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ABSTRACT 1In 2016, dolphin swarm algorithm (DSA) that has received sustained research interest due
to its simplicity and effectiveness was proposed. However, when solving high-dimensional function opti-
mization problems, DSA is prone to fall into local optimization problems, which leads to low optimization
accuracy or even failure. In this paper, to solve this problem, chaotic mapping is introduced into DSA, and
chaotic dolphin swarm algorithm (CDSA) is successfully proposed. Based on high-dimensional Rastrigin
function, the optimal chaotic map is determined among eight chaotic maps (e.g., Logistic). Then, in view of
high-dimensional Levy function, Rotated Hyper-Ellipsoid function and Sum Squares function respectively,
the performance of CDSA and that of the state-of-the-art algorithms (e.g. (whale optimization algorithm)
WOA) are compared. The results show that the performance of CDSA based on Kent map is best and the
performance of CDSA outperform that of the state-of-the-art algorithms considered to be compared. Finally,
it is concluded that such a new meta-heuristic algorithm could help to improve the shortcomings of DSA

and increase the applied range of DSA.

INDEX TERMS Chaotic maps, dolphin swarm algorithm, high-dimensional function, optimization.

I. INTRODUCTION

As an important branch in the field of optimization,
the optimization problems of high-dimensional functions
have always been a hot issue for scholars at home and
abroad [1]. High-dimensional function optimization has a
significant application in theory and engineering field. Many
practical optimization problems which may be solved can be
transformed into optimization problems of high-dimensional
functions through certain transformations, such as multi-
variable function fitting [2].

However, in the process of optimizing high-dimensional
functions, with the increase of their dimensions, the scale
of search space increases exponentially, this lead to that
traditional optimization methods can’t meet the needs of
solving [3]. Therefore, in recent years, scholars at home
and abroad have tried to use the meta-heuristic algorithm
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to solve the optimization problem of high-dimensional func-
tions, these research results are shown in TABLE 1.

From TABLE 1, we can see that all kinds of meta-
heuristic algorithms are inspired by particle swarm optimiza-
tion (PSO). Although the above-mentioned meta-heuristic
algorithms obtain the optimal solution of the function in
a certain scale, the algorithms above still have the prob-
lem of easily falling into the local optimum. At the same
time, the algorithms above are still limited to scale prob-
lems, e.g., with less than 30 decision variables. Therefore,
some improved algorithms are proposed, which are shown in
TABLE 2.

For TABLE 2, some scholars have proposed some
improved meta-heuristic algorithms, but these enhanced
meta-heuristic algorithms only solve functions in low-
dimensional space, for example, some functions have only
two or three variables, so it is very significant to find meta-
heuristic algorithms that can be solved in high-dimensional
space.
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TABLE 1. Some mete-heuristic algorithms for solving high-dimensional fuction optimization problem in recent years.

Algorithm name Occurrence _ Results or conclusion Reference
Decimal-coding small world optimization 2009 DSWOA can acquire a satisfactory solution, also has better stability [4]
algorithm (DSWOA) and a fast convergence rate.
Improving particle swarm optimization 2010 Simulation results demonstrate that the proposed method is more [5]
(IPSO) stable and efficient than several other existing ways. .
Disturbance chaotic ant swarm algorithm 2011 The results show that the proposed algorithm is useful as well as [6]
(DCASA) efficient for the complex high-dimensional optimization problems.
Chaotic gaussian particle swarm 2011 It can be safely concluded that the proposed CGPSO is an efficient [7]
optimization (CGPSO) optimization scheme for solving high-dimensional problems
Modified Hestenes and Stiefel conjugate 2013 Numerical results show that the proposed algorithm is advantageous to [8]
gradient (MHSCG) existing CG methods for large-scale optimization problems
Cooperative coevolution orthogonal 2013 the simulation results demonstrate that CCOABC is a highly [9]
artificial bee colony (CCOABC) competitive algorithm for solving high-dimensional function.
Multi-scale quantum harmonic oscillator 2013 The results show that the multi-scale quantum harmonic oscillator [10]
algorithm (MSQHOA) algorithm gets precise global optimum for high-dimensional function.
Improved glowworm swarm optimization 2013 The experimental results indicate that IGSO has better ability of global [11]
algorithm (IGSOA) optimization and higher success ratio.
Artificial bee colony algorithm (ABCA) 2013 The ex.perim-ental results showithgt the algorithm is useful to solve the [12]
high-dimensional complex optimization problem.
Differential evolution algorithm (DEA) 2014 The results show that'thft new algorithm is effective and efficient for [13]
high-dimensional optimization
Greedy randomized adaptive search 2015 Experimental results show the supremacy of the proposed method [14]
procedure (GRASP). over previous versions of GRASP for feature selection.
Surrogate-assisted cooperative swarm 2017 Empirical studies demonstrate that the proposed algorithm can find [15]
optimization (SACSO) high-quality solutions for high-dimensional problems :
. . . . Our experimental results demonstrate that the proposed method is
Surrogate-assisted hierarchical particle o, . .
o 2018 competitive compared with the state-of-the-art algorithms under a [16]
swarm optimization (SAHPSO) limi -
imited computational budget.
Improved grey wolf optimization algorithm 2018 The results show that the proposed algorithm can find more accurate [17]
(IGWOA) solutions and has a higher convergence rate
Incremental gravitational search algorithm 2018 It is observed that the IGSA-3 algorithm is better than the IGSA-1 and [18]
(IGSA) two algorithms in that its appropriateness, stability, and duration.

TABLE 2. Some imoroved meta-heuristic algorithms in recent years.

Algorithm name Occurrence Reference
Particle swarm ant colony optimization (PSACO) 2007 [19]
Particle swarm optimization gravitational search algorithm (PSOGSA). 2014 [20]
Modified differential evolution whale optimization algorithm (MDEWOA) 2018 [21]
Particle swarm grey wolf optimization algorithm (PSGWOA) 2018 [22
Hybrid firefly particle swarm optimization (HFPSO) 2018 23]
Genetic particle swarm optimization algorithm (GPSOA) 2018 [24]
Simulated annealing moth flame optimization (SAMFO) 2018 [25]
Wolf pack search local search (WPSLS) 2019 [26]

In 2016, a novel meta-heuristic algorithm ([27]-[29])
called dolphin swarm algorithm (DSA) is proposed and
applied. But like other meta-heuristic algorithms, DSA still
has the problem of an optimal balance between explo-
ration and exploitation, Therefore, to solve this problem and
enhance the convergence speed and the ability to obtain the
global optimal solution of DSA, a new algorithm named
chaotic dolphin swarm algorithm (CDSA) is put forward by
introducing chaotic map into DSA in this study.

The rest of the paper is organized as follows: Chaotic
theory and chaotic map are presented in Section II; The DSA
is explained in detail in Section III; Also, the combination of
DSA and chaotic map is meticulously described in Section I'V.
Based on Section II, Section III, and Section IV, Section V
gives result and discussion; Last, the conclusions and future
work are provided in Section VI.
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Il. CHAOTIC THEORY AND CHAOTIC MAP

A. CHAOTIC THEORY

Chaos refers to seemingly random irregular motions occur-
ring in deterministic systems. The behavior of a system
described by deterministic theory can be expressed as
uncertainty, which is the chaotic phenomenon. Furthermore,
the theory of studying chaos is called chaos theory. Chaotic
systems are called chaotic systems, and chaotic systems are
highly sensitive to initial conditions. In other words, for
deterministic descriptive systems, chaos can also occur [30].

B. CHAOTIC MAP

To improve the global convergence ability of DSA, chaos
which are shown in TABLE 3 [31] is introduced into DSA and
CDSA is developed. Then we simulate the distribution and
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TABLE 3. Eight different chaotic maps.

No. Name Definition
1 Logistic Xisr=u x; (14x;)
2 Kent xi1=0.9-1.9 x;
3 Tent Xior=x; /0.4, x,<0.4; (1-x;) /0.6,x>0.6
4 Ushiki Xin1= (3.7- x-0.1y;) x5 yiri= (3.7- 0.15x-y,) yi
5 Lozi Xi= 1-1.75| x; |+yi; yi1=0.3 x;
6 Henon Xer= 1+y-1.4x7%; yir= 0.3x;
7 Wien dx=-x+2.5(y-z:); dyi=-x+1.5i-2.5z;; dz=5u (y-1)zi; u=1,y>0;u=0,y;<0
8 Lorenz dx=10(y;-x;); dy=34xtx;zi -yi; dz= x; vi -8/3z;
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FIGURE 1. Distribution of solutions to eight chaotic maps: (a) Logistic map; (b) Kent map; (c) Tent map; (d) Ushiki map; (e) Lozi map;

(f) Henon map; (g) Wien map; (h) Lorenz map.

proportion of solutions of eight chaotic maps in FIGURE 1.
and FIGURE 2.

Ill. DOLPHIN SWARM ALGORITHM (DSA)

A. PREDATORY BEHAVIOR OF DOLPHIN SWARM

In 2016, inspired by PSO, Wu et al. began to pay attention to
some behaviors of dolphins ([27]-[29]). For instance, the dol-
phin uses echolocation in search of prey. Except for echolo-
cation, another behavior of dolphin swarm is cooperation and
division of labor to catch prey. The third behavior of dolphin
swarm is information exchanges. These three behaviors can
be summarized as one dolphin discovers its prey, informs
other dolphins by echolocation, and then all dolphins sur-
round the prey and catch food.

B. MAIN DEFINITIONS
1) DOLPHIN

In the process of optimization, each dolphin represents a
feasible solution. However, the expression of feasible solu-
tions for various optimization problems is different. In this
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paper, to better understand the optimization process, dolphins
are defined as Dol; = [xj, x2,..., xD]T(i =12,...,N),
where N represents the number of dolphins, and x; G = 1,
2, ..., D) represent the component:

2) OPTIMAL INDIVIDUAL AND NEIGHBORHOOD SOLUTION
The two variables closely related to the dolphin algorithm are
optimal neighborhood solution (expressed as K) and optimal
individual solution (shown as L). More specifically, for every
Dol;(i = 1,2, ..., N), there are two relevant variables which
are Lii = 1,2,..., N)and K;(i = 1,2,..., N), respec-
tively, where K; is the optimal solution of what Dol; finds
by itself or gets from others, and L; represents the optimal
solution that Dol; finds in a single time.

3) DISTANCE AND FITNESS

In DSA, there are three types of distances, which are the
distance between Dol; and Dol;, named DD, j, the distance
between Dol; and K;, called DK; and the distance between
L; and K;, called DLK;, respectively. The expression of the
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FIGURE 2. Proportion of solutions to eight chaotic maps: (a) Logistic map; (b) Kent map; (c) Tent map; (d) Ushiki map; (e) Lozi map;

(f) Henon map; (g) Wien map; (h) Lorenz map.

above three distances is as follows:

DDi,j = ||D011 —DOl] \ y l,]= 1,2,...N, 175] (H
DK; = |Dol; —K;||, i=1,2,...N. 2
DKL; = |L; — K;||, i=1,2,...N. 3

Fitness is based on judging whether the solution is
good or bad. In DSA, E is calculated by fitting function
(i.e., Rastrigin function in (25) in Section V). For this func-
tion, the closer the E value is to O, the better the solution
is obtained. Because different fitting functions of various
optimization problems are different, Fitness (X) is used to
represent the fitting functions in this paper. Examples of
specific fitting functions may be found in (25), (26), (28),
and (29) in Section V.

C. CRITICAL STAGES

The DSA is split into six stages, which are the initializa-
tion, search, call, reception, predation, and termination stage.
Since the initial stage is only the initialization of the pop-
ulation, the final stage only gives a termination condition;
therefore, in this subsection, search, call, reception, and pre-
dation stage are mainly used. The four stages are described in
detail as follows:

1) SEARCH STAGE

When searching for prey, each dolphin usually makes a sound
in M directions in the area near the dolphin. In order to
qualitatively describe the process of each dolphin’s search
for prey, sound is defined as V; = [vy, va, ..., vp] (i = 1,
2,..., M) in this paper, where v;(j = 1,2,..., D) repre-
sents the component of each dimension, namely the direc-
tion attribute of the sound and M represents the number
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of sounds. Besides, sound must satisfy ||V ;|| = speed (i = 1,
2,..., M), where ‘speed’ is the speed attribute of sound.
To prevent dolphins from falling into the search phase, a max-
imum search time 77 is set. In the range of O to 7, the sound
VithatDol; ( = 1,2, ..., N) makes at time ¢ will find a new
solution X ;;;. The definition of X ;;; is as follows.

Xijr = Dol; + Vit 4

For X j;; that Dol; obtains, its fitness value Ej;; is expressed
as follows:

Ej; = Fitness (X,-j;) . (@)
If
Eigp = minj—1 2 . M;=1,2,... 11 Eijr
= minj—1 2, M:=1,,...7, Fitness (Xj) (6)

Then the optimal individual solution L; of Dol; is
defined as

Li =Xiap )
If
Fitness (L;) < Fitness (K;) ®)

Then K ; is displaced by L;; otherwise, K; does not change.
After all the Dol; (i = 1, 2, ..., N) update their L; and K,
DSA enters call stage.

2) RECEPTION STAGE

In DSA, in order, the reception stage occurs after the call
stage, but to better understand the call stage, in this sub-
section, the reception stage is first described in detail. The
quantitative description of information exchange between
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dolphins and dolphins can be expressed by an NxN-order
matrix which is named ‘transmission time matrix’ (TS =
(TS;(i = 1,2,...,N;j = 1,2,..., N))), where TS;; is the
rest of the time for the sound of moving from Dol; to Dol;.

When DSA get into the reception stage, that all elements
TS;(i=1,2,...,N;j=1,2,...,N)in the TS will decrease
demonstrate that the sounds spread on any element TS;; in the
TS, and if

TSi; =0 )

This means that the sound, which will be received by Dol,,
sent from Dol; to Dol;. Next, TS;; will be displaced by a
new search time, which is called ‘maximum transmission
time’ (7). By this process, we will know the relevant sound
has been received. Furthermore, comparing K; and K, if

Fitness (K;) > Fimess (K;) (10)

Then K replaces K;, or K; does not change. Next, DSA
gets into the predation stage.

3) CALL STAGE

Based on the search stage, at this stage, each dolphin makes
sounds for the sake of informing other dolphins of their
search results, containing whether an optimal global solution
is found and where it is located. Next, the transmission time
matrix TS should be updated according to the following
inequality.

For K,', Kj, and TSi,j, if

Fitness (K;) > Fitness (K,) (11D
DD, ;
TS;j > | ———— (12)
) A - speed

where A, which is a constant, represents the acceleration.
Next, TS;; will be updated according to the following

equation:
DD; ;
TS;j=| ——— (13)
’ A - speed

After all the TS; ; is updated, DSA gets into the reception
stage.

4) PREDATION STAGE

In the search phase, reception stage, call stage and predation
stage, predation stage is the most critical and important stage.
Next, we describe the predation stage in detail. In this stage,
each dolphin preys within a certain surrounding radius, which
is defined as R;,. Also, R, determine the distance between the
dolphin’s optimal neighborhood solution and its position after
the predation obtains a new position. Furthermore, the search
radius R, which is the maximum range in the search stage,
can be calculated as follows:

Ry =Ty x speed (14)

Next, Dol; (i = 1,2,..., N) is regarded as an example
to describe the calculation of R, and update the dolphin’s
position.
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(a) ForDol; ( =1,2,...,N),if
DK; < Ry (15)

Then, R, will be calculated according to (16).
2
Ry=|1—-)DK;, e>?2 (16)
e

where e represents the radius reduction coefficient.
After getting R», Dol;’s new position newDol; can be
obtained:

newlol; = . + _— . 7
! ! DKl 2

(b)ForDol; i=1,2,...,N),if
DK; > R (18)
and
DK; > DKL; (19)
Then, R, will be calculated according to (20).

DK; + DK;—DKL;
Fitness(K ;) Fitness(L;)
R=|1-

e - DK;

1 )DK,-, e>2 (20
Fitness(K ;)

After getting R», Dol;’s new position newDol; can be
obtained:

Random
newDol; =K, + ——R» 2D
[|[Random||

(¢)ForDol; (i =1,2,...,N), if it satisfies (18) and
DK; < DKL; (22)

Then, R, will be calculated according to (23).

DK; + DKL;—DK;
Fitness(K ;) Fitness(L;)
Ry=11-

e DK;j=—»

)DKi, e>2 (23)
Fitness(K ;)

After getting R», Dol;’s new position newDol; can be
obtained by (21).

After Dol; moves to the position newDol;, comparing
newDol; with K; in terms of fitness, if

Fitness (newDol;) > Fitness (K;) (24)

Then newDol; replaces K ;, or K; does not change.

Finally, if the iterative termination condition is satisfied,
DSA enters the termination stage, or, DSA enters the search
stage again.

IV. CHAOTIC DOLPHIN SWARM ALGORITHM (CDSA)
The algorithm searches the optimal solution of the tar-
get problem by simulating dolphin behavior. Each iteration
updates all individual dolphins, and selects the current opti-
mal position, repeating the process until the end condition is
satisfied.

The flow chart of CDSA is shown in FIGURE 3.
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FIGURE 3. The flow chart of CDSA.

V. RESULT AND DISCUSSION

In this section, to verify the performance of the proposed
CDSA, two experiments are performed. Experiment I com-
pare the performance of the combination of different chaotic
maps and DSA by high-dimensional function test; Experi-
ment II compare CDSA with advanced algorithms according
to performance indexes by high-dimensional function test.

A. EXPERIMENTAL PLTFORM

For different computers, the results of Experiment I and II are
greatly affected. Therefore, to compare fairly, Experiment I
and experiment II are carried out on the same experimental
computer. Computer configuration consist of the hardware
configuration (i.e. CPU: Intel(R) Core (TM) 17-8550U; Fre-
quency: 1.99 GHz; RAM: 16.0GB (15.9 GB Available); Hard
drive: 1TB) and software configuration (i.e. Operating sys-
tem: Windows 10; Language edition: MATLAB R2018a).

B. HIGH-DIMENSIONAL TEST FUNCTIONS

In this study, Rastrigin function is used to test the per-
formance of different chaotic maps combined with DSA.
Furthermore, we use Levy function, Rotated hyper-ellipsoid
function, and Sum squares function to test the performance of
CDSA and advanced meta-heuristic algorithms (e.g., whale
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optimization algorithm (WOA)). The definition of Rastrigin
function, Levy function, Rotated hyper-ellipsoid function,
and Sum squares function is shown in (25), (26), (28), and
(29). Also, The Rastrigin function whose large-scale search
interval and many local minimum results in the difficulty of
finding a global minimum is a typical nonlinear multimodal
function. The Rotated Hyper-Ellipsoid function, which is an
extension of the axis parallel Hyper-Ellipsoid function, also
referred to as the Sum Squares function is continuous, convex,
and unimodal. The Sum Squares function, which is continu-
ous, convex, and unimodal, also referred to as the Axis Paral-
lel Hyper-Ellipsoid function, has no local minimum except
the global one. Rastrigin function, Levy function, Rotated
hyper-ellipsoid function and Sum squares function Rastrigin
function, Levy function, Rotated hyper-ellipsoid function,
and Sum squares function are shown in FIGURE 4 in their
two-dimensional form.
The definition of Rastrigin function is as follow:

D
fiy=100+3" [xl? —10cos (2nxl-)] (25)
i=1
where x; and i belong to [—5, 5] and [1, D], the minimum
value of fi(x) is 0.
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(a) (b)

(c) (d)

FIGURE 4. Four functions are used to test in their two-dimensional form: (a) Rastrigin function; (b) Levy function; (c) Rotated hyper-ellipsoid

function; (d) Sum squares function.
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FIGURE 5. Average fitting value curve of the different dimension of the Rastrigin function: (a) 10; (b) 20; (c) 30; (d) 40; (e) 50.

The definition of Levy function is as follow:
D-1
fx) = sin® (ro) + Y (0 — 1* ...

i=1

[1 + 10sin® (ro; + 1)]

+ (wp —1)2 [1 + sin? (Zna)D)] (26)

where i belong to [1, D] and the minimum value of f (x) is 0.
w; is defined as follow:
Xi — 1
4

The definition of Rotated hyper-ellipsoid function is as
follow:

wi=1+ 27)

D i
IGED S

i=1 j=1
where x; and i belong to [—65.536, 65.536] and [1, D] and
the minimum value of fj(x) is O.

(28)
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The definition of Sum squares function is as follow:
D

fo) =) ix
i=1
where x; and i belong to [—5.12, 5.12] and [1, D] and the
minimum value of fi(x) is 0.

(29)

C. COMPARING CDSA WITH LITERATURE

To verify the effectiveness and performance of the proposed
CDSA, some advanced evolutionary algorithms includ-
ing WOA [32], DSA ([27]-[29]), AGA [33], APSO [5],
WPA [26], CS [34] and CSO [35] are used to compare in this
paper.

D. EXPERIMENT I: COMPARISON OF

DIFFERENT CHAOTIC MAPS

In this experiment, in order to determine the optimal chaotic
map, Rastrigin function whose dimensions are set to 10, 20,
30, 40 and 50 respectively are used as the test function.
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TABLE 4. Statistical results of the different chaotic maps based on the different dimensional rastrigin function.

Dimensional Indexes Logistic Kent Tent Ushiki Lozi Henon Wien Lorenz
number

Best 21.370 16.471 21.169 16.901 21.785 23.295 19.492 20.341

10 ‘Worst 56.741 51.556 52.336 64.112 73.965 56.535 60.952 66.124
Mean 35.327 34.223 35.212 37.210 40.071 35.137 35.589 39.451

A.G 31.050 25.700 26.350 25.700 27.550 35.000 28.000 24.850

Best 64.516 62.697 87.249 79.439 77.952 83.134 71.972 81.112

20 Worst 177.376 136.132 143.592 162.790 180.876 154.323 152.121 144.625
Mean 119.100 108.096 112.954 116.018 124.078 115.709 117.401 109.809

A.G 27.950 22.600 24.000 28.950 23.300 30.850 28.200 31.750

Best 149.771 138.021 156.211 147.331 161.163 149.676 170.583 154.984

30 Worst 279.462 270.781 299.457 284.894 265.984 254.016 257.535 272.307
Mean 214.430 202.748 205.834 206.318 216.625 205.291 215.974 215.943

A.G 26.100 22.550 30.350 29.400 24.650 32.350 32.250 30.250

Best 239.520 211.599 271.526 215.969 228.050 228.750 235.316 231.631

40 Worst 380.276 349.725 411.209 365.320 348.587 368.242 403.087 393.663
Mean 316.709 295.179 322.767 286.745 300.269 295.642 289.390 304.439

A.G 31.850 25.700 27.200 37.100 27.350 29.550 32.800 33.500

Best 311.354 268.763 294.777 336.414 296.818 326.537 303.674 324.927

50 Worst 502.021 432.184 452.259 448.962 505.976 521.778 470.726 467.211
Mean 386.032 382.186 380.098 389.484 391.008 402.243 393.178 385.089

A.G 32.350 29.200 33.200 39.800 30.350 30.200 30.900 32.900

Note: The values in bold indicate a minimum value in each evaluation index, including St. d, Mean, Worst, Best, A. G.
TABLE 5. The efficiency of different chaotic maps.

Dimensional number Indexes Logistic Kent Tent Ushiki Lozi Henon Wien Lorenz
10 0.484 0.469 0.534 0.501 0.514 0.487 0.522 0.497

20 0.484 0.469 0.534 0.501 0.514 0.487 0.522 0.497

30 Runtime 0.772 0.761 0.806 0.791 0.783 0.776 0.799 0.776

40 0.772 0.761 0.806 0.791 0.783 0.776 0.799 0.776

50 0.924 0.803 0.963 0.875 0.908 0.888 0.913 0.916

Note: The values in bold indicate minimum solution time.

Parameter settings of CDSA are P = 50, Speed = 1, T = 10,
A =1,e=3,k=10,u= 1. Average fitting value curve of
the different dimension of the Rastrigin function are shown in
FIGURE 5. TABLE 4 gives the index values of various CDSA
in detail.

As can be seen from FIGURE 5 and TABLE 4, Kent map is
the closest to the actual optimal solution of Rastrigin function,
and the average fitness value of Kent map is lower than that of
other maps. This shows that the combination of Kent map and
DSA is better than that of different maps and DSA. Detailed
comparisons are as follows:

(1) FIGURE 5 (a) - (e) shows that the average fitting value
curve of Kent map is lower than that of other maps, which
shows that the convergence speed of the combination of Kent
mapping and Dolphin swarm algorithm is faster than that of
different maps and DSA.

(2) From TABLE 4, we can see that the four indexes of Kent
map are lower than those of different maps, and the Best index
of Kent map is lower than that of different maps. It shows
that the gap between the optimal solution obtained by Kent
map and the actual optimal solution of Rastrigin function is
small, and the Worst index of Kent map is lower than that of
other maps. It shows that the worst solution obtained by Kent

VOLUME 7, 2019

TABLE 6. Parameter setting.

Algorithm Parameter

CDSA P=50, Speed=2, T=20, A=2, e=4, k=20, u=2

WOA P=50, c1=2, c2=2, wmax=1.4, wmin=0.1

DSA P=50, Speed=2, T=20, A=2, e=4

AGA PZSO,‘pl_max:O.& pl_min=0.2, p2_max=0.2,
p2 min=0.02

APSOA P=50, k1=2, k2=2, wilx=1.4, w2=0.1

WPA , p=0.04, t=1, step=4, d=4, p.=0.4;

P=50
Cs P=50, a=2, 6=0.7066, p=3, w=4
P=50, R=0.2, Ry, =0.7, R,=0.1;

map is the worst one compared with the actual best solution
of Rastrigin function. The result shows that the difference
between the average solution obtained by Kent map and
the actual optimal solution of Rastrigin function is small.
The three indexes above show that the solution accuracy of
the Kent map is higher than that of other maps. The A. G
index of Kent map is lower than that of other maps, which
indicates that the solving speed of Kent map is faster than
that of different maps.

From TABLE 5, we can see that the runtime of the combi-
nation of Kent map and DSA is lower than that of other maps
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FIGURE 6. Convergence behavior based on Levy function with different dimensions by using CDSA: the first dimensional value of solution

of 10, 20, 30, 40 and 50-dimension including (a), (e), (i), (m) and (q); The first individual search path in population of 10, 20, 30, 40 and
50-dimension including (b), (f), (j), (m) and (r); The optimal individual search path in population of 10, 20, 30, 40 and 50-dimension including
(). (g) (k), (n) and (s); The fitness curve of 10, 20, 30, 40 and 50-dimension including (d), (h), (p). (o) and (t).
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TABLE 7. Quantitative performance comparison based on the high-dimensional Levy function.

D”r?lf;‘lsggfal Indexes CDSA WOA DSA AGA APSO WPA cs CSO
Best 0.069 0.338 0.400 0.680 3511 6.454 3.896 0213

1o Worst 1.663 3335 12.279 19.306 20.358 15.105 9.166 11.769
Mean 0.454 1.402 2757 7263 8.171 10.286 5518 2.894

A.G 30.800 44.900 43.150 38.550 39.900 46.750 31.350 38.300

Best 1457 1.989 2.609 15.466 36.533 13.860 4.119 2.539

20 Worst 6.701 39.906 44.329 56.853 106.873 39.113 18.713 16.713
Mean 2.961 10.011 16.390 31.594 70.650 28.487 9.489 8.489

A G 32.850 44.700 40.500 41.650 36.850 48.650 44.900 50.850

Best 2.300 10.012 6.113 36.734 103.335 33.464 40.781 4.406

20 Worst 10.142 39.789 53.533 109.153 233.593 66.139 121.926 24.647
Mean 5.179 20.831 17.515 62.969 156.069 54.481 91.114 13.024

A.G 28.650 44.650 44.750 44.950 30.600 50.150 31.100 46.750

Best 6.167 13.394 9.434 93.097 212.287 84.509 118.458 7.131

20 Worst 20.822 70.882 47.995 190.888 332367 110.623 219.866 75.474
Mean 11.772 41,520 24.378 125.668 279.602 99.045 156.498 27.658

A.G 23.900 44.900 46.650 45.700 37.000 50.500 26.350 49.250

Best 15.387 25.756 16.157 137.046 305.993 113.017 191.819 18.347

5 Worst 42.109 106.201 76.085 251.568 456.791 167.453 297.483 70.024
Mean 26.180 56.548 35.983 188.505 379.372 140.831 238.354 35.696

A.G 26.900 43.750 49.350 44.650 30.050 50.550 30.850 48.050

Best 5.076 10.298 6.943 56.605 132.332 50.261 71.815 6.527

Average Worst 16.287 52.023 46.844 125.554 229.996 79.687 133.431 39.725
Mean 9.309 26.062 19.405 83.200 178.773 66.626 100.195 17.552

A. G 28.620 44.580 44.880 43.100 34.880 49.320 32.910 46.640

Note: The values in bold indicate an average minimum value in each evaluation index, including St. d, Mean, Worst, Best, A. G.
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FIGURE 7. Average fitting curve based on Levy function with different dimensions: (a) 10; (b) 20; (c) 30; (d) 40; (e) 50.

and DSA, which shows that the combination of Kent map and
DSA is the most efficient.

E. EXPERIMENT II: COMPARISON WITH
STATE-OF-THE ART ALGORITHMS

To compare the performance of the proposed CDSA, based
on the optimal chaotic map (Kent map) determined in

VOLUME 7, 2019

Experiment I, CDSA is compared with the state-of-the-art
algorithms (shown in Section V) in this study.

1) COMPARISON OF DIFFERENT ALGORITHMS BASED
ON HIGH-DIMENSIONAL LEVY FUNCTION

In this subsection, Levy function whose dimensions are
set to 10, 20, 30, 40, and 50 respectively are used as the
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FIGURE 8. Convergence behavior based on rotated hyper-ellipsoid function with different dimensions by using CDSA: the first dimensional
value of solution of 10, 20, 30, 40 and 50-dimension including (a), (e), (i), (m) and (q); The first individual search path in population of 10, 20,
30, 40 and 50-dimension including (b), (f), (j), (m) and (r); The optimal individual search path in population of 10, 20, 30, 40 and
50-dimension including (c), (g). (k), (n) and (s); The fitness curve of 10, 20, 30, 40 and 50-dimension including (d), (h), (p). (o) and (t).

110482 VOLUME 7, 2019



W. Qiao, Z. Yang: Modified DSA Based on Chaotic Maps

IEEE Access

TABLE 8. Quantitative performance comparison based on the high-dimensional hyper-ellipsoid function.

Dimensional - Indexe  cpga WOA DSA AGA APSO WPA 567.779 Cso
Best 5.811 235.777 13.179 2088.753 1583.201 4158.622 3889.536 6.975
10 Worst 308.067 2900.175 1495.788 11612.054 10051.500 19111.249 1674.901 3276.110
Mean 71.059 987.162 504.251 7120.061 5160.157 8910.939 39.600 736.497
A. G 36.650 46.800 50.800 38.700 40.800 51.000 8005.596 50.450
Best 484.805 5120.736 2447.287 17071.921 39776.303 45255.113 32306.518 1558.323
20 Worst 2874.999 16292.552 24052.520 102722.435 127384.656 139249.417 16591.695 13884.405
Mean 1411.862 9945.038 7017.109 54110.207 68704.433 90595.144 39.150 7454.761
A.G 37.650 46.250 50.950 41.050 39.300 51.000 33479.807 50.950
Best 3073.139 19388.884 8163.161 82584.959 167560.857 158862.128 68852.267 12363.923
30 Worst 14942.920 52474.088 34507.126  251284.715 358709.227 309705.456 51356.510 40612.953
Mean 7111.707 36974.586 23505.150 165728.166 276320.122 241034.325 35.100 24105.924
A. G 36.450 48.350 51.000 44.350 38.600 51.000 64234.296 50.600
Best 7948.224 45766.667 30837.453 194643.195 507813.677 380081.574 189149.454 22376.042
20 Worst 39711.267 94728.831 72786.316 711224.220 784064.500 715851.013 108506.429 77272.316
Mean 19194.401 68948.564 44423.753 382081.682 616765.534 517281.473 34.500 49216.117
A. G 32.800 47.000 51.000 43.050 31.600 51.000 150230.818 51.000
Best 19579.489 91758.714 44311.753 391889.583 851117.310 637271.212 296615.263 56312.856
50 Worst 57618.403  220616.782  156247.215  987056.188 1239475.799 1156832.825  210287.043 171382.021
Mean 35364.808 143616.440  89024.195 654738.281 1040906.735 941676.471 35.150 92048.979
A.G 26.650 47.500 51.000 44.600 30.400 51.000 51303.659 51.000
Best 6218.294 32454.156 17154.567 137655.682 313570.270 245125.730 118162.608 18523.624
Average Worst 23091.131 77402.486 57817.793  412779.922 503937.136 468149.992 77683.316 61285.561
g Mean 12630.767 52094.358 32894.892  252755.679 401571.396 359899.670 36.700 34712.456
A.G 34.040 47.180 50.950 42.350 36.140 51.000 567.779 50.800
Note: The values in bold indicate an average minimum value in each evaluation index, including St. d, Mean, Worst, Best, A.
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FIGURE 9. Average fitting curve based on rotated hyper-ellipsoid function with different dimensions: (a) 10; (b) 20; (c) 30; (d) 40; (e) 50.

test function. Because the results of each experiment are
different, to ensure the fairness of the comparison, ten exper-
iments are carried out, and the average results of 10 experi-
ments are compared. Also, the parameter settings of CDSA
and the metaheuristic algorithm, including WOA, DSA,
AGA, APSO, WPA, CS, and CSO considered for comparison,
are listed in TABLE 6 in detail. Convergence behavior based

VOLUME 7, 2019

on Levy function with different dimensions by using CDSA is
shown in FIGURE 6, and Average fitting curve based on Levy
function with different dimensions is shown in FIGURE 7.
Moreover, TABLE 7 presents quantitative performance com-
parison based on the high-dimensional Levy function.

To analyze the convergence behavior of CDSA and expand
the search space, the first-dimensional value of the solution,
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TABLE 9. Quantitative performance comparison based on the high-dimensional Sum squares function.

Dimensional

Indexe

CDSA WOA DSA AGA APSO WPA CS CSO
number s
Best 0.199 0.554 0.938 10.623 15.222 0.240 20.337 0.538
10 Worst 4.058 13.427 5.627 136.997 58.100 19.273 92.417 4.138
Mean 1.325 5.102 2.706 46.929 35.018 4.627 54.679 2.147
A.G 30.500 45.700 35.850 33.800 39.300 50.250 32.800 43.350
Best 9.986 20.527 14.704 149.150 261.872 57.522 351.689 10.441
20 Worst 34.553 97.301 63.391 501.041 615.266 264.750 699.699 65.360
Mean 23.629 51.017 27.436 307.204 422.423 163.085 509.774 28.834
A.G 25.300 47.200 44.800 42.450 38.600 51.000 36.950 43.400
Best 35.117 115.865 49.029 654.066 1255.730 343.077 1274.301 53.801
30 Worst 136.595 322.200 130.519 1467.754 2181.583 889.263 2035.205 177.249
Mean 79.341 200.017 87.000 1002.932 1704.137 585.714 1660.237 97.536
A.G 32.750 46.300 43.700 42.800 37.800 51.000 34.500 45.300
Best 102.646 301.610 74.821 1734.372 2846.256 936.175 2169.119 114.252
40 Worst 350.677 790.458 380.532 3142.263 4565.461 2594.261 3661.817 376.796
Mean 214.015 512.153 219.202 2286.969 3857.952 1510.448 3051.329 237.316
A.G 28.450 48.400 47.100 44.700 34.700 51.000 29.200 50.900
Best 192.572 415.945 205.887 2526.755 5841.006 2020.272 4872.404 254.445
50 Worst 596.518 1125.506 694.458 5485.283 8540.137 4470.176 6531.780 605.711
Mean 370.978 794316 374.854 4114.411 7086.943 3085.481 5671.120 376.771
A.G 26.400 49.100 46.250 45.150 31.600 51.000 28.900 50.750
Best 68.104 170.900 69.076 1014.993 2044.017 671.457 1737.570 86.695
Average Worst 224.480 469.778 254.905 2146.668 3192.109 1647.545 2604.184 245.851
Mean 137.858 312.521 142.240 1551.689 2621.295 1069.871 2189.428 148.521
A.G 28.680 47.340 43.540 41.780 36.400 50.850 32.470 46.740

Note: The values in bold indicate an average minimum value in each evaluation index, including St. d, Mean, Worst, Best, A.

the first individual search path in population, the optimal indi-
vidual search path in population and the fitness curve of Levy
function with different dimensions is observed respectively.
The specific process of the convergence behavior of CDSA
is shown in FIGURE 6. It can be seen from FIGURE 6 that
with the gradual increase of Levy function, the first solution
of an individual fluctuates first and then approaches to 1.
Also, with the gradual increase of the dimension of Levy
function, the range of values of average fitting value and
best fitting value increases gradually. So, the results verify
the performance of CDSA in solving high-dimensional Levy
function.

It can be seen from FIGURE 7 and TABLE 7:

(1) As can be seen from FIGURE 7, the average fitting
value curve of CDSA is lower than that of WOA, DSA, AGA,
APSO, WPA, CS, and CSO. Also, the average fitting value
curve of APSO algorithm is higher than that of CDSA, WOA,
AGA, WPA, CS, and CSO. These comparisons show that
CDSA is better than the algorithm considered for comparison.

(2) It can be concluded from TABLE 7 that for different
dimensions of Levy function, the average Best, Worst, Mean
and A.G of CDSA are 5.222, 1.867, 51.529, 127.256, 45.185,
66.739, 1.451, 35.736, 30.557, 109.267, 213.709, 63.400,
117.144, 23.438, 16.753, 10.096, 73.891, 169.464, 57.317,
90.886, 8.243 and 15.960, 16.260, 14.480, 6.260, 20.700,
4.290, 18.020 less than WOA, DSA, AGA, APSO, WPA, CS
and CSO.

In summary, CDSA is better than WOA, DSA, AGA,
APSO, WPA, CS, and CSO for high-dimensional Levy
function.

110484

2) COMPARISON OF DIFFERENT ALGORITHMS BASED ON
HIGH-DIMENSIONAL ROTATED HYPER-ELLIPSOID FUNCTION
In this subsection, Rotated Hyper-Ellipsoid function whose
dimensions are set to 10, 20, 30, 40, and 50 respectively
are used as the test function. Also, the number of experi-
ments is 10. Also, the parameters of CDSA, WOA, DSA,
AGA, APSO, WPA, CS, and CSO are specified in TABLE 6.
Convergence behavior based on Rotated Hyper-Ellipsoid
function with different dimensions by using CDSA is shown
in FIGURE 8, and Average fitting curve based on Rotated
Hyper-Ellipsoid function with different dimensions is shown
in FIGURE 9. Moreover, TABLE 8 presents quantitative per-
formance comparison based on the high-dimensional Rotated
Hyper-Ellipsoid function.

It can be seen from FIGURES 8-9, and TABLE &:

(1) As can be seen from FIGURE 8, with the grad-
ual increase of the dimension of Rotated Hyper-Ellipsoid,
the value range of average fitting value and best fitting
value increases gradually. This verifies the characteristics of
CDSA in solving high-dimensional Rotated Hyper-Ellipsoid
function.

(2) Similar to FIGURE 7, the average convergence curve
of the CDSA is lower than that of the comparison algo-
rithm, so the CDSA algorithm is better than the comparison
algorithm.

(3) It can be concluded from TABLE 8 that for
different dimensions of Rotated Hyper-Ellipsoid func-
tion, the average Best, Worst, Mean and A.G of CDSA
are 26235.862, 10936.273, 131437.388, 307351.976,
238907.436, 45085.365, 12305.330, 54311.355, 34726.662,
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389688.791,  480846.005, 445058.861, 95071.477,
38194.430, 39463.591, 20264.125, 240124.912, 388940.629,
347268.903, 65052.549, 22081.689 and 13.140, 16.910,
8.310, 2.100, 16.960, 2.660, 16.760 less than WOA, DSA,
AGA, APSO, WPA, CS and CSO.

In a word, CDSA is superior to WOA, DSA, AGA, APSO,
WPA, CS, and CSO in terms of efficiency and accuracy for
Rotated Hyper-Ellipsoid function with different dimensions.
At the same time, CDSA has better ability to obtain globally
optimal solutions than WOA, DSA, AGA, APSO, WPA, CS,
and CSO.

3) COMPARISON OF DIFFERENT ALGORITHMS BASED ON
HIGH-DIMENSIONAL SUM SQUARES FUNCTION

In this subsection, Sum Squares function whose dimensions
are set to 10, 20, 30, 40, and 50 respectively are used as
the test function. The number of experiments is the same as
Section 1) and Section 2), and the parameters of different
algorithms are specified in TABLE 6. Moreover, TABLE 9
presents a quantitative performance comparison based on the
high-dimensional Sum Squares function.

It can be concluded from TABLE 9 that for different
dimensions of Sum Squares function, the average Best,
Worst, Mean and A.G of CDSA are 102.796, 0.972, 946.889,
1975.913, 603.353, 1669.466, 18.591, 245.298, 30.425,
1922.188, 2967.629, 1423.065, 2379.704, 21.371, 174.663,
4.382, 1413.831, 2483.437, 932.013, 2051.570, 10.663 and
18.660, 14.860, 13.100, 7.720, 22.170, 3.790, 18.060 less
than WOA, DSA, AGA, APSO, WPA, CS and CSO.

VI. CONSLUSIONS AND FUTURE WORK

Aiming at the problem that DSA has weak global conver-
gence ability and is easy to fall into local optimum, this paper
introduces a chaotic map into DSA and successfully proposes
CDSA. Based on Rastrigin function, the optimal chaotic
map is determined. To verify the performance of CDSA,
we compared it with WOA, DSA, AGA, APSO, WPA, CS,
and CSO based on high-dimensional Levy function, Rotated
Hyper-Ellipsoid function and Sum Squares function. Detailed
conclusions are as follows:

(1) For Rastrigin function with different dimensions, Kent
map is better than Logistic, Tent, Ushiki, Lozi, Henon, Wien,
and Lorenz map according to Best, Worst, Mean, and A.G.

(2) Based on the optimal chaotic map (Kent map), CDSA
is lower than WOA, DSA, AGA, APSO, WPA, CS and CSO
for high-dimensional Levy function, Rotated Hyper-Ellipsoid
function, Sum Squares function in terms of Best, Worst, Mean
and A.G. This indicates that CDSA is superior to WOA, DSA,
AGA, APSO, WPA, CSO and CSO and shows that CDSA has
strong global convergence ability and does not fall into local
optimum.

This paper is based on high-dimensional Rastrigin func-
tion, Levy function, Rotated Hyper-Ellipsoid function, Sum
Squares function whose solving dimension is 50. To fur-
ther improve the ability of CDSA to solve higher dimen-
sions, CDSA needs to be improved. In addition, CDSA
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needs to be applied to more areas of hyperparametric
optimization [36]-[40].
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