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ABSTRACT To achieve wavelength-selectable and stable erbium-doped fiber (EDF) laser, a dual-Sagnac-
ring configuration is designed to reach single-longitudinal-mode (SLM) oscillation and power-flattened
output simultaneously. The presented and experimentally demonstrated EDF laser can also obtain the output
power of 7.5 to 11.8 dBm in the continuous-wave (CW) tunability of 1523.0 to 1571.0 nm. Here, the power
variation of lasing wavelength can be below than 1.0 dB over a wide working range of 1525.0-1565.0 nm for
power-flattened output. Moreover, the 3-dB spectrum linewidth of presented EDF-based laser is measured

in the range of 16.4-22.2 kHz via the Lorentzian fitting.

INDEX TERMS Fiber laser, erbium-doped fiber (EDF), single-longitudinal-mode (SLM), sagnac-ring.

I. INTRODUCTION

In the near future, erbium-doped fiber (EDF) based lasers
have interested great considerations in keeping with its
huge applications in optical sensor, optical communication,
wavelength division multiplexing (WDM), millimeter-wave
photonic, biophotonics, and spectroscopy [1]-[4]. Practically,
the homogeneous broadening and spatial-hole-burning effect
of EDF and a long loop cavity in EDF-based laser leads
to unstable multi-longitudinal-mode (MLM) oscillation [5].
To obtain the stable continuous-wave (CW) tunability and
single-longitudinal-mode (SLM) in EDF based laser, there
are several related researches have been proposed to sup-
press the densely MLM noises, such as using compound-ring
configuration [6], [7], employing Rayleigh backscattering in
tapered fiber [8], applying EDF-based saturation absorber
(SA) [9], designing optical self-injection technique [10], [11],
utilizing Sagnac-ring architecture [12], [13] and employ-
ing Mach-Zehnder interferometer [14]. Moreover, to achieve
CW wavelength-tunability, fiber Bragg grating [15], tunable
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bandpass filter (TBF) [16], Fabry-Perot tunable filter
(FP-TF) [17] and acousto-optic tunable filter (AO-TF) [18]
could be applied inside the cavity of EDF based laser for
adjusting. In general, to obtain flattened output power, adjust-
ing the bias current of pumped power, utilizing variable
optical attenuator (VOA) and applying proper gain-medium
in EDF laser architectures have also been studied [19], [20].

In the work, to achieve the flattened output power and
SLM oscillation, a dual-Sagnac-ring scheme is proposed and
used in EDF based laser. From the experimental results,
the output power of 7.5 to 11.8 dBm and optical signal to
noise ratio (OSNR) of 30.2 to 38.2 dB are also obtained
in the presented EDF based laser. The flatter output power
of 10.8 to 11.8 dBm (1.0 dB power variation) in 40 nm
wavelength bandwidth from 1525.0 to 1565.0 nm can be
reached. Moreover, the obtained output fluctuations of power
and central wavelength are also maintained within 0.1 dB and
0.04 nm under the same wavelength range during 60 min-
utes observation. Here, the Lorentzian 3 dB linewidth of
16.4 to 22.2 kHz is obtained. As an experimental result,
the presented dual-Sagnac-ring configuration can obtain
SLM operation and flattened power output.
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FIGURE 1. Schematic of presented wavelength-selectable EDF
dual-Sagnac-ring laser.

Il. EXPERIMENT AND RESULTS

Experimental setup of presented stable and selectable EDF
dual-Sagnac-ring laser scheme is shown in Fig. 1. In the
demonstration, the commercially available C-band erbium-
doped fiber amplifier (EDFA), tunable pandpass filter (TBF),
two polarization controllers (PCs), 2 x 2 and 50:50 optical
coupler (CPR1) and 1 x 4 optical coupler (CPR,) are applied
to construct the presented EDF ring laser. The EDFA, hav-
ing saturation output power of 13 dBm under the operation
range of 1528 to 1562 nm, is utilized as gain medium. The
polarization state and output power of presented EDF dual-
Sagnac ring laser can be adjusted optimally by controlling the
two PCs properly. Hence, while the stable lasing wavelength
with optimal output power is achieved, it means that the polar-
ization state could be retained properly in the measurement.
Moreover, the TBF with 6 dB insertion loss is applied inside a
laser cavity to tune different output wavelength and filter the
optical noise for reaching the better optical signal to noise
ratio (OSNR). The adjustable bandwidth of TBF is 60 nm is
from 1520 to 1580 nm.

As displayed in Fig. 1, the 1x 4 CPR; is employed to
create the dual-Sagnac-ring configuration. Three fiber rings
(Ring, Ring; and Ring3) would be produced in the presented
EDF based laser. In the experiment, the cavity lengths of
Ringj, Ring; and Rings are 12, 8 and 6 m, respectively. Here,
the fiber length between CRP; and CRP; is 9.2 m. The three
rings also have their relevant free spectrum ranges (FSRs),
which denote FSR|, FSR, and FSRj3 respectively. In line
with the Vernier effect [6], when the FSR, FSR; and FSR3
are met with the least common multiple of effective FSR
(FSRefr), the three fiber rings would cause the mode-filter for
the multiply side-mode suppression. The schematic spectrum
of corresponding FSR for each fiber-ring is also illustrated
in Fig. 2. Here, the corresponding FSR;, FSR, and FSRj3
of 17.02, 25.54 and 34.06 MHz are obtained respectively.
Furthermore, the two Sagnac-rings (Ring; and Ringz) also
could be employed acting as the reflected mirrors with prop-
erly reflectances in the experiment [12]. Hence, the presented
EDF Sagnac-ring laser scheme can be achieved the SLM
operation and the flattened output power.

The fiber length of each ring is determined by the trial-and-
error to achieve the SLM output and obtain the flatter output
simultaneously over the available operation bandwidth.
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FIGURE 2. Schematic diagram of each ring’s FSR output.
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FIGURE 3. Experimental measures of optical spectrum of the lasing
wavelength from 1523.0 to 1571.0 nm.

Thus, the corresponding FSR of each ring and the calculated
FSR¢r can be achieved in this experiment.

The different output wavelength can be generated when the
TBF is adjusted. In the measurement, an optical spectrum
analyzer (OSA) and a power meter (PM) w are utilized to
record the wavelength spectrum and output power, respec-
tively. The higher resolution of OSA is 0.06 nm and detected
power range of PM is from —50 to 23 dBm over the available
bandwidth of 800 to 1700 nm. The temperature is around 25°,
while the experiment is in progress. Fig. 3 presents the
experimental measures of optical spectrum of lasing wave-
lengths from 1523.0 to 1571.0 nm. As the output wavelength
shifts toward the longer wavelengths gradually, the amplified
spontaneous emission (ASE) background noise of around
1530 nm could not be fully suppressed due to the gain
competition. Moreover, except in the both sides of the wave-
length tunability range, the observed peak power of output
wavelengths are almost equalized, as shown in Fig. 3.

The output power and OSNR of presented EDF Sagnac-
ring laser with an adjustable wavelength from 1523.0 to
1571.0 nm are also shown in Fig. 3. The output powers
of 7.5 to 11.8 dBm are obtained. And the correspond-
ing OSNR of the lasing wavelength is between 30.2 and
38.2 dB. The OSNR of 38.2 dB is observed at the wavelength
of 1561.0 nm together with 11.8 dBm output power, as seen
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FIGURE 4. Experimental measures of output power and OSNR of each
lasing wavelength from 1523.0 to 1571.0 nm.
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FIGURE 5. Measured gain spectrum of C-band EDFA over the wavelength
range of 1523.0 to 1565.0 nm, while the input signal is set at— 10 dBm.

in Fig. 4. According to the dual-Sagnac-ring configuration,
in the tuning range of 1527.0 to 1563.0 nm, the observed
output powers are from 11.1 to 11.8 dBm. The power vari-
ation (AP) of 0.7 dB is accomplished under a wavelength
bandwidth of 1527.0 to 1563.0 nm. Hence, the presented EDF
based laser can be obtained larger power and power-flattened
output.

In the previous works [21], [22], when the OSNR of lasing
wavelength could achieve >60 dB, we observe that the lower
output power were obtained in their proposed EDF lasers.
In the experiment, due to the larger saturation output power
of EDFA and the output feature of TBF, the stronger ASE
background noise is not easy to be suppressed for reaching
the OSNR of >60 dB via single TBF. Hence, adding another
TBF in the intracavity could filter the background noise and
enhance the OSNR.

The obtained tuning range and output power of EDF based
laser was limited by the gain range of the EDFA basically
[6], [19]. In the demonstration, Fig. 5 presents the measured
gain characteristic of C-band EDFA over the wavelength
range of 1523.0 to 1565.0 nm, while the power of input
wavelength is set at —10 dBm for testing. The gain values are
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FIGURE 6. Experimental measures of the stability of (a) output power

and (b) lasing spectrum at the wavelength of 1533.0, 1543.0 and
1553.0 nm, respectively.

obtained between 19.9 and 31.5 dB. Here, the observed max-
imum gain difference is ~11.6 dB over the operation range.
According to the proposed dual-Sagnac-ring scheme in the
laser, the C-band EDF gain medium of the EDF laser could
achieve the output powers of 10.8 to 11.8 dBm in the range
of 1525.0 to 1565.0 nm with a flatter output curve. Therefore,
the power variation of 0.5 dB can be accomplished over the
40 nm flattened wavelength range.

Then, to verify the stability of output power for the pre-
sented EDF dual-Sagnac-ring laser, three output wavelengths
of 1533.0, 1543.0 and 1553.0 nm are selected originally.
As shown in Fig. 6(a), pending an observing measurement
of 60 minutes, the obtained power fluctuations of three
wavelengths used are below than 0.1, 0 and 0.1 dB, respec-
tively. Furthermore, the measured wavelength variations of
the three wavelengths are also smaller than 0.04, 0.04 and
0.04 nm respectively, as indicated in Fig. 6(b). Therefore,
during 60 minutes observation period, the obtained maximum
power output and wavelength differences of the presented
EDF based laser still can be kept within 0.1 dB and 0.04 nm.

In the following, we prove the SLM characteristic of
the presented EDF laser. Here, the delayed self-homodyne
method is used for measurement in the experimental setup.
We also use the same three wavelengths for measuring.
Fig. 5 presents the measured electrical spectra of 1533.0,
1543.0 and 1553.0 nm in 500 MHz frequency bandwidth,
respectively. When the dual-Sagnac-ring is exploited in the
EDF laser scheme, no multiply side-mode noise is observed
to attain the SLM output, as shown in Fig. 7. During
25 minutes observation, the measured results of Fig. 7 are
also the same without any change.

Finally, the linewidth of presented EDF dual-Sagnac-ring
laser can also be perform in this work. To evaluate the
laser linewidth, a delayed self-heterodyne detection is experi-
mented. Here, a 100 MHz RF beating signal can be generated
by a phase modulator in to prove the output laser linewidth of
presented EDF laser. Therefore, the experimental measures of
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FIGURE 7. Experimental measures of RF electrical spectra of presented
EDF laser in a frequency range of 500 MHz at the wavelength of
1533.0, 1543.0 and 1553.0 nm, respectively.
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FIGURE 8. Experimental measures of RF electrical spectra of presented
EDF laser in a frequency range of 500 MHz at the wavelength of
1533.0, 1543.0 and 1553.0 nm, respectively.
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FIGURE 9. Measured output spectrum of TBF when the wavelength
location is set at 1533.0 nm.

Lorentzian 3 dB laser linewidth from 1523.0to 1571.0 nm are
shown in Fig. 8. The insert of Fig. 6 is the measured output RF
spectrum of 1553.0 nm at the original status and Lorentzian
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fitting, respectively. In the measurement, the 3 dB bandwidth
of the commercial TBF is 0.4 nm, as plotted in Fig. 9.
Hence, the obtained narrower linewidth of the proposed laser
is caused by the presented dual-Sagnac-ring configuration
instead of the TBF. In the measurement, the observed wave-
length linewidth is between 16.4 and 22.2 kHz through the
Lorentzian fitting. Moreover, the detected maximum varia-
tion of laser linewidth is 5.8 kHz over the available working
range.

Ill. CONCLUSION

A wavelength-selectable and stable EDF dual-Sagnac-ring
laser with SLM oscillation and flattened power output simul-
taneously was designed and experimentally demonstrated.
The experimental measures of OSNRs and output powers of
presented EDF based laser were between 30.2 and 38.2 dB
and 7.5 and 11.8 dBm, respectively over the adjusted range
from 1523.0 to 1571.0 nm. Moreover, the flattened spectrum
range was obtained from 1527.0 to 1563.0 nm together with
the output power from 11.1 to 11.8 dBm. The maximum
variations of output power and lasing linewidth could be
also below than 0.1 dB and 0.04 nm, respectively, after a
precise measure of 60 minutes. Moreover, the experimental
measures of wavelength linewidth of 16.4 and 22.2 kHz
were accomplished via the Lorentzian fitting in the measure-
ment. Therefore, according to the presented dual-Sagnac-ring
scheme, the EDF based laser produced the SLM oscillation

and implemented the flattened output within 0.7 dB power
fluctuation.
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