chaos is called chaos theory. Chaotic
systems are called chaotic systems, and chaotic systems are
highly sensitive to initial conditions. In other words, for
deterministic descriptive systems, chaos can also occur [30].

B. CHAOTIC MAP
To improve the global convergence ability of DSA, chaos
which are shown in TABLE 3 [31] is introduced into DSA and
CDSA is developed. Then we simulate the distribution and
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TABLE 3. Eight different chaotic maps.

FIGURE 1. Distribution of solutions to eight chaotic maps: (a) Logistic map; (b) Kent map; (c) Tent map; (d) Ushiki map; (e) Lozi map;
(f) Henon map; (g) Wien map; (h) Lorenz map.

proportion of solutions of eight chaotic maps in FIGURE 1.
and FIGURE 2.

III. DOLPHIN SWARM ALGORITHM (DSA)
A. PREDATORY BEHAVIOR OF DOLPHIN SWARM
In 2016, inspired by PSO, Wu et al. began to pay attention to
some behaviors of dolphins ([27]–[29]). For instance, the dol-
phin uses echolocation in search of prey. Except for echolo-
cation, another behavior of dolphin swarm is cooperation and
division of labor to catch prey. The third behavior of dolphin
swarm is information exchanges. These three behaviors can
be summarized as one dolphin discovers its prey, informs
other dolphins by echolocation, and then all dolphins sur-
round the prey and catch food.

B. MAIN DEFINITIONS
1) DOLPHIN
In the process of optimization, each dolphin represents a
feasible solution. However, the expression of feasible solu-
tions for various optimization problems is different. In this

paper, to better understand the optimization process, dolphins
are defined as Doli = [x1, x2,. . . , xD]T(i = 1, 2, . . . , N ),
where N represents the number of dolphins, and xj (j = 1,
2, . . . , D) represent the component:

2) OPTIMAL INDIVIDUAL AND NEIGHBORHOOD SOLUTION
The two variables closely related to the dolphin algorithm are
optimal neighborhood solution (expressed as K) and optimal
individual solution (shown as L). More specifically, for every
Doli(i = 1, 2, . . ., N ), there are two relevant variables which
are Li(i = 1, 2, . . ., N ) and K i(i = 1, 2, . . ., N ), respec-
tively, where K i is the optimal solution of what Doli finds
by itself or gets from others, and Li represents the optimal
solution that Doli finds in a single time.

3) DISTANCE AND FITNESS
In DSA, there are three types of distances, which are the
distance between Doli and Dolj, named DDi,j, the distance
between Doli and K i, called DKi, and the distance between
Li and K i, called DLKi, respectively. The expression of the
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FIGURE 2. Proportion of solutions to eight chaotic maps: (a) Logistic map; (b) Kent map; (c) Tent map; (d) Ushiki map; (e) Lozi map;
(f) Henon map; (g) Wien map; (h) Lorenz map.

above three distances is as follows:

DDi,j =
∥∥Doli − Dolj

∥∥ , i, j = 1, 2, . . .N, i 6= j. (1)

DKi = ‖Doli − K i‖ , i = 1, 2, . . .N . (2)

DKLi = ‖Li − K i‖ , i = 1, 2, . . .N . (3)

Fitness is based on judging whether the solution is
good or bad. In DSA, E is calculated by fitting function
(i.e., Rastrigin function in (25) in Section V). For this func-
tion, the closer the E value is to 0, the better the solution
is obtained. Because different fitting functions of various
optimization problems are different, Fitness (X) is used to
represent the fitting functions in this paper. Examples of
specific fitting functions may be found in (25), (26), (28),
and (29) in Section V.

C. CRITICAL STAGES
The DSA is split into six stages, which are the initializa-
tion, search, call, reception, predation, and termination stage.
Since the initial stage is only the initialization of the pop-
ulation, the final stage only gives a termination condition;
therefore, in this subsection, search, call, reception, and pre-
dation stage are mainly used. The four stages are described in
detail as follows:

1) SEARCH STAGE
When searching for prey, each dolphin usually makes a sound
in M directions in the area near the dolphin. In order to
qualitatively describe the process of each dolphin’s search
for prey, sound is defined as V i = [v1, v2, . . ., vD] (i = 1,
2, . . ., M ) in this paper, where vj(j = 1, 2, . . ., D) repre-
sents the component of each dimension, namely the direc-
tion attribute of the sound and M represents the number

of sounds. Besides, sound must satisfy ||V i|| = speed (i = 1,
2, . . . , M ), where ‘speed’ is the speed attribute of sound.
To prevent dolphins from falling into the search phase, a max-
imum search time T1 is set. In the range of 0 to T1, the sound
V j thatDoli (i = 1, 2, . . . , N ) makes at time t will find a new
solution X ijt . The definition of X ijt is as follows.

Xijt = Doli + V jt (4)

For X ijt that Doli obtains, its fitness value Eijt is expressed
as follows:

Eijt = Fitness
(
X ijt

)
. (5)

If

Eiab = minj=1,2,...,M;t=1,2,...,T1Eijt
= minj=1,2,...,M;t=1,2,...,T1Fitness

(
X ijt

)
(6)

Then the optimal individual solution Li of Doli is
defined as

Li = X iab (7)

If

Fitness (Li) < Fitness (K i) (8)

Then K i is displaced by Li; otherwise, K i does not change.
After all the Doli (i = 1, 2, . . ., N ) update their Li and K i,

DSA enters call stage.

2) RECEPTION STAGE
In DSA, in order, the reception stage occurs after the call
stage, but to better understand the call stage, in this sub-
section, the reception stage is first described in detail. The
quantitative description of information exchange between

VOLUME 7, 2019 110475



W. Qiao, Z. Yang: Modified DSA Based on Chaotic Maps

dolphins and dolphins can be expressed by an N×N-order
matrix which is named ‘transmission time matrix’ (TS =
(TSij(i = 1, 2, . . ., N ; j = 1, 2, . . ., N ))), where TSij is the
rest of the time for the sound of moving from Doli to Dolj.

When DSA get into the reception stage, that all elements
TSij (i = 1, 2, . . ., N ; j= 1, 2, . . . , N ) in the TS will decrease
demonstrate that the sounds spread on any element TSij in the
TS, and if

TSi,j = 0 (9)

This means that the sound, which will be received by Doli,
sent from Dolj to Doli. Next, TSij will be displaced by a
new search time, which is called ‘maximum transmission
time’ (T2). By this process, we will know the relevant sound
has been received. Furthermore, comparing K i and K j, if

Fitness (K i) > Fitness
(
K j
)

(10)

Then K j replaces K i, or K i does not change. Next, DSA
gets into the predation stage.

3) CALL STAGE
Based on the search stage, at this stage, each dolphin makes
sounds for the sake of informing other dolphins of their
search results, containing whether an optimal global solution
is found and where it is located. Next, the transmission time
matrix TS should be updated according to the following
inequality.

For K i, K j, and TSi,j, if

Fitness (K i) > Fitness
(
K j
)

(11)

TSi,j >
⌈

DDi,j

A · speed

⌉
(12)

where A, which is a constant, represents the acceleration.
Next, TSi,j will be updated according to the following
equation:

TSi,j =
⌈

DDi,j

A · speed

⌉
(13)

After all the TSi,j is updated, DSA gets into the reception
stage.

4) PREDATION STAGE
In the search phase, reception stage, call stage and predation
stage, predation stage is the most critical and important stage.
Next, we describe the predation stage in detail. In this stage,
each dolphin preys within a certain surrounding radius, which
is defined as R2. Also, R2 determine the distance between the
dolphin’s optimal neighborhood solution and its position after
the predation obtains a new position. Furthermore, the search
radius R1, which is the maximum range in the search stage,
can be calculated as follows:

R1 = T1 × speed (14)

Next, Doli (i = 1, 2, . . ., N ) is regarded as an example
to describe the calculation of R2 and update the dolphin’s
position.

(a) For Doli (i = 1, 2, . . ., N ), if

DKi ≤ R1 (15)

Then, R2 will be calculated according to (16).

R2 =
(
1−

2
e

)
DKi, e > 2 (16)

where e represents the radius reduction coefficient.
After getting R2, Doli’s new position newDoli can be

obtained:

newDol i = K i +
Dol i − K i

DKi
R2. (17)

(b) For Doli (i = 1, 2, . . ., N ), if

DKi > R1 (18)

and

DKi ≥ DKLi (19)

Then, R2 will be calculated according to (20).

R2 =

(
1−

DKi
Fitness(K i)

+
DKi−DKLi
Fitness(Li)

e · DKi 1
Fitness(K i)

)
DKi, e > 2 (20)

After getting R2, Doli’s new position newDoli can be
obtained:

newDoli = Ki +
Random
‖Random‖

R2 (21)

(c) For Doli (i = 1, 2, . . ., N ), if it satisfies (18) and

DKi < DKLi (22)

Then, R2 will be calculated according to (23).

R2 =

(
1−

DKi
Fitness(K i)

+
DKLi−DKi
Fitness(Li)

e · DKi 1
Fitness(K i)

)
DKi, e > 2 (23)

After getting R2, Doli’s new position newDoli can be
obtained by (21).

After Doli moves to the position newDoli, comparing
newDoli with K i in terms of fitness, if

Fitness (newDol i) > Fitness
(
K j
)

(24)

Then newDoli replaces K i, or K i does not change.
Finally, if the iterative termination condition is satisfied,

DSA enters the termination stage, or, DSA enters the search
stage again.

IV. CHAOTIC DOLPHIN SWARM ALGORITHM (CDSA)
The algorithm searches the optimal solution of the tar-
get problem by simulating dolphin behavior. Each iteration
updates all individual dolphins, and selects the current opti-
mal position, repeating the process until the end condition is
satisfied.

The flow chart of CDSA is shown in FIGURE 3.
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FIGURE 3. The flow chart of CDSA.

V. RESULT AND DISCUSSION
In this section, to verify the performance of the proposed
CDSA, two experiments are performed. Experiment I com-
pare the performance of the combination of different chaotic
maps and DSA by high-dimensional function test; Experi-
ment II compare CDSA with advanced algorithms according
to performance indexes by high-dimensional function test.

A. EXPERIMENTAL PLTFORM
For different computers, the results of Experiment I and II are
greatly affected. Therefore, to compare fairly, Experiment I
and experiment II are carried out on the same experimental
computer. Computer configuration consist of the hardware
configuration (i.e. CPU: Intel(R) Core (TM) I7-8550U; Fre-
quency: 1.99 GHz; RAM: 16.0GB (15.9 GBAvailable); Hard
drive: 1TB) and software configuration (i.e. Operating sys-
tem: Windows 10; Language edition: MATLAB R2018a).

B. HIGH-DIMENSIONAL TEST FUNCTIONS
In this study, Rastrigin function is used to test the per-
formance of different chaotic maps combined with DSA.
Furthermore, we use Levy function, Rotated hyper-ellipsoid
function, and Sum squares function to test the performance of
CDSA and advanced meta-heuristic algorithms (e.g., whale

optimization algorithm (WOA)). The definition of Rastrigin
function, Levy function, Rotated hyper-ellipsoid function,
and Sum squares function is shown in (25), (26), (28), and
(29). Also, The Rastrigin function whose large-scale search
interval and many local minimum results in the difficulty of
finding a global minimum is a typical nonlinear multimodal
function. The Rotated Hyper-Ellipsoid function, which is an
extension of the axis parallel Hyper-Ellipsoid function, also
referred to as the SumSquares function is continuous, convex,
and unimodal. The Sum Squares function, which is continu-
ous, convex, and unimodal, also referred to as the Axis Paral-
lel Hyper-Ellipsoid function, has no local minimum except
the global one. Rastrigin function, Levy function, Rotated
hyper-ellipsoid function and Sum squares function Rastrigin
function, Levy function, Rotated hyper-ellipsoid function,
and Sum squares function are shown in FIGURE 4 in their
two-dimensional form.

The definition of Rastrigin function is as follow:

f1 (x) = 10D+
D∑
i=1

[
x2i − 10 cos (2πxi)

]
(25)

where xi and i belong to [−5, 5] and [1, D], the minimum
value of f1(x) is 0.
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FIGURE 4. Four functions are used to test in their two-dimensional form: (a) Rastrigin function; (b) Levy function; (c) Rotated hyper-ellipsoid
function; (d) Sum squares function.

FIGURE 5. Average fitting value curve of the different dimension of the Rastrigin function: (a) 10; (b) 20; (c) 30; (d) 40; (e) 50.

The definition of Levy function is as follow:

f2 (x) = sin2 (πω1)+

D−1∑
i=1

(ωi − 1)2 . . .

. . .
[
1+ 10 sin2 (πωi + 1)

]
+ (ωD − 1)2

[
1+ sin2 (2πωD)

]
(26)

where i belong to [1, D] and the minimum value of f1(x) is 0.
ωi is defined as follow:

ωi = 1+
xi − 1
4

(27)

The definition of Rotated hyper-ellipsoid function is as
follow:

f3 (x) =
D∑
i=1

i∑
j=1

x2j (28)

where xi and i belong to [−65.536, 65.536] and [1, D] and
the minimum value of f1(x) is 0.

The definition of Sum squares function is as follow:

f4 (x) =
D∑
i=1

ix2i (29)

where xi and i belong to [−5.12, 5.12] and [1, D] and the
minimum value of f1(x) is 0.

C. COMPARING CDSA WITH LITERATURE
To verify the effectiveness and performance of the proposed
CDSA, some advanced evolutionary algorithms includ-
ing WOA [32], DSA ([27]–[29]), AGA [33], APSO [5],
WPA [26], CS [34] and CSO [35] are used to compare in this
paper.

D. EXPERIMENT I: COMPARISON OF
DIFFERENT CHAOTIC MAPS
In this experiment, in order to determine the optimal chaotic
map, Rastrigin function whose dimensions are set to 10, 20,
30, 40 and 50 respectively are used as the test function.
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TABLE 4. Statistical results of the different chaotic maps based on the different dimensional rastrigin function.

TABLE 5. The efficiency of different chaotic maps.

Parameter settings of CDSA are P = 50, Speed = 1, T = 10,
A = 1, e = 3, k = 10, u = 1. Average fitting value curve of
the different dimension of the Rastrigin function are shown in
FIGURE 5. TABLE 4 gives the index values of various CDSA
in detail.

As can be seen from FIGURE 5 and TABLE 4, Kent map is
the closest to the actual optimal solution of Rastrigin function,
and the average fitness value of Kent map is lower than that of
other maps. This shows that the combination of Kent map and
DSA is better than that of different maps and DSA. Detailed
comparisons are as follows:

(1) FIGURE 5 (a) - (e) shows that the average fitting value
curve of Kent map is lower than that of other maps, which
shows that the convergence speed of the combination of Kent
mapping and Dolphin swarm algorithm is faster than that of
different maps and DSA.

(2) FromTABLE4,we can see that the four indexes ofKent
map are lower than those of different maps, and the Best index
of Kent map is lower than that of different maps. It shows
that the gap between the optimal solution obtained by Kent
map and the actual optimal solution of Rastrigin function is
small, and the Worst index of Kent map is lower than that of
other maps. It shows that the worst solution obtained by Kent

TABLE 6. Parameter setting.

map is the worst one compared with the actual best solution
of Rastrigin function. The result shows that the difference
between the average solution obtained by Kent map and
the actual optimal solution of Rastrigin function is small.
The three indexes above show that the solution accuracy of
the Kent map is higher than that of other maps. The A. G
index of Kent map is lower than that of other maps, which
indicates that the solving speed of Kent map is faster than
that of different maps.

From TABLE 5, we can see that the runtime of the combi-
nation of Kent map and DSA is lower than that of other maps
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FIGURE 6. Convergence behavior based on Levy function with different dimensions by using CDSA: the first dimensional value of solution
of 10, 20, 30, 40 and 50-dimension including (a), (e), (i), (m) and (q); The first individual search path in population of 10, 20, 30, 40 and
50-dimension including (b), (f), (j), (m) and (r); The optimal individual search path in population of 10, 20, 30, 40 and 50-dimension including
(c), (g), (k), (n) and (s); The fitness curve of 10, 20, 30, 40 and 50-dimension including (d), (h), (p), (o) and (t).
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TABLE 7. Quantitative performance comparison based on the high-dimensional Levy function.

FIGURE 7. Average fitting curve based on Levy function with different dimensions: (a) 10; (b) 20; (c) 30; (d) 40; (e) 50.

and DSA, which shows that the combination of Kent map and
DSA is the most efficient.

E. EXPERIMENT II: COMPARISON WITH
STATE-OF-THE ART ALGORITHMS
To compare the performance of the proposed CDSA, based
on the optimal chaotic map (Kent map) determined in

Experiment I, CDSA is compared with the state-of-the-art
algorithms (shown in Section V) in this study.

1) COMPARISON OF DIFFERENT ALGORITHMS BASED
ON HIGH-DIMENSIONAL LEVY FUNCTION
In this subsection, Levy function whose dimensions are
set to 10, 20, 30, 40, and 50 respectively are used as the
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FIGURE 8. Convergence behavior based on rotated hyper-ellipsoid function with different dimensions by using CDSA: the first dimensional
value of solution of 10, 20, 30, 40 and 50-dimension including (a), (e), (i), (m) and (q); The first individual search path in population of 10, 20,
30, 40 and 50-dimension including (b), (f), (j), (m) and (r); The optimal individual search path in population of 10, 20, 30, 40 and
50-dimension including (c), (g), (k), (n) and (s); The fitness curve of 10, 20, 30, 40 and 50-dimension including (d), (h), (p), (o) and (t).
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TABLE 8. Quantitative performance comparison based on the high-dimensional hyper-ellipsoid function.

FIGURE 9. Average fitting curve based on rotated hyper-ellipsoid function with different dimensions: (a) 10; (b) 20; (c) 30; (d) 40; (e) 50.

test function. Because the results of each experiment are
different, to ensure the fairness of the comparison, ten exper-
iments are carried out, and the average results of 10 experi-
ments are compared. Also, the parameter settings of CDSA
and the metaheuristic algorithm, including WOA, DSA,
AGA,APSO,WPA, CS, andCSO considered for comparison,
are listed in TABLE 6 in detail. Convergence behavior based

on Levy function with different dimensions by using CDSA is
shown in FIGURE 6, andAverage fitting curve based on Levy
function with different dimensions is shown in FIGURE 7.
Moreover, TABLE 7 presents quantitative performance com-
parison based on the high-dimensional Levy function.

To analyze the convergence behavior of CDSA and expand
the search space, the first-dimensional value of the solution,
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TABLE 9. Quantitative performance comparison based on the high-dimensional Sum squares function.

the first individual search path in population, the optimal indi-
vidual search path in population and the fitness curve of Levy
function with different dimensions is observed respectively.
The specific process of the convergence behavior of CDSA
is shown in FIGURE 6. It can be seen from FIGURE 6 that
with the gradual increase of Levy function, the first solution
of an individual fluctuates first and then approaches to 1.
Also, with the gradual increase of the dimension of Levy
function, the range of values of average fitting value and
best fitting value increases gradually. So, the results verify
the performance of CDSA in solving high-dimensional Levy
function.

It can be seen from FIGURE 7 and TABLE 7:
(1) As can be seen from FIGURE 7, the average fitting

value curve of CDSA is lower than that ofWOA, DSA, AGA,
APSO, WPA, CS, and CSO. Also, the average fitting value
curve of APSO algorithm is higher than that of CDSA,WOA,
AGA, WPA, CS, and CSO. These comparisons show that
CDSA is better than the algorithm considered for comparison.

(2) It can be concluded from TABLE 7 that for different
dimensions of Levy function, the average Best, Worst, Mean
and A.G of CDSA are 5.222, 1.867, 51.529, 127.256, 45.185,
66.739, 1.451, 35.736, 30.557, 109.267, 213.709, 63.400,
117.144, 23.438, 16.753, 10.096, 73.891, 169.464, 57.317,
90.886, 8.243 and 15.960, 16.260, 14.480, 6.260, 20.700,
4.290, 18.020 less than WOA, DSA, AGA, APSO, WPA, CS
and CSO.

In summary, CDSA is better than WOA, DSA, AGA,
APSO, WPA, CS, and CSO for high-dimensional Levy
function.

2) COMPARISON OF DIFFERENT ALGORITHMS BASED ON
HIGH-DIMENSIONAL ROTATED HYPER-ELLIPSOID FUNCTION
In this subsection, Rotated Hyper-Ellipsoid function whose
dimensions are set to 10, 20, 30, 40, and 50 respectively
are used as the test function. Also, the number of experi-
ments is 10. Also, the parameters of CDSA, WOA, DSA,
AGA, APSO, WPA, CS, and CSO are specified in TABLE 6.
Convergence behavior based on Rotated Hyper-Ellipsoid
function with different dimensions by using CDSA is shown
in FIGURE 8, and Average fitting curve based on Rotated
Hyper-Ellipsoid function with different dimensions is shown
in FIGURE 9. Moreover, TABLE 8 presents quantitative per-
formance comparison based on the high-dimensional Rotated
Hyper-Ellipsoid function.

It can be seen from FIGURES 8-9, and TABLE 8:
(1) As can be seen from FIGURE 8, with the grad-

ual increase of the dimension of Rotated Hyper-Ellipsoid,
the value range of average fitting value and best fitting
value increases gradually. This verifies the characteristics of
CDSA in solving high-dimensional Rotated Hyper-Ellipsoid
function.

(2) Similar to FIGURE 7, the average convergence curve
of the CDSA is lower than that of the comparison algo-
rithm, so the CDSA algorithm is better than the comparison
algorithm.

(3) It can be concluded from TABLE 8 that for
different dimensions of Rotated Hyper-Ellipsoid func-
tion, the average Best, Worst, Mean and A.G of CDSA
are 26235.862, 10936.273, 131437.388, 307351.976,
238907.436, 45085.365, 12305.330, 54311.355, 34726.662,
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389688.791, 480846.005, 445058.861, 95071.477,
38194.430, 39463.591, 20264.125, 240124.912, 388940.629,
347268.903, 65052.549, 22081.689 and 13.140, 16.910,
8.310, 2.100, 16.960, 2.660, 16.760 less than WOA, DSA,
AGA, APSO, WPA, CS and CSO.

In a word, CDSA is superior to WOA, DSA, AGA, APSO,
WPA, CS, and CSO in terms of efficiency and accuracy for
Rotated Hyper-Ellipsoid function with different dimensions.
At the same time, CDSA has better ability to obtain globally
optimal solutions than WOA, DSA, AGA, APSO, WPA, CS,
and CSO.

3) COMPARISON OF DIFFERENT ALGORITHMS BASED ON
HIGH-DIMENSIONAL SUM SQUARES FUNCTION
In this subsection, Sum Squares function whose dimensions
are set to 10, 20, 30, 40, and 50 respectively are used as
the test function. The number of experiments is the same as
Section 1) and Section 2), and the parameters of different
algorithms are specified in TABLE 6. Moreover, TABLE 9
presents a quantitative performance comparison based on the
high-dimensional Sum Squares function.

It can be concluded from TABLE 9 that for different
dimensions of Sum Squares function, the average Best,
Worst, Mean and A.G of CDSA are 102.796, 0.972, 946.889,
1975.913, 603.353, 1669.466, 18.591, 245.298, 30.425,
1922.188, 2967.629, 1423.065, 2379.704, 21.371, 174.663,
4.382, 1413.831, 2483.437, 932.013, 2051.570, 10.663 and
18.660, 14.860, 13.100, 7.720, 22.170, 3.790, 18.060 less
than WOA, DSA, AGA, APSO, WPA, CS and CSO.

VI. CONSLUSIONS AND FUTURE WORK
Aiming at the problem that DSA has weak global conver-
gence ability and is easy to fall into local optimum, this paper
introduces a chaotic map into DSA and successfully proposes
CDSA. Based on Rastrigin function, the optimal chaotic
map is determined. To verify the performance of CDSA,
we compared it with WOA, DSA, AGA, APSO, WPA, CS,
and CSO based on high-dimensional Levy function, Rotated
Hyper-Ellipsoid function and SumSquares function. Detailed
conclusions are as follows:

(1) For Rastrigin function with different dimensions, Kent
map is better than Logistic, Tent, Ushiki, Lozi, Henon, Wien,
and Lorenz map according to Best, Worst, Mean, and A.G.

(2) Based on the optimal chaotic map (Kent map), CDSA
is lower than WOA, DSA, AGA, APSO, WPA, CS and CSO
for high-dimensional Levy function, Rotated Hyper-Ellipsoid
function, SumSquares function in terms of Best,Worst,Mean
andA.G. This indicates that CDSA is superior toWOA,DSA,
AGA, APSO,WPA, CSO and CSO and shows that CDSA has
strong global convergence ability and does not fall into local
optimum.

This paper is based on high-dimensional Rastrigin func-
tion, Levy function, Rotated Hyper-Ellipsoid function, Sum
Squares function whose solving dimension is 50. To fur-
ther improve the ability of CDSA to solve higher dimen-
sions, CDSA needs to be improved. In addition, CDSA

needs to be applied to more areas of hyperparametric
optimization [36]–[40].
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