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ABSTRACT By separating network functions from hardware-dependent middleboxes, network function
virtualization (NFV) is expected to lead to significant cost reduction and the flexibility improvement in
network management. Elastic orchestration of virtual network functions (VNF) is a key factor to achieve
NFV goals. However, most existing VNF orchestration researches are limited to offline policy, ignoring
the dynamic characteristics of the workload. To reduce the operational expenditure of NFV providers, this
paper proposes an Elastic Virtual Network Function Orchestration (EVNFO) policy based on workload
prediction. We adapt the online learning algorithm for predicting the flows rate of service function chains
(SFC), which can help to obtain the VNF scaling decision.We further design the online instance provisioning
strategy (OIPS) to accomplish the deployment of VNF instances according to the decision. The simulation
proves that EVNFO can provide good performancewith dynamic resource provision. The throughput of VNF
is improved by 11.1%–22.9%, and the total operational expenditure can be reduced by 13.8% compared with
other online approaches.

INDEX TERMS Service function chain, scaling, elastic orchestrating, online learning.

I. INTRODUCTION
Traditionally, enterprise network ubiquitously deploys hard-
ware dedicated middleboxes, such as firewalls, network
address translators and proxies to offer network service.
Although middleboxes are able to handle heavy traffic
loads, they are expensive and inflexible to scale [1]. Net-
work Function Virtualization (NFV) aims to implement
network functions as software on standard virtualized plat-
forms. In contrast with middleboxes, the deployment of vir-
tual network functions(VNFs) in a virtualized environment
is more flexible [2]. Virtual network functions are typi-
cally sequenced into service function chains (SFCs) to pro-
vide practical network service [3], e.g. the service function
chain ‘‘Firewall -IDS -Proxy’’ is commonly deployed in an
on-premise datacenter for access control.

In terms of NFV providers, cost minimization is among
the most important priorities [2]. To fulfil this goal, a sig-
nificant strategy is to provide VNF in an elastic way, which
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means dynamically scaling the provision of VNF instances
according to the demand of time-varying workload. With the
precondition of sufficient computing resource for workload
processing, instances with low throughput should be released
to cut down the unnecessary running cost. Existing VNF
orchestration strategies have favorable effect onminimization
cost by optimizing resourcemanagement through the practice
and exploration. However, most of the proposed strategies
concentrated on the offline optimal VNF deployment prob-
lem, which are based on assumption that the flows rate of
all SFC requests are always constant values. Those strategies
may be difficult to put into real scenario, because the dynamic
nature of an NFV system has been ignored. A few studies
notice the importance of dynamic instances provision for the
workload fluctuation and design the reactive schemes accord-
ing to demands that already arrived. But an unneglectable
delay is typically incurred in copying VM images and launch-
ing VNF instances, so that the service quality may be jeopar-
dized during the adjustment period [4].

A proactive VNF provision approach is much more appre-
ciated by NFV providers, because it is benefit to both the
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resource cost minimization and service quality assurance.
If the upcoming workload can be predicted, the scaling
of VNF instances can be executed in advance so that the
delay of deployment has no influence on network services.
This study focuses on online elastic virtual network function
orchestration. For NFV providers that rent virtual resource in
datacenter, we aim to minimize their operational expenditure
by provision and scaling the instances of VNF in a proactive
way. The challenge to enable this vision can be described
as follows: (i) To acquire a proactive VNF scaling decision,
how we can predict the flow rate of upcoming SFC. (ii) How
to deploy VNF instances to serve the flows according to the
scaling decision.

We design an algorithm called Elastic Virtual Network
Function Orchestration policy (EVNFO) based on workload
prediction to solve the above problems. Firstly, we aggregate
the flow rates of homogeneity service function chains to
remove the influence of SFC requests’ start time and life-
cycle [5]. To help NFV providers make proactive scaling
decisions, we introduce online learning into the Evolution
Prediction algorithm of Flow Rate (EPFR), which can predict
the upcoming workload with the minimized error. Due to the
amount of VNF instances are determined by time-varying
workload of NFV system, fine-grained VNF scaling decision
can be obtained in advance by calculating the increment
of each kind of VNF instances based on the workload we
predicted.

Next, in the online elastic VNF orchestration stage,
the deployment of VNF instances and the routing of new
arrival SFC requests need to be addressed. We use Online
Instance Provision Strategy (OIPS) to determine where to
place the newly launched instances. A virtual resources net-
work which represents the distribution of available VNF
instances will be constructed. Based on this network, the path
of SFC requests with minimum traffic forwarding cost can
be selected by Viterbi algorithm. For the redundant instances
need to be removed, we carefully design a release mechanism
to cut down the running cost and the deployment cost.

An overview of our contributions is presented as follows:
i) We introduce an online learning algorithm to predict the

upcoming aggregated flow rate, which performs better than
other algorithms according to the simulation;

ii) We design an online instance provision strategy to
orchestrate VNF instances;

iii) We introduce a release mechanism for redundant
instances to cut down the running cost and the deployment
cost.

The rest of the paper is organized as follows:
Section II discusses related work. Section III describes an

optimization formulation of online elastic virtual network
function orchestration, towards an operational expenditure
minimization target for NFV providers. Section IV introduces
online learning into the Evolution Prediction algorithm of
Flow Rate(EPFR) and obtains the fine-grained VNF scaling
decision at each time slot.We also propose the online instance
provision strategy in this section. Section V presents the

trace-driven simulation to confirm that the EVNFO algorithm
can help NFV providers reduce total operational expenditure
in a proactive way. Section VI concludes the paper.

II. RELATED WORK
Interest on NFV starts from the white paper published
by telecommunication operators that introduced virtualized
network functions running on commodity hardware [6].
After IETF drafts highlighted the broad relationship between
service function chain and NFV [7], a large number of
researches concentrated on the optimal placement of VNF,
which has been proved to be an NP-hard problem [8]. Algo-
rithms designed for VNF placement are mainly devoted
to optimizing resource allocation. VNF-P [9] presented an
optimization model for VNF placement and designed a fast
heuristic algorithm in a hybrid environment where dedicated
hardware supplied part of network functions. Bari et al. [10]
formulated the resource allocation problem in to integer lin-
ear program (ILP) and presented a multi-objective heuristic
algorithm for VNF placement optimization in large scale
network. Yuan et al. [11] proposed an approach to the
problem of pooling deployment of VNF instance in virtual
EPC network, which achieves fine-grained management and
overall scheduling of node resources. Jang et al. [12] pro-
posed a multi-objective optimization problem to maximize
the acceptable SFC flow rate and to minimize the energy cost.
Ghaznavi et al. [13] investigated distributed service function
chain and selected appropriate VNF instances from typical
VNF offerings. Cohen et al. [14] proposed heuristic algo-
rithms for VNF placement across geo-distributed datacenters,
to minimize the VNF setup costs, and presented rigorous
analysis. Addis et al. [15] proposed a service function chain
and VNF placement model and devised a mixed integer linear
programming (MILP) formulation.

Those above literatures have favorable effect on minimiza-
tion cost by optimizing resource management through the
practice and exploration. However, most of them deal with
the static or one-time VNF placement, ignoring the dynamic
nature of SFC flow rate and its scaling demand. The scaling
is a fundamental task that allows addressing performance
variations in Network Functions Virtualization, which can be
categorized into two classes: horizontal scaling and vertical
scaling [16]. Both mechanisms can help to optimize the usage
of the resource while ensure the acceptance ratio of SFC
requests. Recently, there have been a few studies on dynamic
VNF provision and its scaling. Arteaga et al. [16] proposed
for NFV an adaptive scaling approach based on reinforcement
learning and Gaussian Processes to carry out an improve-
ment scaling policy. But this method might not work well
with various service function chains. Wang et al. [17] tar-
geted dynamic VNF instances provision for enterprise ser-
vices. The algorithm takes server capacities and flow rate
into consideration, but the strategy is reactive in nature and
might cause SLA violation when the providers can not spin
up new instances on time. There are also a few works con-
centrate on robust VNF placement optimization algorithms
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that take into account demand uncertainty. Fei et al. [18]
employed online algorithm to predict the upcoming flow
rate and derive the VNF instances with adaptive processing
capacities. Zhang et al. [19] designed an online algorithm to
purchase short/long term VMs for virtual resource scaling.
The strategy achieved a good performance guarantee by both
theoretical analysis and simulation under realistic settings.
Bilal et al. [20] used time series to predict future resource
usage to sustain true elasticity in NFV. Simulation showed
that the obtained results can efficiently handle elasticity in
virtualized networks.

III. PROBLEM MODEL
In this section we establish the mathematical model for each
element in NFV system. We make a careful analysis for fac-
tors that influence the operational expenditure and formally
define the optimization objective.

A. SYSTEM MODEL
1) PHYSICAL NETWORK
NFV providers purchases virtual resource from distributed
cloud datacenter network, which can be modelled as an
undirected graph G = (N ,E,An,Ae) Where N and E are,
respectively, denote the sets of physical nodes and links.An =
{Cr

n ,Ln} is the properties of node n. Cr
n represents the total

amount of physical resources, r ∈ R = {cpu, ram, hdd} is
the set of resource types, including CPU, RAM and HDD. Ln
represents the location information of node n. Ae = {Be, δe}
is the properties of link e. Be and δe denote the bandwidth
capability and forwarding cost respectively.

2) VIRTUAL NETWORK FUNCTION (VNF)
The available VNF types are given in a set I , such as Fire-
wall, IDS. The properties of VNF can be denoted as Ai =
{Cr

i ,Bi, ϕi, φi, λi}. Each type of VNF has a specific amount
of required physical resource Cr

i , and possesses similar pro-
cessing capacity Bi. We suppose different SFC can share one
VNF instances until its processing capability is exhausted.
Let ϕi represent the cost of running one i type VNF instance
per time slot, and φi denote the cost of VNF instance deploy-
ment, respectively. It’s worth noting that flow rate might vary
after the processing of VNF: firewall may drop some packets
because of security policies violation, VPN may increase the
data size for encapsulation. Considering this factor, we use λi
to represent the gain/drop factor of VNF i, which represents
the change of flow rate after being processed by the type- i
VNF.

3) SERVICE FUNCTION CHAIN(SFC)
The set of SFC is denoted by J . We use five element array
Aj = {sj, oj, βj, αj(t), τj} to describe the properties of SFC in
detail. sj/oj ∈ N can be the source/destination node and βj
represent the VNF sequence of chain j, such as Firewall →
IDS → Proxy. The flow of j must be processed by those
functions in given order. Let T be the total number of running

FIGURE 1. VNF orchestration in physical network.

time of NFV system. t = {1, 2, 3, · · · ,T } is discrete time
series with equal interval1t . αj(t) represents the flow rate of
SFC j in t . Suppose the lifecycle of SFC j is τj and the start
time is t0, then αj(t) > 0 when t0 ≤ t ≤ t0 + τj, on the
contrary, αj(t) = 0 when t ∈ [0, t0) ∪ (t0 + τj,T ].
Fig.1 shows the process of VNF orchestration in physical

network. According to the embedding relationship between
VNF and physical node, we can define the variable xi(t) to
represent the total amount of i type VNF instances at time
t . xni (t) is the number of i type VNF instances deployed on
node n in t . The binary variable xnik (t) represents whether VNF

instance k of i type is deployed on node n in t . υe(u,v)j (t) rep-
resents whether link e between node u, v is in path of SFC j.
υ
ik
j (t) denotes whether SFC j is processed byVNF instance ik .

xnik (t) =

{
1, instance k is deployed on n
0, otherwise

(1)

xni (t) =
∑
k∈xi(t)

xnik (t) (2)

υ
e(u,v)
j (t) =

{
1, j pass link e(u, v)
0, otherwise

(3)

υ
ik
j (t) =

{
1, j is processed by VNFinstance ik
0, otherwise

(4)

B. OBJECTIVES
Online elastic virtual network function orchestration policy
focuses on minimize NFV provider’s operational expendi-
ture by provisioning and scaling the instances of VNF in
a proactive way. In this work, we consider the total oper-
ational expenditure to be composed of the following four
components:

1) VNF INSTANCES RUNNING COST
Without loss of generality, we suppose that the running cost of
VNF instances can be decided by the amount of VNF and the
corresponding operating cost ϕi. The overall VNF instances
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running cost is:

Rtotal(t) =
∑
t∈T

∑
n∈N

∑
i∈I

φixni (t)=
∑
t∈T

∑
i∈I

φixi(t) (5)

2) VNF DEPLOYMENT COST
Launching a new VNF instance need to transferring a
VM image, booting it and attaching it on devices. It is
worth noting that we consider VNF migration cost within the
deployment cost. Suppose there is an i type VNF instance
on node n1 at time t − 1, this instance migrates from node
n1 to n2 at time t . Although the total amount of instances
in NFV system is not changed, the VNF deployment cost is
increased because VNFmigration causes another deployment
operation on node n2. The total VNF deployment cost can be
expressed as:

Dtotal(t) =
∑
t∈T

∑
n∈N

∑
i∈I

ϕi[xni (t)− x
n
i (t − 1)]

+

(6)

The notation [.]+ is defined as [f (x)]+ = max{f (x), 0}.
The deployment cost caused by adding new instances can

be expressed as:

Ddeploy(t) =
∑
t∈T

∑
i∈I

ϕi[xi(t)− xi(t − 1)]+ (7)

So the deployment cost caused by VNF migration can be
computed as:

Dmigrate(t) = Dtotal(t)− Ddeploy(t)

= ϕi
∑
t∈T

∑
i∈I

{

∑
n∈N

[xni (t)− x
n
i (t − 1)]+

− [xi(t)− xi(t − 1)]+} (8)

3) BACKUP FACILITIES COST
To improve the availability of NFV system, providers always
maintain a small amount of on-premise facilities such
as backup VMs running in private server cluster. When
insufficient VNF provision leads to traffic flows unserved,
the backup VM instances then can be used for running VNF
to process the unserved flows [19]. The backup facilities are
maintained by NFV providers instead of the public cloud,
which lead to the backup facilities cost:

U (t) =
∑
t∈T

∑
j∈J

ψαlossj (t) (9)

ψ denotes the process cost of private server cluster. αlossj (t)
represents the unserved flow rate.

4) TRAFFIC FORWARDING COST
Traffic forwarding cost occurs because of leasing cost of
transit links. We assume that the flow rate of SFC j is αej (t)
when it pass along the link e and the forwarding cost is δe,
then the total traffic forwarding cost is:

F(t) =
∑
t∈T

∑
j∈J

∑
e(u,v)∈E

δeυ
e(u,v)
j αej (t) (10)

Now, we can compute the total operational expenditure of
the NFV system as follows:

C(t) = Rtotal(t)+ Dtotal(t)+ U (t)+ F(t)

=

∑
t∈T

{

∑
i∈I

{φixi(t)+
∑
n∈N

ϕi[xni (t)− x
n
i (t − 1)]+}

+

∑
j∈J

{ψαloss
j

(t)+
∑

e(u,v)∈E

δeυ
e(u,v)
j

αej (t)}} (11)

NFV providers target to minimize C(t), subject to:∑
i∈I

xni (t)C
r
i ≤ Cr

n , ∀n ∈ N , r ∈ R, t ∈ T (12)∑
j∈J

υ
e(u,v)
j αej (t) ≤ Be, ∀e ∈ E, t ∈ T (13)

∑
n∈N

xni (t) = xi(t), ∀i ∈ I , t ∈ T (14)∑
n∈N

xnik (t) = 1, ∀n ∈ N , t ∈ T , 0 ≤ k ≤ xi(t)

(15)∑
v∈N

υ
e(w,v)
j αj(t)−

∑
u∈N

υ
e(u,w)
j αj(t) = 0, w ∈ N\{sj, oj}

(16)

Constraint (13) ensures that the physical resource capa-
bility of nodes would not be violated by the deployed VNF
instances. Constraint (14) guarantees that bandwidth capa-
bilities of links are not violated by accumulative flow rate.
Constraint (15) describes the relationship between xi(t) and
xni (t). Constraint (16) ensures that one instance can only be
deployed on one physical node. Constraint (17) represents the
requirement of flow conservation.

IV. ONLINE ELASTIC VIRTUAL NETWORK FUNCTION
ORCHESTRATION POLICY BASED ON WORKLOAD
PREDICTION
We design EVNFO, a proactive algorithm called Elastic Vir-
tual Network Function Orchestration policy based on work-
load Prediction. First we introduce the Evolution Prediction
algorithm of Flow Rate (EPFR), which can help us predict
the upcoming flow rate and obtain the fine-grained VNF
scaling decision at each time slot. By provisioning exactly
amount of VNF instances according to the scaling decision,
we can reduce {U (t),R(t)}. After that we use Online Instance
Provisioning Strategy(OIPS) to determine where to place
those instances and how to route new coming traffic in order
to reduce {Dmigrate(t),Ddeploy(t),F(t)}.

A. SFC FLOW RATE EVOLUTION PREDICTION
The flow rate of a single SFC is difficult to predict. Because
SFC can be launched by users whenever and wherever pos-
sible, causing its ruleless start time and uncertain lifecycle.
To overcome this challenge, we aggregate the flow rates of
service function chains whose source/destination nodes and
VNF sequences are the same. The aggregated flow rate has
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statistical characteristics by removing the influence of SFC’s
start time and lifecycle.
Definition 1: Homogeneous SFC (HFSC). ∀j1, j2 ∈ J ,

if {sj1 , oj1 , βj1} = {sj2 , oj2 , βj2}, we regard j1, j2 as a homo-
geneous SFC j̄, the aggregated flow rate of this HSFC is
α
j̄
(t) =

∑
j∈j̄
αj(t), J̄ is the set of HSFC.

Suppose the aggregated flow rate of HSFC J̄ we predict
at time t + 1 is α∗

j̄
(t + 1) and the real value is α

j̄
(t + 1).

If α∗
j̄
(t+1) < α

j̄
(t+1), NFV providers may provision insuf-

ficient instances, causing part of SFC traffic flows unserved
and adding to U (t). If α∗

j̄
(t + 1) > α

j̄
(t + 1), redundancy

instances in physical network will lead to more R(t). So accu-
racy is very important when we predict the aggregated flow
rate.Also, timeliness is a significant characteristic of online
algorithm, because providers need to scale VNF instances
according to prediction results just in time. Inspired by lit-
erature [18], [19],we introduce an online learning method
called FTRL- Proximal [22]. The FTRL-Proximal algorithm
is being broadly applied and, recently has become prominent
in networking and cloud computing applications, including
the design of dynamic capacity planning, load shifting and
demand response for data centers, also the ad click-through
rates prediction [22], [24].

1) ONLINE CONVEX OPTIMIZATION AND EVOLUTION
PREDICTION ALGORITHM OF FLOW RATE (EPFR)
After aggregating flow rates, we assume the maximum value
of α

j̄
(t) is αmax

j̄
based on prior experience, then the predicted

value will be α∗
j̄
(t) ∈ [0, αmax

j̄
] for each time slot.We target to

minimize the prediction error between α
j̄
(t) and α∗

j̄
(t), so the

loss function can be constructed as:

ft [α∗j̄ (t)] = [α∗j̄ (t)− αj̄(t)]
2, ∀j̄ ∈ J (17)

Intuitively, we could obtain the predicted value α∗
j̄
(t + 1)

by minimizing the cumulative loss so far. The FTL algorithm
[22] represent the most natural learning rules that use the
value which has minimal loss on all past rounds, which can
be expressed by:

α∗j̄ (t + 1) = argmin
αw
j̄

t∑
s=1

fs(αwj̄ ), αw
j̄
∈ [0, αmax

j̄
] (18)

Although FTL is easy to understand, it cannot guarantee
low regret for all scenarios. Especially when the value of α

j̄
(t)

in the adjacent time slot shifts drastically from round to round,
the prediction will be unstable [23]. So FTL won’t be a good
choice for online prediction because of the traffic fluctuation.
FTRL-Proximal is a natural modification of FTL where we
minimize the loss on all past rounds plus a regularization term
R(αw

j̄
), which can help to stabilize the solution.

α∗j̄ (t + 1) = argmin
αw
j̄

{

t∑
s=1

fs(αwj̄ )+R(α
w
j̄
)} (19)

To solve the convex optimization problem in an effective
way, we use surrogate loss function to simplify ft [α∗j̄ (t)].
Let gj̄t = ∂ft [α∗j̄ (t)] = 2[α∗j̄ (t) − αj̄(t)] represent the
sub-gradient of ft [α∗j̄ (t)], then fs[α

w
j̄
(t)] in (20) can be rewrit-

ten as gj̄sα
w
j̄
(t+1). In order to limit the distance between two

adjacent predicted results, we use regularization functions

R(αw
j̄
) =

∑t
s=1 σt

2
||αw

j̄
− α∗j̄ (t)||

2
2, where σt =

1
ηt
−

1
ηt−1

is the update strategy of ηt . The learning rate ηt = θ

G
√
t
is

a decreasing sequence over time and θ = αmax
j̄

, ||gj̄t || ≤ G.
So the flow rate evolution prediction strategy(EPFR) based
on FTRL-Proximal can be expressed as:

fEPFR(αwj̄ )=
t∑

s=1

gj̄sα
w
j̄
+
1
2

t∑
s=1

σs||α
w
j̄
− α∗j̄ (s)||

2
2,

α∗j̄ (t+1)= argmin
αw
j̄

{fEPFR(αwj̄ )}, αw
j̄
∈ α∗j̄ , ∀j̄ ∈ J (20)

The predicted value α∗
j̄
(t + 1) can be easily obtained by

calculating extreme point of convex function (20).

2) REGRET ANALYSIS FOR EPFR
We can analyze the effectiveness of online prediction algo-
rithm EPFR by calculating the regret upper bound. Com-
paring with the offline optimal static solution αstatic

j̄
[24],

the regret function can be computed as:

regT =
T∑
t=1

ft [α∗j̄ (t)]−
T∑
t=1

ft [αstaticj̄
], ∀j̄ ∈ J (21)

According to literature [25], [26], the upper bound of
EPFR is:

regT ≤ R(αwj̄ )+
1
2

T∑
t=1

1
σ1:t
||gt ||22=

Gαmax
j̄

(3
√
T − 1)

2
(22)

This upper bound is sublinear with T , which can ensure the
effectiveness of online prediction [23].

3) VNF SCALING DECISION
NFV providers need to make VNF scaling decisions in
advance to process the upcoming traffic according to the
prediction results. As introduced in [16], VNF scaling is
triggered by the increase/decrease of workload. The scaling
mechanisms include the horizontal scaling (add/remove VNF
instances) and vertical scaling (reconfigure the capacity/size
of existing virtualized resources). We use horizontal scal-
ing instead of vertical scaling, because vertical scaling need
to change compute or memory resources on-the-fly, which
requires rebooting the system causing SLA violations [18].
The overall flows rate coming towards i type VNF instances is∑

j̄∈J̄ λ̄
j̄
iα
∗

j̄
(t + 1), where λ̄j̄i is the cumulative gain/drop factor

before the flows of j̄ reach i type VNF instances. λ̄j̄i can be

computed as: λ̄ji =
k−1∏
s=0

λs,where k is the position of VNF i
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in VNF sequence βj̄, λ0 = 1. Constraint (23) ensures that
the amount of VNF instances in NFV system can serve total
incoming traffic rate at any time:

xi(t + 1)Bi ≥
∑

j̄∈J̄
λ̄
j̄
iα
∗

j̄ (t + 1), ∀t ∈ T , i ∈ I (23)

Intuitively, the optimal number of instances can be calcu-
lated as:

x̃i(t + 1) =

∑
j̄∈J̄ (t+1)

λ̄
j̄
iα
∗

j̄
(t + 1)

Bi
(24)

But x̃i(t + 1) may be not an integer. We formulate a
rounding scheme which can ensure that the expectation of
instances number E[xi(t + 1)] equals to x̃i(t + 1) in the
long run:

F(x̃i(t + 1)) =


P
[
xi(t + 1) = dx̃i(t + 1)e

]
= 1+ bx̃i(t + 1)c − x̃i(t + 1)
P
[
xi(t + 1) = bx̃i(t + 1)c

]
= x̃i(t + 1)− bx̃i(t + 1)c

(25)

After rounding, xi(t + 1) can be regarded as the optimal
number of VNF instances for each type. The VNF scaling
decision can be easily obtained by calculating the increments
1xi(t + 1) = xi(t + 1)− xi(t) for each VNF type. If 1xi(t +
1) > 0, the supply of instances now will fail to meet the
traffic processing demand in t + 1, providers should add to
the amount of instances for i type VNF. On the contrary,
if1xi(t+ 1) < 0, the amount of i type VNF instances should
be reduced.

B. ONLINE INSTANCE PROVISIONING STRATEGY (OIPS)
Based on the VNF scaling decision 1xi(t + 1), OIPS should
accomplish the deployment of VNF instances and the con-
struction of paths for upcoming flows in advance. OIPS can
be divided into two stages that interact on each other. The
first stage is the construction process of virtual resources net-
work. The algorithm determines the location to deploy newly
launched instances according to the residual node resource
and real-time updating SFC path. In addition, the redundant
instances need to be released. Finally, a virtual resources net-
work representing the distribution of available VNF instances
can be constructed in this way. In the second stage, a path
construction strategy for new arrival SFC is proposed, which
is based on Viterbi algorithm with the assistance of virtual
resources graph.

To make a brief description, several definitions should be
clarified:
Definition 2: Node CPU utilization and VNF instance

throughput. Noting that CPU is always the scarce physical
resource in the NFV system, we define Wn(t) as the CPU
utilization, which represents the CPU cores occupancy rate
of node n. W̄N (t) is the average value of Wn(t) for all nodes
in N . Also, we defineWik (t) as the throughput of i type VNF
instance k . W̄VNF (t) denotes the average throughput of all

VNF instances.

Wn(t) =

∑
i∈I
xni (t)C

cpu
i

Ccpu
n

, W̄N (t) =

∑
n∈N

Wn(t)

N
(26)

Wik (t) =

∑
j∈J
υ
ik
j (t)αj(t)

Bi
, W̄VNF (t) =

∑
i∈I

∑
k∈xi(t)

Wik (t)∑
i∈I
xi(t)

(27)

Definition 3:New arrival SFC. For the aggregated flow rate
of HSFC, if1α∗

j̄
(t+1) = α∗

j̄
(t+1)−α

j̄
(t) > 0, the predicted

increment 1α∗
j̄
(t + 1) will be regarded as a new arrival SFC

at t+1. Let1j̄(t+1) denote this new arrival SFC.1J̄ (t+1)
is the set of1j̄(t + 1) at t + 1. The path of1j̄(t + 1) in t + 1
can be denoted by Path(1j̄(t + 1)).
Definition 4: Node-VNF Betweenness Centrality (NBW).

The betweenness centrality of node n for i type VNF can be
computed as:

NBW i
n(t) =

∑
1j̄∈1J̄ (t)

∑
k∈xi(t)

υ
ik
1j̄
xnik , ∀i ∈ I , n ∈ N (28)

The value of NBWi
n(t) equals to the number of Path(1j̄(t)),

whose VNF sequence has i type VNF, traversing node n.
NBWi

n(t) represents the i type VNF demand intensity of
node n.
Definition 5: Node-VNF Attractiveness intensity (NA).

NAi
n(t) denotes the attractiveness intensity of node n for i

type VNF. NFV providers tends to deploy VNF on the node
which has low CPU utilization and high i type VNF demand
intensity, so NAi

n(t) is determined by the CPU utilization
Wn(t) and betweenness centrality NBWi

n(t) of n:

NAin(t) =
W̄N (t)NBW i

n(t)
Wn(t)

(29)

1) THE CONSTRUCTION OF VIRTUAL
RESOURCES NETWORK
When 1xi(t + 1) > 0, providers should add to the amount
of i type VNF instances. The deployment location of new
VNF instances should be directed by Node-VNF Attractive-
ness intensity, because instances always tend to be deployed
on the node with high i type VNF demand intensity but
low CPU utilization. In order to achieve above require-
ments, OIPS calculates the value of NBWi

n(t) per time slot
according to path of SFC constructed at the last time slot.
Combining with the CPU utilization Wn(t) of each node,
we get the value of NAi

n(t) (lines11-12). The node which has
higher NAi

n(t) and sufficient resource capability (lines13-16)
will get a higher priority when we deploy the new VNF
instances. The residual resource and the value of NBWi

n(t)
should be updated after we record the deployment location
using map (ik , n) ( lines17-21). In this way, newly deployed
instances can respond to the time-varying workload. The
value of Dmigrate(t) will be reduced.
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When 1xi(t + 1) < 0, redundant instances need to be
released. But if the number of instances that we remove
at each time slot equals to 1xi(t + 1), the total amount
of instances will oscillate because of workload short-term
fluctuations, which will increase the cost of VNF deployment
by adding/removing instances too frequently. In order to
avoid this problem, we select 1xi(t + 1) instances with the
lowest throughput Wik (t), mark them as idle state instead of
removing them at once and reroute the flows processed by
them (lines8-9). Although an idle instance can not process
the SFC request, its energy consumption is much lower than
a running one. For idle instances, they won’t be removed
until the deadline of buffer time comes. If an idle instance is
required during that buffer time, we could simply turn its idle
state into running state without causing any deployment cost.
According to Ski-Rental algorithm [27], we generate buffer
time tbuff for each idle instance according to the following
distribution:

P{tbuff = s} = (
ηi − 1
ηi

)ηi−s
1

ηi(1− (1− ηi−1)
ηi )
, ηi=

ϕi

φi
(30)

It can be proved that the sum of Dtotal(t) and Rtotal(t)
obtained by this online strategy is at most e/e− 1 times than
the offline optimal solution [27].

After new VNF instances deployment and redundant
instances removing, a Virtual Resources Network (VRN)
which represents the available VNF instances can be con-
structed. GVRN(t + 1) = (NVNF(t + 1),Eres(t + 1)), where
N i
VNF(t+1) consists of1x

n
i (t+1) and x

res
ni (t).1x

n
i (t+1) rep-

resents newly launched VNF instances in node n, and xresni (t)
represents the instances that have already been deployed in
node n, whose residual processing capability is not empty.
eres(t+1) denotes the residual bandwidth capability in link e.
The algorithm of VRN construction is given in Alg.1. The
complexity of Alg.1. is O(I · J̄ · k) = O(n2 · k), where
k = max{1xi(t + 1)}.

2) PATH CONSTRUCTION STRATEGY
FOR NEW ARRIVAL SFC
Based on the virtual resources network, the path for each
new arrival SFC can be constructed by Viterbi algorithm
[10]. In order to reduce the total forwarding cost, we sort
the set of new arrival SFC 1J̄ (t + 1) according to the
value of their flow rates 1α∗

j̄
(t + 1) and construct path for

SFC whose flow rate is largest first. The process of path
construction is illustrated in Fig 2. For a new arrival SFC
1j̄: {Firewall → Encryption → IDS}, we first construct
a multi-stage graph of 1j̄ with the help of virtual resources
graph. The first/last layer of multi-stage graph represents
the position of source/destination node of 1j̄, denoted by
X0,1, X4,5. And the middle layers denote the distribution of
available instances in virtual resources graph, such as firewall
is distributed in node 2,3,4, so first middle layer contains
X1,2,X1,3,X1,4. Note that the subscripts of stage X represent
the count of layer and the position of related available VNF

Algorithm 1 The Construction of Virtual Resources Network

Input: G = (N ,E), 1xi(t + 1), Path(1J̄ (t))
Output: GVRN(t + 1) = (NVNF(t + 1),Eres(t + 1))
(1) initialization: NBW i

n = 0, map(I ,N )=null
(2) gather information of xni (t), x

res
ni (t), B

e
j̄
(t) from physical

network
(3) remove idle instances whose tbuff reach deadline
(4) for n: N do
(5) calculateWn(t), W̄N (t) according to xni (t), C

cpu
i

(6) for i: I do
(7) if 1xi(t + 1) < 0
(8) mark 1xi(t + 1) instances with lowestWik (t)

as idle state
(9) reroute flows processed by idle instances,

generate tbuff
(10) if 1xi(t + 1) > 0
(11) calculate NBWi

n according to Path(1J̄ (t))
(12) update NAi

n(t), initialize k = 0, K = 0
(13) while( k < 1xi(t + 1)) do
(14) n = max(NAin(t))
(15) if [Ccpu

n −
∑

i∈I x
n
i (t) � C

cpu
i ] > Ccpu

i
(16) deploy ik or recover an idle

instance on n
(17) recorde the deployment location

by map(ik , n)
(18) update residual resources andWn(t)
(19) K = Path(1j̄(t)) though n
(20) for node (m) of K do
(21) NBWi

m − 1
(22) k ++
(23) recalculate NAi

n(t)
(24) calculate 1xni (t + 1) according to map(I ,N )
(25) niVNF(t + 1) = 1xni (t + 1)+ xresni (t)
(26) eres(t + 1) = Be −

∑
j̄∈J̄ (t) υ

e
j̄
αe
j̄
(t)

(27) GVRN(t + 1) = (NVNF(t + 1),Eres(t + 1))

instances, respectively. The weight of link represents the
forwarding cost ratio.

Now, we traverse multi-stage graph starting at stage X0,1.
According to Viterbi algorithm, if we come to X2,4 (Encryp-
tion instance on node 4), three paths between X0,1 and X2,4
are available. And the path X0,1 → X1,3 → X2,4 has the
lowest forwarding cost. So we save a pointer π4,3 to mark this
selection. π2,2 can also be obtained in this way for X2,2. The
iterative process will be continued until we reach the destina-
tion node X4,5, then we can follow the pointer to construct
Path1j̄ = {1→ 3→ 4→ 4→ 5}, which means the path
of 1j̄ will pass firewall instance in node 3, Encryption and
IDS in node 4. The complexity of path construction strategy
is O(N 2

· |β(i)|).

V. PERFORMANCE EVALUATION
A. SIMULATION SETUP
We simulate an NFV system providing service for thousands
of minutes. Each time slot is 5 minutes long. For service
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FIGURE 2. Multi-stage graph of SFC and path construction.

FIGURE 3. The workload of NFV system.

function chains, we use YouTube traces from the UMass
campus network [28] to simulate their flow rates. Although
there is no public dataset to represent SFC traffic, we can
use streaming video traffic dataset to do simulation because
the content popularity and the diurnal characteristics can lead
to the strong demand of VNF scaling, which is the most
important point of our research. Each request in trace has
a timestamp, a lifecycle, source/destination IP, the capture
flow rate and other information. We regard each request
as a service function chain containing 2-4 VNFs generated
randomly form table.1. For each time slot, we aggregate the
flow rates of homogeneity service function chains whose
source/destination IP and VNF sequences are the same.
We simulate 462 HSFCs in total in this way. From Fig.3 we
can see, the workload is high and has obvious fluctuations in
the period of 0-400min, 1100-1800min, 2700min-3300min.
The peak-to-mean ratio(PMR) is 1.64. For the topology of
physical network, we use Geant Network [10] which has
22 nodes and 36 links. 12 of those nodes are equipped with
96-core CPU, 120GB RAM and 2000GB HDD. Another
10 nodes only act as forwarding nodes. The bandwidth of
each link is 3Gbps.

The parameters of NFV system are listed as follows: The
cost of operating one i type VNF instance per time slot is
proportionate to the number of CPU cores that it requires.
In this paper, we set φi = 0.6CCPU

i , φidle = 0. According to
literature [29], [30], VNF deployment cost is decided by its

TABLE 1. VNF main parameter.

FIGURE 4. Regret of EPFR with different θ .

operating cost, so we set ϕi = 6φi. The process cost of server
cluster (backup facilities)ψ is three times larger than average
VNF operating cost, which means ψ = 3

∑
φi/

∑
Bi. The

weight of link ωe is generated randomly between 36 and 200,
and the forwarding cost δe = 3.6265ωe × 10−11/Kbps.

B. EFFECTIVENESS OF FLOW RATE EVOLUTION
PREDICTION
We evaluate the effectiveness of flow rate evolution predic-
tion by analyzing the regret function. First we compare the
regret by enlarge/narrow the value of parameter θ in learning
rate ηt to check whether inaccurate estimation of θ will
cause serious influence in prediction. For comparison, we use
θnormal = αmax

j̄
, θsmall = 0.25αmax

j̄
and θlarge = 4αmax

j̄
in

computing ηt . Fig.4 illustrates when θ = αmax
j̄

, the effective-
ness of flow rate evolution prediction gets the lowest regret
value. In addition, although enlarge/narrow the value of θ will
add to the value of regret, all regrets are always much smaller
than the theoretical upper bound obtained in section 4.1.2.
This explains EPFR is robust to the inaccurate estimation of θ .

Fig.5 shows the comparison of lim
T→∞

regT
T for different

online learning algorithm as well as the limit of the theoretical
upper bound for EPFR. We can see that EPFR satisfies the
request of sublinear increasing, and it is more effective than
other online algorithms. FTL algorithm is hard to converge
because of the loss of regular term, which means it can not
be used to predict the flow rate. The effectiveness of OGD
algorithm [31] is inferior to EPFR because it uses the constant
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FIGURE 5. Comparison of different online algorithms.

FIGURE 6. The distribution of nodes’ CPU utilization.

learning rate. The loss function of VPCM algorithm [18]
is ft [α∗j̄ (t)] =

∣∣∣α∗j̄ (t)− αj̄(t)∣∣∣ so that the sub-gradient of
ft [α∗j̄ (t)] is identically equal to ±1. When using surrogate
loss function to simplify ft [α∗j̄ (t)], VPCM can only use ±1
to adjust the loss no matter how large the distance between
the predicted value α∗

j̄
(t) and real value α

j̄
(t) is. So VPCM’s

performance is worse than EPFR.

C. PERFORMANCE OF ONLINE ELASTIC VNF
ORCHESTRATION
We first evaluate the performance of elastic orchestration by
observing the distribution of CPU utilizationWn(t) for nodes
with resource. Fig.6 shows the distribution of Wn(t) each
100minutes.We can observe that the distribution ofWn(t) has
the feature of diurnal variation, and this variation is consistent
with change of workload shown in Fig.3. This phenomenon
proves that the amount of VNF instances can scale with the
requirement of workload in time. Moreover, few abnormal
points of the boxplot illustrate that OIPS tries to balance
the traffic load by giving preference to nodes with low CPU
occupancy rate when deploying newly launched instance.

FIGURE 7. The total amount of CPU cores required.

The reason why abnormal points appear is that nearly no
traffic request is launched by those corresponding nodes at
that time.

We compare elastic orchestration policy (EVNFO) with
other VNF deployment approaches such as NIA-SCA [18]
and VNF-DRA [32]. Both algorithms have the same goal
with EVNFO (reduces the OPEX). NIA-SCA includes two
independent subprograms. The algorithm NIA is based on a
variant of bin packing problem to minimize the volumes of
the nodes used. Then the algorithm SCA routes the arriving
flows for the purpose of balancing the use of bandwidth.
VNF-DRA deploys VNF instances by multi-layer graph and
releasing the redundant VNF instance with low throughput
for the purpose of cost reducing.

Fig 7 shows the total amount of CPU cores required when
processing the same workload using different online algo-
rithms. According to Table 1, the amount of CPU cores
can indirectly represent the total number of VNF instances.
EVNFO can adjust the number of CPU cores with workload
sensitively, because EVNFO obtains the fine-grained VNF
scaling decision in each time slot by predicting the upcoming
workload using EPFR. NIA-SCA can also scale the amount
of VNF instances with the time-varying workload, but its
performance is not as good as EVNFO. Because the redun-
dant instances can only be removed when they are completely
not used, however there is no mechanism to avoid new traf-
fic being routed into them. For VNF-DRA algorithm, VNF
instance will be defined as a redundant one at once when
its utilization was lower than the threshold. Those redundant
VNF instances cannot accept any new SFC request, and they
won’t be released until all the SFC requests processed by
them have expired. In the meantime, new instances must be
deployed to process the new requests. So the total amount
of CPU cores is large than EVNFO especially when the
workload of NFV system is decreasing. Fig.8 shows the
average throughput for VNF instances. We can observe that
EVNFO keeps the VNF average throughput at a high level.
VNF-DRA cannot perform as well as EVNFO. For NIA-SCA
algorithm, the value of may drop clearly when the workload
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FIGURE 8. Average throughput for VNF instances.

FIGURE 9. Cost of the NFV system each time slot.

is decreasing. The average throughput of VNF can be
improved by 11.1% (compared with VNF-DRA) or 22.9%
(compared with NIA-SCA) when we use EVNFO.

D. OVERALL COST UNDER DIFFERENT ALGORITHM
We compare the operational expenditure of NFV system
under different online algorithm. Fig.9 shows the cost of the
NFV system each time slot. We can see that EVNFO has the
best performance in cost reduction. For NIA-SCA algorithm,
the cost is large because the subprogram NIA assigns newly
launched VNF instances based on best-fit first decreasing
loading heuristic, which aims to minimize the volumes of
the nodes used. Though this improves the utilization, SFC
requests may need to extend their path to reach the shared
nodes, which leads to high traffic forwarding cost. VNF-DRA
algorithm will face to high operational expenditure when
the workload is decreasing because the redundant instances
also lead to running cost when processing the residual SFC
requests. Fig.10 shows that total operational expenditure of
the NFV system can be reduced by 13.8% at least when we
use EVNFO.

FIGURE 10. Total operational expenditure C(t).

VI. CONCLUSION
With the introduction of NFV, the flexibility and efficiency of
network management are improved obviously. For the NFV
service providers who rent virtual recourse in datacenter,
we aim to minimize their cost by provisioning and scaling
the instances of VNF in a proactive way. We first use flow
rate evolution prediction algorithm to obtain the VNF scaling
decision for the next time slot. Then the deployment of newly
launched instances and the routing of upcoming traffic can be
determined by OIPS algorithm. The simulation shows that by
effective flow rate evolution prediction, our proposed algo-
rithm enhances the matching characteristics between virtual
resource supply and workload change. The total operational
expenditure of providers can be reduced obviously compared
with other solutions.
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