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ABSTRACT This paper studies the consensus of multi-agent systems with piecewise continuous
time-varying topology. The agents are assumed to have identical first-order linear dynamics, which their
underlying communication topology is piecewise continuous time-varying. In the case of undirected
time-varying communication topology, the consensus of the multi-agent system depends on the connectivity
of its limit topology, and the states of all agents converge to the mean of their initial states. However,
the consensus depends on the absolute integrability of the elements in the difference matrix between the
Laplacian matrix and the limit matrix when the communication topology is directed and connected. Several
simulation examples are presented to validate the proposed theories.

INDEX TERMS Consensus, time-varying topology, limit topology, multi-agent systems.

I. INTRODUCTION
The research on the behavior of biological groups has become
a hot research topic in the world. The distributed control of
multi-agent systems has attracted the attention of researchers
from all disciplines during the last decades. As a fundamental
problem in multi-agent systems, the consensus problem has
been widely investigated for networks of agents. Consensus
roughly means to make a group of agents reach an agreement.
In this field, the pioneering work has been studied in [1]–[3],
and a theoretical framework for the consensus problem of
continuous-time multi-agent systems was presented in [4].
In the literature [5], the consistency of all agents can be
obtained when the communication graph is connected in
the multi-agent systems. And all the agents converge to the
mean of the initial position in the system. Saber and Murry
give the necessary and sufficient conditions for the uniform
convergence of the multi-agent system under the condition
of the undirected graph invariant communication topology:
the topological graph is connected. Ren thinks that the global
convergence is achieved if there is a spanning tree structure
in the network topology graph for directed topology graph.
For the time-varying communication network, Ren obtains
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the necessary and sufficient condition for the convergence
of information consistency under the condition of dynamic
topology. That is, the convergence of the multi-agent sys-
tem can be achieved if there is a spanning tree structure
in the process of changing the communication topology of
a certain time interval. Moreau puts forward the concept
of connection for the communication topology of variable
weight coefficient. Moreau shows that it will not affect
the final consistency of the system as long as it is inte-
gral connected for a dynamically changing communication
topology.

However, many conclusions of consensus are obtained on
the condition that the communication topology is fixed or
switched. In reality, it always change with time for the
connection weights of edges in communication topology of
all multi-agent systems. However, there are great complex-
ity to the research of multi-agent systems because of the
time-varying characteristics of the topology. For this rea-
son, they are approximated time-invariant topology (named
fixed topology) to topology with little change over time by
researchers. And, the communication topology is regarded as
a fixed communication topology in every short time interval
when the topology varies greatly with long time, named
switched topology.
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Multi-agent system is a very complex system. According to
the theory of differential equation, even if any factor changed
slightly in the system, it may change tremendously or even
change its stability. Therefore, approximate processing of
communication topology map is likely to change the char-
acteristics of multi-agent system itself. But, without approx-
imating the communication topology and considering its
time-varying characteristics, the study of multi-agent systems
is naturally much more complicated. Up to now, there are few
research results on multi-agent systems with time-varying
communication topology due to the lack of corresponding
mathematical theory.

In this paper, we mainly study the consensus of linear
multi-agent systems with piecewise continuous time-varying
topology. According to the different topological structures
of communication networks, the sufficient conditions are
studied for the consistency of first-order linear multi-agent
systems in two cases: undirected time-varying communi-
cation topology and directed time-varying communication
topology. Finally, numerical simulations were given to show
the effectiveness of the results.

II. PRELIMINARIES
A. COMMUNICATION TOPOLOGICAL GRAPHS
Some preliminaries, as well as main lemmas used in the
analysis, are reviewed in this section. We need some basic
concepts and results in graph theory. Let

G(t) = (X ,E(t),A(t))

be a time-varying weighted digraph where

X = {x1, x2, · · · , xn}

is the set of nodes, representing agents,

E(t) = {eij(t) = (xi(t); xj(t))} ⊂ X × X

is the set of edges, and A(t) is a weighted adjacency matrix
with elements aij(t). If (xi; xj) ∈ E(t), then agent i is said to
be a neighbor of agent j and the set of all the neighboring of
the agent j is denoted by

Nj(t) = {xi(t) | eij(t) ∈ E(t)}

at time t .
The weighted adjacency matrix

A(t) = [aij(t)] ∈ Rn×n

of a weighted undirected graph, is defined in the form
aij(t) = aji(t) for all time t , since (xi(t); xj(t)) ∈ E(t) implies
(xj(t); xi(t)) ∈ E(t).
The Laplacian matrix L(t) associated to the graph G(t) is

defined as

lkj(t) =


n∑
i=1

aki(t), j = k

−akj(t), j 6= k

Consider the multi-agent system

X (t) = {x1(t), x2(t), · · · , xn(t)}.

Suppose

lim
t→∞
|xi(t)− xj(t)| = 0

for any i, j ∈ {1, 2, · · · , n}. Then, it is said that the
multi-agent system has consensus.

In this paper, we assume that A(t) is continuous or piece-
wise continuous.

B. CONTROL PROTOCOL OF THE SYSTEM
Consider the following multi-agent systems

ẋi(t) = ui(t). (1)

where xi(t), ui(t) are the state and control protocol of the
agent i(i = 1, 2, · · · , n).

In this article, the control protocol of the multi-agent
system is

ui(t) =
∑
j∈Ni(t)

aij(t)(xj(t)− xi(t)). (2)

where Ni(t) is the neighborhood set of the ith agent at time t.
And i = 1, 2, · · · , n.
Using the Laplacian matrix, (1) and (2) can be equivalently

expressed as

Ẋ (t) = −L(t)X (t). (3)

where

X (t) = (x1(t), x2(t), · · · , xn(t))T

is the state vector of the system.
In this paper, we study consensus of the system (3) when

its time-varying Laplacian matrix L(t) tends to be stable over
time. That is

lim
t→+∞

L(t) = L. (4)

The consensus of the system is closely related to the
Laplacian matrix L(t) and its limit matrix L.

III. CONSENSUS OF THE SYSTEM
A. UNDIRECTED TIME-VARYING COMMUNICATION
NETWORK TOPOLOGY
In this subsection, the adjacency matrix and corresponding
Laplacian matrix are often symmetric when the communi-
cation topology of the multi-agent system (3) is undirected
time-varying. At this point, the time-varying multi-agent sys-
tem (3) has the same attributes in consistency as the following
system with time-invariant topology

Ẋ (t) = −LX (t). (5)

A sufficient condition for the consistency of a time-varying
system (3) is shown in the following theorem.
Theorem 1: Let L(t) be continuous or piecewise con-

tinuous in undirected time-varying multi-agent system (3)
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and satisfy (4). Then all the states in (3) asymptotically
converge to the consensus point if the communication graph,
corresponded to the Laplacian matrix L in (4), is connected.
Furthermore, the consensus point is the average of the initial
states of each agent in (3).

Proof 1: Let

O(t) = L(t)− L,

which is called Laplacian error matrix. According to (4),

lim
t→+∞

O(t) = O,

where O is n× n order zero matrix. Thus, the system (3) can
be rewritten as

Ẋ (t) = −(L + O(t))X (t). (6)

Based on matrix theory, there must be an orthogonal matrix
P ∈ Rn×n, such that

PTLP = 3. (7)

where

3 = diag(λ1, λ2, · · · , λn),

λi(i = 1, 2, · · · , n) is the eigenvalue of the matrix L. Because
the graph, corresponded to the Laplacian matrix L, is undi-
rected and connected ( that is, R(L) = n− 1), there is

λ1 = 0, 0 < λ2 ≤ λ3 ≤ · · · ≤ λn.

Let

P = (p1, p2, · · · , pn),

where pi(i = 1, 2, · · · , n) is the ith column vector of the
matrix P. Obviously,

p1 =
1
√
n
1n.

Assuming

Y (t) = PTX (t)

and

ε(t) = PTO(t)P,

the system is

Ẏ (t) = −(3+ ε(t))Y (t). (8)

Notice that all elements of ε(t) are linear combinations of the
elements in O(t). So

lim
t→+∞

ε(t) = 0.

Then, exist T0 > t0 (t0 is initial time of the system), for any
t > T0, such that

n∑
j=1

εij(t) <
λ2

2
, (i = 1, 2, · · · , n). (9)

Given a set of initial values of the system (8)

Y (T0) = (α11, α21, · · · , αn1)T,

such that

|α11| > |αk1| ≥ |αi1| (10)

where ∃k ∈ {2, 3, · · · , n} and ∀i ∈ {2, 3, · · · , n}. That is

α211 > α2k1 ≥ α
2
i1. (11)

By (10) and (11),

|y1(t)| > |yk (t)| ≥ |yi(t)| (12)

can be obtained.
Otherwise, there must be t1(> T0) such that

|y1(t1)| = |yk (t1)| ≥ |yi(t1)|.

That is

y21(t1) = y2k (t1) ≥ y
2
i (t1). (13)

It shows that the function y21(t) grows slower than y2k (t) as
t = t1 by (11) and (13). So(

d
dt
y21(t)

)
t=t1

≤

(
d
dt
y2k (t)

)
t=t1

. (14)

Based on (8),

ẏi(t) = −λiyi(t)−
n∑
j=1

εij(t)yj(t). i = 1, 2, · · · , n. (15)

So

|
1
2

(
d
dt
y2i (t)

)
+ λiy2i (t)| ≤

n∑
j=1

|εij(t)||yi(t)yj(t)|. (16)

By (16),

1
2

(
d
dt
y2i (t)

)
≤ −λiy2i (t)+

n∑
j=1

|εij(t)||yi(t)yj(t)| (17)

and

−λiy2i (t)−
n∑
j=1

|εij(t)||yi(t)yj(t)| ≤
1
2

(
d
dt
y2i (t)

)
. (18)

From (17) and (18), let i = 1, t = t1 and i = k, t = t1
respectively, the following inequality is established.

−

n∑
j=1

|ε1j(t1)||y1(t1)yj(t1)| ≤
1
2

(
d
dt
y2i (t)

)
t=t1

(19)

≤ −λky2k (t1)+
n∑
j=1

|εkj(t1)||yk (t1)yj(t1)|. (20)

From (13), (19) and (20),

−

n∑
j=1

|ε1j(t1)|y2k (t1)≤−λky
2
k (t1)+

n∑
j=1

|εkj(t1)|y2k (t1). (21)
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Hence,

λk ≤

n∑
j=1

|ε1j(t1)| +
n∑
j=1

|εkj(t1)| < λ2. (22)

Obviously, it is wrong.
Therefore, (12) is established
It follows from the fact that the sum of all elements in a

given column ofO(t) is zero, so that the same is true forO(t)P
and thus the first row of PTO(t)P consists of zero elements
only. That is

ε1j(t) = 0, (j = 1, 2, · · · , n).

Thus, the first equation of the system (8) is

ẏ1(t) = 0.

That is

y1(t) = α11.

By (11),

|yi(t)| < |α11|, i = 2, 3, · · · , n. (23)

Hence, the system (8) has a set of bounded solutions in
[T0,+∞).

Reset the following n − 1 sets of initial values of the
system (8)

Yi(T0) = (α1i, α2i, · · · , αni)T , i = 2, 3, · · · , n (24)

such that

|α1i| > |αki| ≥ |αji|. (25)

where k, j had been defined in (11) and i = 2, 3, · · · , n.
And (25) satisfies

det (Y1(t0),Y2(t0), · · · ,Yn(t0)) 6= 0. (26)

According to the above method, the n− 1 sets of bounded
solutions of the system (8) can be obtained in the interval
[T0,+∞). Obviously, the Wronski matrix, composed of the
above n solution vectors, is (26) at t = T0. It is shown that the
n solution vectors are linearly independent. Thus, the basic
solution set of the system (8) is obtained in the interval
[T0,+∞). That is to say, any solution of the system (8) is
a linear combination of them. As a result, the solution of the
system is bounded in [T0,+∞) when the real initial value
is Y(T0). In addition, since the system (8) is continuous in
[t0,+∞), its solution is continuous and bounded in finite
interval [t0,T0]. To sum up, the solution of the system (8)
is bounded in [t0,+∞).
By (15), the ith (i = 2, 3, · · · , n) equation of the

system (8) is

yi(t) = exp (−λit)yi(t0)

−

∫ t

t0
exp (−λi(t − τ ))

n∑
j=1

εij(τ )yj(τ )dτ. (27)

Noticing yj(t) is bounded and using L’Hospital Rule

lim
t→+∞

∫ t
t0
exp (λiτ )

n∑
j=1
εij(τ )yj(τ )dτ

exp(λit)

= lim
t→+∞

n∑
j=1
εij(t)yj(t)

λi
= 0. (28)

Then

lim
t→+∞

yi(t) = 0, i = 2, 3, · · · , n. (29)

So

lim
t→+∞

Y (t) = (y1(t0), 0, 0, · · · , n)T. (30)

Notice

y1(t0) = pT1X (t0),

so

X (+∞)=PY (+∞)=y1(t0)p1=

(
1
n

n∑
i=1

xi(t0)

)
1n. (31)

Therefore, the states converge to the mean of the all initial
states in multi-agent system (3) with undirected time-varying
and asymptotically stable connected topological networks.

Theorem 1 is proved.
In the first order linear multi-agent system with undirected

fixed communication topology, it has beenmentioned that the
sufficient condition for consensus is that the communication
topology of the system is connected in many literatures.

The theorem 1 points out that the consensus of multi-agent
system, with undirected piecewise continuous (or continu-
ous) time-varying communication topology, tends to be stable
depends on whether their asymptotically stable topological
graphs are connected or not.

In the case of connectivity, both of them have similarities
at the equilibrium point of the system, i.e. they converge to
the mean of the initial positions of all agents.

During the proof of Theorem 1, it is guaranteed to the
continuity and boundedness of the state solution due to the
continuity or piecewise continuity of Laplacian matrix. Thus,
it is directly caused to the existence of limit in the states of
the system.

In fact, the weights of edges are continuous change in the
communication topology of actual system. It shows that this
theorem 1 has strong universality.

B. DIRECTED TIME-VARYING COMMUNICATION
NETWORK TOPOLOGY
In this subsection, we mainly study the sufficient condi-
tion of consensus when the network topology is directed
time-varying of the system (3). Here, in order to facilitate
the description, many symbols are the same as the previous
subsection.
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Since the network topology of the multi-agent system (3)
is a directed time-varying, the adjacency matrix A(t) and its
Laplacian matrix L(t) are no longer symmetric.

Let

O(t) = L(t)− L,

which is still called Laplacian error matrix.
The sufficient conditions for the consensus of the sys-

tem (3) will be more complex. See the following theorem 2.
Theorem 2: Let L(t), the Laplacian matrix of the

multi-agent system (3) with directed time-varying topology,
be continuous or piecewise continuous in time and satis-
fies (4). The sufficient conditions of consensus for (3) are
that the graph according to L in (4) is connected and the
Laplacian error matrix is absolutely integrable in [t0,+∞),
that is, the all elements of O(t) are absolutely integrable in
[t0,+∞).

Proof 2: Based on the condition of the theorem,
∃M ∈ R+, such that∫

+∞

t0
|oij(t)|dt < M . (32)

where oij(t) is the element of O(t), i, j = 1, 2, · · · , n.
Due to the graph according to L in (4) is connected,

the eigenvalues of the matrix L are

0 = λ1 < Re(λ2) ≤ · · · ≤ Re(λs).

where Re is the real part of a complex number. Respectively,
the algebraic multiplicities are r1, r2, · · · , rs, where

r1 = 1, r2 + r3 + · · · + rs = n− 1.

As the previous subsection, the system (3) can also be writ-
ten as (6). However, the limit matrix L is not symmetric since
L(t) is no longer symmetric. So thematrix L is not necessarily
diagonalization. Based on the knowledge of matrix theory,
there exists the orthogonal matrix

P = (p1, p2, · · · , pn) ∈ Rn×n(p1 =
1
√
n
1n)

such that

PTLP = J . (33)

where the matrix J is the Jordan Standard Form of the
matrix L, and

J =


J1

J2
. . .

Js

 . (34)

Ji(i = 1, 2, · · · , n) is the Jordan blocks of the matrix L. J1 =
λ1 = 0, the other Jordan blocks are

Ji =


λi 1

λi 1
. . .

λi

 (35)

where i = 2, 3, · · · , s.
Let

Y (t) = PTX (t)

and

ε(t) = PTO(t)P,

the system (3) is

Ẏ (t) = −(J + ε(t))Y (t). (36)

As (9), ∀ε > 0, ∃T0 > t0,∀t > T0, such that
n∑
j=1

|εij(t)| <
ε

2
, (i = 1, 2, · · · , n). (37)

Given system (36) a set of initial values at t = T0

Y (T0) = (α11, α21, · · · , αn1)T, (38)

such that

|α11| > |αk1| ≥ |αi1|. (39)

where ∃k ∈ {2, 3, · · · , n} and ∀i ∈ {2, 3, · · · , n}.
The following paragraphs show

|y1(t)| > |yk (t)| ≥ |yi(t)| (40)

by (38) at t > T0.
If (40) does not hold, there is t1 > T0 such that

|y1(t1)| = |yk (t1)| ≥ |yi(t1)|, (41)

that is

y21(t1) = y2k (t1) ≥ y
2
i (t1). (42)

And then (
d
dt
y21(t)

)
t=t1

≤

(
d
dt
y2k (t)

)
t=t1

. (43)

By (36),

ẏi(t) = −ηiyi(t)− δi,i+1yi+1(t)−
n∑
j=1

εij(t)yj(t). (44)

where ηi ∈ {λ1, λ2, · · · , λn} and δi,i+1(i = 1, 2, · · · , n) is
the element of the matrix J . When it is the element in the last
row of each Jordan sub block in the matrix J , δi,i+1 = 0.
Otherwise, δi,i+1 = 1. So,

1
2
d
dt

(
y2i (t)

)
= −ηiy2i (t)− δi,i+1yi(t)yi+1(t)

−

n∑
j=1

εij(t)yi(t)yj(t). (45)

Thus,

|
1
2
d
dt

(
y2i (t)

)
+ ηiy2i (t)| ≤ δi,i+1|yi(t)yi+1(t)

+

n∑
j=1

|εij(t)yi(t)yj(t)|. (46)
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Base on (46),

− ηiy2i (t)− δi,i+1|yi(t)yi+1(t)|

−

n∑
j=1

|εij(t)yi(t)yj(t)| ≤
1
2
d
dt

(
y2i (t)

)
, (47)

and

1
2
d
dt

(
y2i (t)

)
≤ −ηiy2i (t)+ δi,i+1|yi(t)yi+1(t)|

+

n∑
j=1

|εij(t)yi(t)yj(t)|. (48)

Due to

η1 = λ1 = 0, δ12 = 0,

and let i = 1, t = t1, then (47) is

−

n∑
j=1

|ε1j(t1)y1(t1)yj(t1)| ≤
1
2
d
dt

(
y21(t)

)
t=t1

. (49)

Let i = k, t = t1. By (48),

1
2
d
dt

(
y2k (t)

)
t=t1
≤ −ηky2k (t1)+ δk,k+1|yk (t1)yk+1(t1)|

+

n∑
j=1

|εkj(t1)yk (t1)yj(t1)|. (50)

By (41),(42),(49) and (50),

−

n∑
j=1

|ε1j(t1)|y2k (t1) ≤ −ηky
2
k (t1)+ δk,k+1y

2
k (t1)

+

n∑
j=1

|εkj(t1)|y2k (t1). (51)

By (37) and (51),

ηk ≤

n∑
j=1

|ε1j(t1)| + δk,k+1 +
n∑
j=1

|εkj(t1)|

≤ ε + δk,k+1. (52)

When the kth row is the last row of each Jordan sub block
in the matrix J , ηk < ε. It is in contradiction with λi > 0,
i = 2, 3, · · · , n.
Hence, (40) is established when the initial value are (39)

and t > T0.
Consider the first equation of the system (36) (ε11 = 0

holds as the previous section.)

ẏ1(t) = −
n∑
j=2

ε1j(t)yj(t). (53)

So,

ẏ1(t)
y1(t)

= −

n∑
j=2

ε1j(t)
yj(t)
y1(t)

. (54)

Hence,

y1(t) = α11 exp

− ∫ t

T0

n∑
j=2

ε1j(τ )
yj(τ )
y1(τ )

dτ

 . (55)

Thus,

|y1(t)| = |α11| exp

∫ t

T0

n∑
j=2

|ε1j(τ )|dτ

 . (56)

(56) shows that the function y1(t) is bounded at t > T0.
According to (40), it can be concluded that the state vector
of the system (36) are bounded at t > T0 when the initial
value is (39).

In addition, as the previous subsection, we can obtain the
n−1 groups of bounded solutions for any given n−1 groups
of initial values by the above process. Thus, the Wronski
matrix is formed which its determinant is not equal to zero
at t = T0. It is shown that those solution vectors are linearly
independent. Then, they are the basic solution set of the
system (36) in the interval [T0,+∞). Therefore, the solutions
of (36) are also bounded in the interval [T0,+∞) with the
initial value Y (T0). And they are bounded in the finite interval
[t0,T0] because (36) is a continuous system. So, they are
bounded in [t0,+∞).
Consider the last equation of the system (36)

ẏn(t) = −λkyn(t)−
n∑
j=1

εnj(t)yj(t). (57)

Then,

yn(t) = exp (−λk t)) yn(t0)

−

∫ t

t0
exp (−λk (t − τ ))

n∑
j=1

εnj(τ )yj(τ )dτ. (58)

Based on L’Hospital Rule,

lim
t→+∞

∫ t
t0
exp(λkτ )

n∑
j=1
εnj(τ )yj(τ )dτ

exp(λk t)

= lim
t→+∞

n∑
j=1
εnj(t)yj(t)

λk
= 0. (59)

Hence, yn(+∞) = 0.
Similarly, yi(+∞) = 0(i = 2, 3, · · · , n).
However, The case is not suited to the first equation (53)

of the system (36). Due to∫
+∞

t0
|ε1j(t)yj(t)|dt ≤ M

∫
+∞

t0
|ε1j(t)|dt, (60)

thus,

y1(+∞) = −
n∑
j=2

∫
+∞

t0
ε1j(t)yj(t)dt (61)

is convergent.
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Let y1(+∞) = c(constant), Y (+∞) = (c, 0, 0, · · · , 0)T.
Hence,

X (+∞) = PY (+∞) = cp1 =
c
√
n
1n. (62)

Theorem 2 is established.
Theorem 2 shows that the consensus is affected by both

the connectivity of the limit communication topology and
the Absolute Integrability of the Laplace error matrix O(t)
for first-order linear multi-agent systems with time-varying
and asymptotically stable communication topology. The con-
sistent speed of the system is determined by the absolute
convergence rate of the Laplace error matrix. Therefore,
for the first-order linear multi-agent system with directed
time-varying communication topology, the consensus is
determined by the connectivity of the limit topology and the
convergence speed of the communication topology graph.

IV. SIMULATION RESEARCH
In this section, we study the simulations of time-varying
multi-agent systems to further illustrate the correctness of
Theorem 1 and theorem 2. They are given in the two
subsections, undirected time-varying network and directed
time-varying communication network, for the consistency
and convergence of time-varying multi-agent systems.

A. SIMULATION OF THE SYSTEM WITH UNDIRECTED
TIME-VARYING TOPOLOGY
In this subsection, the multi-agent system, consisted of five
agents, is given with undirected time-varying communica-
tion topology. The topology is described by the adjacency
matrix A(t).

A(t) =



0 t sin
1
t

t sin
1
t

0

1−
1
t

cos
1
t

1− e−t 1− ln
(
1+

1
t

)
0 0

1−
1
t

1− e−t 0

cos
1
t

1− ln
(
1+

1
t

)
0

0 0 1+ e−2t

0 0 1−
1
t2

1+ e−2t 1−
1
t2

0


Respectively, the limit matrix L of the Laplacian matrix

L(t) is

L =


3 −1 −1 −1 0
−1 3 −1 −1 0
−1 −1 3 0 −1
−1 −1 0 3 −1
0 0 −1 −1 2

 (63)

FIGURE 1. States of the system with undirected time-varying topology.

Let the initial value of the system be

X (t0) = (0.2, 0.6, 1.0, 1.4, 1.8)T.

Then, the simulation figure is shown in Figure 1 at the initial
time t0 = 0.5 and the iteration step length 1t = 0.01.
The simulation results show that all agents in the system

can reach a uniform state, and the uniform convergence point
of the system is 1, which is the average of the initial state of
all agents.

In addition, since the communication topology is a contin-
uous time-varying process, all individual states in the system
are continuously and smoothly approaching their limit states
(the mean of the initial states of all agents).

This example illustrates the correctness of Theorem 1 in
the case of continuous communication topology.

Secondly, it is expressed by piecewise continuous function
for the connection weight of the communication topology if
the communication topology of multi-agent system is piece-
wise continuous.

Next up is a simulation example of the consensus of
multi-agent systems with continuous time-varying commu-
nication topology.

Let

f12(t) =

 t + 2, t ≤ 2

t ln
(
1+

1
t

)
, t > 2

f13(t) =

 t − 2, t ≤ 2

1−
1
t2
, t > 2

f14(t) =

 1+
1
t
, t ≤ 2

1− e−2t , t > 2

f15(t) =

 2 sin(t)+ 1, t ≤ 3

ln
(
1+

1
t

)
, t > 3

f23(t) =

 2t − 1, t ≤ 3

1− t tan
(
1
t

)
, t > 3

92054 VOLUME 7, 2019



W. Yuan, G. Han: Consensus of Multi-Agent Systems With Piecewise Continuous Time-Varying Topology

f24(t) =

 3− ln(1+ t), t ≤ 3

1+ cos
(
1
t2

)
, t > 3

f25(t) =

 2− t, t ≤ 2

3−
1
t2
, t > 2

f34(t) =

 cos(3t), t ≤ 2

2+
1
t2
, t > 2

f35(t) =

 1, t ≤ 2

ln
(
1+

1
t3

)
, t > 2

f45(t) =

 2+ sin(t), t ≤ 2

1+
1
t2
, t > 2

The adjacency matrix of multi-agent system is

A(t) =


0 f12(t) f13(t) f14(t) f15(t)

f12(t) 0 f23(t) f24(t) f25(t)
f13(t) f23(t) 0 f34(t) f35(t)
f14(t) f24(t) f34(t) 0 f45(t)
f15(t) f25(t) f35(t) f45(t) 0


Obviously, the adjacency matrix of the system is piece-

wise continuous and time-varying. So is the corresponding
Laplacian matrix L(t) too. And

L(t)=


d11(t) − f12(t) − f13(t) − f14(t) − f15(t)
−f12(t) d22(t) − f23(t) − f24(t) − f25(t)
−f13(t) − f23(t) d33(t) − f34(t) − f35(t)
−f14(t) − f24(t) − f34(t) d44(t) − f45(t)
−f15(t) − f25(t) − f35(t) − f45(t) d55(t)


where

d11 = f12(t)+ f13(t)+ f14(t)+ f15(t),

d22 = f12(t)+ f23(t)+ f24(t)+ f25(t),

d33 = f13(t)+ f23(t)+ f34(t)+ f35(t),

d44 = f14(t)+ f24(t)+ f34(t)+ f45(t),

d55 = f15(t)+ f25(t)+ f35(t)+ f45(t).

By the formula (4), the follow is the limit matrix L of the
Laplacian Matrix L(t).

L =


3 −1 −1 −1 0
−1 6 0 −2 −3
−1 0 3 −2 0
−1 −2 −2 6 −1
0 −3 0 −1 4


Computed by MATLAB, the following is the eigenvalues

of the limit matrix L of Laplacian matrix L(t). The eigenval-
ues of limit

λ(L) = {0.0000, 2.2507, 3.8453, 7.0357, 8.8683}

The matrix L has only one eigenvalue of 0. And the oth-
ers, non-zero eigenvalues, are positive. So it is correspond-
ingly connected for the communication topology map of the
Laplacian limit matrix L.

Obviously, the above Laplacian matrix L(t) and the limit
L satisfy the conditions of the theorem. Therefore, according
to Theorem 1, all the agents will eventually converge to the
mean of the initial states in the first order linear multi-agent
system (3). Given initial states

X (t0) = (−0.2, 0.2, 0.4, 0.6, 0.8)T.

According to the conclusion of Theorem 1, the five individual
states converge to the average consistently in the system.

X (∞) =
−0.2+ 0.2+ 0.4+ 0.6+ 0.8

5
· 15 = 0.36 · 15.

Assuming that t0 = 0.5 is the initial time, iteration step
length 1t = 0.01, and iteration final value T = 6, the simu-
lation is shown in Figure 2 below by MATLAB software.

FIGURE 2. States of the system with undirected piecewise continuous
time-varying topology.

The following is the state values of five individuals in the
system, calculated by MATLAB software.

X (6) = (0.3600, 0.3599, 0.3600, 0.3600, 0.3600)T

This is almost the same as that calculated by Theo-
rem 1, which shows that Theorem 1 is also valid for undi-
rected communication topology with piecewise continuous
time-varying.

From this simulation example, we obtain that the all indi-
viduals will eventually converge to same state as long as
the communication topology is stably connected, even if
the communication topology is not continuous time-varying
(there are discontinuous points in the process of change).
Furthermore, the consistent state of all individuals will not
change regardless of external disturbances for the first-order
linear multi-agent system with undirected connectivity of
communication topology, and the unique state is determined
only by the initial state of the system, independent of other
factors.

In brief, for the first-order linear multi-agent system with
undirected topology, the consensus is only related to the
connectivity of communication topology, and its uniform
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convergence point is only related to the initial states in the
case of communication topology connectivity.

However, unlike undirected connectivity,the system con-
sistency and uniform convergence point are more com-
plex when the system communication topology is directed
connectivity.

B. SIMULATION OF THE SYSTEM WITH DIRECTED
TIME-VARYING TOPOLOGY
We suppose that the multi-agent system is composed of
eight agents. And the communication network is a directed
time-varying topology. Let the adjacency matrix A(t) be

A(t)=



0 t sin
0.3452
t

1.8057−cos
1
t

0

0.7558−ln (1+
1
t2
)

sin t
t2
−0.7345

0.5121+
1
t2

1.0664−
sin t
t

0.3744−
1
t2

1
t2
−0.1392

0.4051+
1
t3

0.5780−
1
t3

0.5882+
cos t
t

0.8377+
sin t
t

1
t2
−0.5717 0.7918+

1
t2

0.8791−
sin t
t

0.4726−
cos t
t2

sin t
t
+0.1441

0.1422−t sin
1
t

1.1849−
1
t2

0.0911+
cos t
t

0 0.2712−
cos t
t

sin t
t
−0.0272

0.3781+
1
t3

0 ln (1+
1
t2
)−0.1334

1
t2
+0.3264

1
t2
+0.4061 0

0.0804+
1
t3

0.3841−
1
t3

0.5689+
1
t3

0.9218−
cos t
t

0.0804−
sin t
t2

1.0287+
sin t
t

0.4061−
cos t
t

0.9795+
sin t
t

0.8945−ln (1+
1
t2
)

0.5795−
cos t
t

1
t2
−0.8464 −t sin

0.3973
t

0.6733−ln (1+
1
t2
) 0.9610−

cos t
t

0.8872+
1
t2

cos t
√
t
+0.5689 0.4054+

1
t2

0.8954+
sin t
√
t

0.0585+
cos t
t

0.2432+
1
t4

0.6538+
sin t
t2

0.8659+
1
t2

1.0294−
1
t2

0
1
t3
−0.0544 0.8167−

1
t3

0.3781−
sin t
t

0 −0.2963−
1
t2

0.8167+
cos t
t

0.2712−
1
t2

0



So, the limit matrix L of the matrix L(t) is

L =



2.8697 −0.3452 −0.8791 −0.4762

−0.8057 2.7455 0.8578 −0.1849

−0.7558 0.7345 2.1347 −0.2712

−0.5121 −1.0664 −0.3781 2.7787

−0.3744 0.1392 −0.3264 −0.4061

−0.4051 −0.5780 −0.0804 −0.3841

−0.5882 −0.8377 −0.9218 −0.0804

0.5717 −0.7918 −0.4061 −0.9795

−0.1441 −0.5795 −0.8464 0.3973

−0.0911 −0.6733 −0.9610 −0.8872

0.0272 −0.5689 −0.4054 −0.8945

0.1334 −0.0585 −0.2432 −0.6538

2.5667 0.2963 −0.8659 −1.0294

−0.5689 2.7787 0.0544 −0.8167

−1.0287 −0.3781 3.5387 0.2963

−0.8945 −0.8167 −0.2712 3.5880


The eigenvalues of the limit matrix L are

λ(L) = {0, 2, 2, 3, 3, 3, 5, 5}.

It can be verified that the multi-agent system satisfies the
condition of theorem 2. Let the initial time t0 = 0.5 and the
initial value

x(t0) = (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4)T

and the iteration step length 1t = 0.01. The simulation is
shown in Figure 3.

FIGURE 3. States of the system with directed time-varying topology at
t0 = 0.5 and 1t = 0.01.

From the theory of differential equations, the state of each
agent in a linear time-varying system is closely related to
the structure of the system and the initial value and so on.
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FIGURE 4. States of the system with directed time-varying topology at
t0 = 0.3 and 1t = 0.02.

But the consensus of the system always holds. The following
Figure 4 is given at t0 = 0.3 and 1t = 0.02.
In the above simulation examples, the Laplace error matrix

O(t) is absolutely integrable on the interval [t0,+∞), and the
communication topology corresponding to the limit matrix
is connected. That is to say, it satisfies the conditions of
Theorem 2. From Fig.3 and Fig.4, the agents all converge to
the same state. They illustrate the correctness of Theorem 2.

However, looking at the above two simulation figures care-
fully, all the agents convergence to consistent state at different
initial time and different iteration steps, but the convergence
points of the two figures are different. That’s due to the
complexity of differential equations, which closely related
to the initial time, initial value and other factors. Neverthe-
less, the consensus is only related to the connectivity of the
communication topology and the absolute integrability of the
Laplace error matrix, but not to the initial conditions and
iteration steps, but the consistent state is related to them.

V. SUMMARIZATION
This paper mainly studies the consensus of first-order linear
multi-agent system with time-varying communication topol-
ogy. It is discussed in two cases: undirected time-varying
communication topology and directed time-varying commu-
nication topology.

From Theorem 1, the consensus depends on the connec-
tivity of the limit topology graph in the first order linear
multi-agent system with undirected time-varying communi-
cation topology.

By Theorem 2, the sufficient condition, which all the
agents convergence to same state in the first order linear
multi-agent system with directed time-varying communica-
tion topology, is that it is connected for the asymptotically
stable communication topology graph and it is absolute inte-
grable for the Laplace error matrix O(t). That is, the consen-
sus is determined by the connectivity of the limit topology
graph and the convergence rate of the directed time-varying
communication topology graph with time.

In addition, the uniform convergence point is the mean
of the initial positions of all agents for the first-order linear
multi-agent system with undirected time-varying communi-
cation topology by Theorem 1.

Unfortunately, for directed time-varying communica-
tion topology system, the convergence point are relatively
complex and given by formula (61). Due to the complexity
of formula (61), it has not yet been obtained for simpler
expression.
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