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ABSTRACT In this paper, we present a novel gain-enhanced sub-harmonic mixer based on 0.5-µm emitter
width InGaAs/InP double heterojunction bipolar transistors (InP DHBTs). The proposed mixer consists
of a transconductance stage and a gain-enhanced stage. A common-emitter transistor is used in the first
stage to realize the sub-harmonic mixing while another common-emitter transistor is used in the second
stage to remix the fLO+IF and fIF and also amplify the f2LO+IF . For further verification, a transconductance
mixer and a gain-enhanced mixer were designed and fabricated. Compared with the transconductance
mixer, the gain-enhanced mixer exhibits a 6.8-dB higher conversion gain with 2-dB lower LO input
power and a peak up-conversion gain of 9 dB at 213 GHz with fIF = 1 GHz, fLO = 106 GHz, and
PIF = −26 dBm PLO = 3 dBm. To our best knowledge, the gain-enhanced mixing structure is proposed for
the first time.

INDEX TERMS InGaAs/InP, DHBT, sub-harmonic mixer, gain-enhanced structure.

I. INTRODUCTION
InP double heterojunction bipolar transistors (InP DHBTs)
are promising for terahertz application because of their supe-
rior electron transport properties, high breakdown voltage,
and voltage handling capability [1]. As InP DHBTs have
been demonstrated with maximum frequencies of oscillation
(fmax) exceeding 1 THz [2], [3], many terahertz monolithic
integrated circuits such as power amplifiers, mixers, complex
integrated transmitter and receiver ICs have emerged [1].
Specially, there are many different technologies for tera-
hertz monolithic integrated mixer operating above 100 GHz,
and they can be classified into the following categories:
single-ended, balanced, double-balanced, and image-reject
mixers [4]–[12]. Besides, a batch of multifunctional chips
including mixers integrated with amplifiers, LO drivers and
antennas are reported [13]–[16].

Generally, harmonic mixers have been recognized as an
interesting alternative to fundamental frequency mixers at
high frequencies, which sharply reduce the requirement of
high-frequency LO signal. However, there are fundamental
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frequency and harmonics at the output terminal, and these
harmonics are usually filtered or counteracted by balanced
structures in applications instead of being converted as
wanted frequencies.

In order to address this issue and achieve a high conversion
gain, high harmonic suppression and low consumption simul-
taneously, a novel gain-enhanced mixing structure is pro-
posed in this paper. For further verification, a gain-enhanced
mixer adopting two mixing stage was designed, abundant
harmonics are generated from the first stage and converted
in the second stage. For the purpose of comparison, another
transconductance sub-harmonic mixer was designed. Final
measurement results show that the gain-enhanced mixer
exhibits a 6.8-dB higher conversion gain with 2 dB lower
LO input power than the transconductance sub-harmonic
mixer and a 9-dB peak conversion gain at 213 GHz. The
improvement of the conversion gainwasmainly from the high
conversion efficiency of the unwanted harmonics.

This paper is organized as follows. The employed technol-
ogy and devices are introduced in Section II. In Section III,
the principle of the gain-enhanced mixing structure is intro-
duced, and harmonic balance simulations are applied to verify
the proposed idea. For further validation, a proof-of-concept
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FIGURE 1. Cross-sectional view of an InP-based DHBT.

gain-enhanced mixer and a transconductance mixer were
designed. Experimental results are discussed in Section IV.
Finally, conclusion is drawn in section V.

II. DEVICE AND FABRICATION PROCESS
In our work, an advanced 0.5 µm InP DHBT technol-
ogy is employed. The InP DHBT epitaxial structure is
grown by using molecular beam epitaxy (MBE) on a 3-in
semi-insulating substrate. The n+InGaAs cap is highly doped
for low emitter contact resistance. As shown in Fig.1, the base
is 30 nm thick, the layer structure under the 150-nm-thick
collector comprises a 50-nm-thick InGaAs collector contact,
a 200-nm-thick InP subcollector and a 10-nm-thick InGaAs
etch stop layer [17]. The transistors exhibit a current-gain
cutoff frequency (ft ) of 350 GHz and a maximum frequency
of oscillation (fmax) of 532 GHz. Passive circuit fabrication
is implemented in a three-metal-layer interconnect system,
where the top metal (M3) and the middle metal (M2) are
available to support the signal transmission, and the bottom
metal (M1) is used to be the ground plane. The bottom metal
and the middle metal have identical thickness of 1.5 µm,
and the top metal is 3 µm for a high-current capability.
The three metal layers are separated by benzocyclobutene
(BCB) with dielectric constant of 2.7. The thin-film NiCr
resistors (25 �/square) and the metal-insulator-metal (MIM)
SiN capacitors (0.24 fF/µm2) are available.

III. CIRCUIT DESIGN AND PERFORMANCE
A. DESIGN THERORY DISCUSSION
Design of the mixer is based on a systematic characteriza-
tion of InP DHBT devices and the gain-enhanced structure.
As shown in Fig. 2, the proposed gain-enhanced mixer
consists of a transconductance stage and a gain-enhanced
stage. The principle of the proposed transconductance mix-
ing stage is the same as the sub-harmonic mixer based
on a common-emitter transistor [18]. However, for the
gain-enhanced stage, it is difficult to analytically investi-
gate its operation mechanism. Instead, harmonic balance
simulations will be carried out in order to understand the
contributions of each mechanism to the mixer’s output. For
the purpose of comparison, another transconductance mix-
ing structure is simulated. The produced harmonics mainly

FIGURE 2. Principle of the gain-enhanced structure.

include fLO−IF (103 GHz), fLO(104 GHz), fLO+IF (105 GHz),
f2LO(208 GHz), and f2LO+IF (209 GHz). As shown in the
Fig.3 (a), the transconductance mixing structure demon-
strates a −23.8 dBm output power at 209 GHz (f2LO+IF ).
Besides, the unwanted output powers at fLO−IF (103 GHz),
fLO(104 GHz), and fLO+IF (105 GHz) are −17.7 dBm,
−4.2 dBm, and −17.3 dBm, respectively. For the gain-
enhanced mixer, as all harmonics produced in the transcon-
ductance stage are inputted in the second stage, it delivers
an output power of −16.7 dBm at 209 GHz (f2LO+fIF ).
Besides, the unwanted output powers at fLO−IF (103 GHz),
fLO(104 GHz), and fLO+IF (105 GHz) are −27.2 dBm,
−14.6 dBm, and −26.4 dBm, respectively. Compared with
transconductance mixing structure, the simulated conversion
gain of gain-enhanced mixing structure is 7.1 dB higher. The
fLO+IF and fIF are remixed with the fLO to be converted to
the f2LO+fIF , which is roughly equal to the sum of those
obtained by the nonlinear converting (14 µw). Besides, the
f2LO+fIF generated in the first stage and then amplified in
the gain-enhanced stage is roughly equal to the sum of those
obtained by the amplifying (3.2 µw). The harmonics are
greatly reduced by adopting the gain-enhanced structure. The
improvement of the enhanced conversion gain is traced to
the conversion of the unwanted harmonics generated from
the first stage.

B. CIRCUIT DESIGN
A proof-of-concept gain-enhanced mixer named as mx_2s
and a transconductance mixer named as mx_1s were
designed and fabricated in a 0.5-µm InP DHBT technology.
The schematic of the mx_1s and mx_2s are depicted in
Fig.4 (a) and (b), respectively. The single-stage transcon-
ductance mixer was designed using a 7-um emitter length
common emitter DHBT, where class-B configuration was
applied to achieve strong nonlinearity. Metal-insulator-metal
(MIM) capacitors were applied in input and output stages
for DC blocking. Moreover, the base and collector bias were
designed using quarter-wave transmission lines and shunt
capacitors, respectively. Besides, two extra series resistors
600 � and 300 � were used to suppress oscillations in
the base and collector terminal, respectively. Modulating the
transconductance by using the LO signal, both the LO and IF
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FIGURE 3. (a) Simulated output spectrum of the transconductance
structure. (b) Simulated output spectrum of the gain-enhanced structure.

signals were applied to the base terminal and the wanted RF
signal can be extracted from the collector terminal. The input
matching network was designed for 50 ohm match to achieve
highest conversion gain. The T-type matching networks were
implemented using RF pad, MIM capacitor, microstrip trans-
mission lines with different widths and open-circuited stubs.
In the meantime, the parasitic effects of capacitors, GSG pads
and interconnected via were also considered in the match-
ing networks. Circuit configuration depicted in Fig. 4 (a) is
constructed and simulated by using Ansoft High Frequency
Structure Simulator (HFSS). Thereafter, full-wave electro-
magnetic simulation results are analyzed and optimized in
Agilent Advanced Design System (ADS). Finally, the single
stage transconductance mixer occupies a 0.7 mm × 0.5 mm
die size, and the microphotograph of the transconductance
mixer is depicted in Fig. 5 (a).

The first stage of gain-enhanced mixer was configured the
same topology as transconductance mixer, where abundant
harmonics were inputted in the second stage. Class-B config-
uration was applied to achieve strong nonlinearity including
the harmonics remixing and amplification in the second stage.
Similarly, two extra series 600 � and 300 � resistors were
used to suppress oscillations in the base and collector termi-
nal, respectively. The matching networks were implemented
using RF pad, MIM capacitor, microstrip transmission lines
with different widths and open-circuited. Using the same
method, the layout of mx_2s was finally determined, it occu-
pies a 1 mm × 0.5 mm die size, and the microphotograph of
the gain-enhanced mixer is depicted in Fig. 5 (b).

FIGURE 4. a) Schematic of the single-stage transconductance mixer.
b) Schematic of the two-stage gain-enhanced mixer.

FIGURE 5. (a) Die microphotograph of the transconductance mixer.
(b) Die microphotograph of the gain-enhanced mixer.

IV. MEASURED RESULTS
The fabricated mixer was measured by using a Cascade
on-wafer probing system. IF and LO input signal at 106 GHz
was generated by a signal source and a 90-110GHz frequency
multiplier module combined with a power amplifier block,
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FIGURE 6. (a) Measured conversion gains of two mixers versus LO input power at 106 GHz. (b) Measured conversion gains of two mixers versus LO
frequency (fIF = 1 GHz, PIF = −26dBm). (c) Measured output RF powers and conversion gains of the transconductance mixer with 5 dBm input LO
power versus input IF power (fLO = 106 GHz). (d) Measured output RF powers and conversion gains of the gain-enhanced mixer with 3 dBm input LO
power versus input IF power (fLO = 106 GHz). (e) Simulated output spectrum of the transconductance structure. (f) Simulated output spectrum of the
gain-enhanced structure.

respectively. Besides, a spectrum analyzer with a Farran
mixing modules was used to detect the output spectrum. The
measured conversion gains versus LO input power and input
LO frequency are depicted in Fig. 6 (a) and (b), respectively.
The mx_1s and mx_2s achieve a 2.3-dB and a 9-dB peak
conversion gain with fIF = 1 GHz, fLO = 106 GHz,
PIF = −26 dBm, PLO = 5 dBm and PLO = 3 dBm,
respectively. Compared with the mx_1s, the mx_2s demon-
strates a 6.8-dB higher conversion gain with a 2-dB lower
LO input power, and the conversion gain characteristics of
the mx_1s and mx_2s are −2.7 ∼ 2.3 dB and 5.5 ∼ 9 dB
at the RF frequency range of 194-217 GHz, respectively.
Besides, as the input LO powers are 5 dBm and 3 dBm
at 106 GHz separately for mx_1s and mx_2s, the output
power performance was measured by varying the input IF
power, the saturated RF output powers of mx_1s and mx_2s
are −20 dBm and −13 dBm, as shown in Fig. 6 (c) and
Fig. 6 (d). The mx_2s achieves a 7 dB higher saturated output
power compared with the mx_1s. Moreover, the main output
spectrums around fLO and f2LO aremeasured aswell, as shown
in Fig. 6 (e) and (f), respectively. The measured spectrums
agree well with the simulated results in Fig. 3 (a) and (b).
Performance comparison between the gain-enhanced mixer
and other works operating at frequencies above 100 GHz is
given in Table 1. Obviously, the proposed mixer is featured
by high conversion gain which owes to the high conversion
efficiency of the gain-enhanced structure.

TABLE 1. Comparison of reported mixers above 100 GHz.

V. CONCLUSION
In this paper, a sub-harmonic mixer using 0.5 µm InP DHBT
technology is demonstrated. It is the first demonstration of
a sub-harmonic mixer using gain-enhanced mixing structure.
By using this structure, the unwanted harmonics can be con-
verted into the RF output signal, the conversion gain is greatly
improved with the same or even less LO input power, and
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the unwanted output harmonics are simultaneously reduced
compared with the transconductance mixer. The performance
of the gain-enhanced mixer is believed to be better with
regard to conversion gain and LO power level as compared
to other earlier published mixers. The measurement shows
that the gain-enhanced mixer exhibits a peak conversion
gain of 9 dB with 3 dBm LO input power at RF frequency
of 213 GHz. This concept is also effective for sub-harmonic
down-conversion mixer, and it will be utilized in balanced
mixer and transceiver front-end in the future.
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