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ABSTRACT Unmanned aerial vehicles (UAVs) have recently received growing popularity in reconnaissance
missions due to their many advantages, such as high mobility, flexible deployment, and low operational
costs. In this paper, we investigate how the UAVs should optimally exploit its mobility via trajectory
planning to achieve the fairness of energy consumption with communication, hovering, and motion energy
consumption in consideration. Most of the current works only consider motion energy consumption;
however, communication and hovering energy consumption cannot be ignored. We first formulate this
problem as a min–max tour cover problem that has been proved to be NP-hard. Then, a heuristic algorithm
is proposed to minimize the maximum energy consumption of the reconnaissance UAVs by planning the
trajectories. Next, to guarantee the fairness of energy consumption under scenarios with strict and firm energy
requirements, we propose an approximation algorithm that can achieve an approximation ratio of 2.5. Finally,
the extensive simulations are conducted under different settings to evaluate the performance of our proposed
algorithms. The results show that the algorithms can improve the fairness of energy consumption and reduce
the maximum energy consumption compared with other algorithms.

INDEX TERMS Unmanned aerial vehicles (UAVs), fair energy consumption, trajectory planning, heuristic
algorithm, approximation algorithm.

I. INTRODUCTION
Recently, Unmanned Aerial Vehicles (UAVs) have attracted
increasing attention in diverse domains such as military, civil-
ian, and commercial domains. Due to their high mobility
and maneuverability, deployment flexibility as well as cost-
effectiveness, UAVs are used in many applications to pro-
vide outperforming solutions [1], [2]. For example, there has
been a fast-growing interest in utilizing UAVs as aerial base
stations to help enhance the coverage and performance of
communication networks in various scenarios, and provide
network service for remote areas [3], [4]. In addition, UAVs
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are extensively used in monitoring applications, such as for-
est, wildlife, agricultural and water quality monitoring [5].
Furthermore, in the military field, driven by the continuous
cost reduction and the device miniaturization of communica-
tion equipment, it is also a safer and more economical choice
to use UAVs to execute reconnaissance missions thanmanned
aircraft [6]. To this end, GPS, sensors and high-resolution
cameras can be installed on UAVs to guarantee better area
reconnaissance than ground wireless sensor networks [7].

Compared with a single UAV, multi-UAV system can
collaboratively complete reconnaissance missions more eco-
nomically and efficiently [8]. As shown in Fig. 1, accord-
ing to the participation way of multi-UAV, there are mainly
two reconnaissance scenarios. As shown in Fig. 1(a), in the
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FIGURE 1. Reconnaissance scenarios of UAVs.

reconnaissance scenario without UAV relay, there is only
one type of UAVs which have two states. The UAVs col-
lect information from the target area and then fly to the
base station to upload collected information. For the former,
the UAVs are in collecting state. For the latter, the UAVs are
in transmitting state. However, in a large-area environment,
where the target area is often far from the base station,
energy may be exhausted before UAVs carry information
back to the base station. As shown in Fig. 1(b), the recon-
naissance UAVs collect the information from the target area,
but they only need to transmit the information to the relay
UAV rather than the base station. In reconnaissance mission,
using the relay UAV is an effective technique for improving
the communication reliability and prolonging the lifetime
of multi-UAV [9], [10]. In this paper, we focus on the sce-
nario where the relay UAV is used in the reconnaissance
mission.

Under this scenario, the total energy consumption of a
reconnaissance UAV includes three parts, i.e. motion, hov-
ering and communication energy consumption. Since the
reconnaissance UAVs transmit the information to the relay
UAV instead of the base station, they can save the motion
energy consumed by the UAVs flying to the base station.
Each reconnaissance UAV is responsible for different target
points. Once the energy of an UAV is exhausted, the whole
mission will not be completed. Therefore, the problem of
fair energy consumption among the UAVs is critical for the
success of the whole reconnaissance mission. In order to
enhance mission success probability and achieve the fairness
of energy consumption, we pursue to minimize the maximum
energy consumption of reconnaissance UAVs by planning
their trajectories.

There have been many works on how to minimize
the total energy consumption of all nodes in wireless
networks [11]–[16]. However, they rarely discuss the prob-
lem of fair energy consumption. Although some current
works study the fairness of energy consumption [17]–[22],
they don’t consider the point’s cost which represents the
communication and hovering energy consumption in the
reconnaissance mission. On the one hand, the hovering and
communication energy consumed by reconnaissance UAVs
cannot be ignored and contributes significantly to the total
energy consumption. On the other hand, considering the
energy cost on target points will bring many challenges to
plan the trajectories of UAVs. Therefore, guaranteeing the
fairness of energy consumption with motion, communication
and hovering energy consumption in consideration is impor-
tant and challenging for multi-UAV reconnaissance system.

In this paper, we investigate how UAVs should optimally
exploit their mobility via trajectory planning to achieve the
fairness of energy consumption with communication, hover-
ing and motion energy consumption in consideration. Obvi-
ously, this problem aims to minimize the maximum energy
consumption among the reconnaissance UAVs. First, we for-
mulate this optimization problem as a min-max tour cover
problem which has been proved to be NP-hard. And then,
we propose a heuristic algorithm to minimize the maximum
energy consumption of reconnaissance UAVs by planning the
trajectories. However, the heuristic algorithm has no rigorous
theoretical analysis and cannot provide performance guar-
antees. Therefore, we propose an approximation algorithm
which can be used under scenarios with strict and firm energy
requirements. The main contributions of this paper are sum-
marized as follows:
• To the best of our knowledge, this is the first time to
study the fairness of energy consumption of multi-UAV
in reconnaissance scenario with communication, hover-
ing and motion energy consumption in consideration.
We formulate it as a min-max tour cover problem which
has been proved to be NP-hard.

• To resolve the fairness issue, we propose a heuristic
algorithm to minimize the maximum energy consump-
tion of reconnaissance UAVs. Firstly, the ant colony
algorithm is used to obtain a tour. Secondly, the tour
splitting algorithm is adopted to get the trajectory of each
UAV.

• To provide performance guarantees and rigorous theo-
retical analysis, we propose an efficient approximation
algorithm to optimize the trajectories to achieve the
fairness of energy consumption under scenarios with
strict energy requirements. The approximation algo-
rithm uses the Christofides algorithm to calculate a tour.
And then we propose a novel splitting algorithm to split
it. We prove that the approximation ratio of the proposed
algorithm is 2.5.

• Extensive simulations are conducted under different
settings to evaluate the performance of our proposed
algorithms. The results show that the maximum energy
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consumption of reconnaissance UAVs can be reduced
by 71.6% and 74.2% at most by approximation algo-
rithm and heuristic algorithm, respectively. Meanwhile,
the standard deviation of the proposed algorithms is
lower than compared algorithms, which further verifies
the fairness of energy consumption among all the UAVs.

The rest of this paper is organized as follows. In Section II,
we briefly survey related works. Section III presents the sys-
tem model and problem formulation. Section IV introduces
the heuristic algorithm. In Section V, we propose an approx-
imation algorithm. Section VI shows the approximation ratio
analysis and proof. Section VII presents extensive simulation
results for performance evaluation. Conclusions follow in
Section VIII.

II. RELATED WORK
A. ENERGY CONSUMPTION
As UAVs are energy-constrained due to the limited on-board
battery, it is paramount to save the energy to prolong the
multi-UAV system’s lifetime in reconnaissance applications.
Most of works focused on reducing total energy consump-
tion, while only a few of works considered the fairness of
energy consumption problem. In [11], Wu et al. proposed a
novel class of energy-efficient wireless robot reconnaissance
system, where both the positions and transmit powers of
the mobile relay and sensing robots may be optimized in
order to minimize the total communication-motion energy
consumption. In [12], the optimal 3D trajectory of each UAV
was obtained in a way that the total energy used for the
mobility of the UAVs was minimized while serving the
ground Internet of Things devices. In [13], an UAV’s energy
consumption was modeled as a function of flight speed
and operation conditions such as climbing, hovering, and so
on. They aimed to find the optimal speed that minimized
the total energy consumption. Kim et al. [14] considered
the k traveling salespersons with neighborhood problem,
which aimed to find k closed moving trajectories for the k
mobile collectors such that the total length of the trajectories
was minimized. An UAV trajectory optimization problem
with detailed propulsion energy consumption considering
both velocity and acceleration was studied in [15]. The
authors studiedUAV-enabledwireless communication, where
rotary-wing UAV is dispatched to send/collect data to/from
multiple ground nodes (GNs) [16]. They aimed to minimize
the total UAV energy consumption, including both propul-
sion energy and communication-related energy, while satisfy-
ing the communication throughput requirement of each GN.
It can be seen that, although the above works discussed the
energy consumption in different wireless networks, the fair-
ness of energy consumption problem of multi-UAV in recon-
naissance applications still needs to be further studied.

B. MIN-MAX TOUR COVER PROBLEM
In a metric graph, the UAV trajectory planning problem is
equivalent to covering all vertices in the graph with k tours
such that the maximum tour weight is minimized. We refer

to this as the min-max tour cover problem. Many previous
works investigated the min-max tour cover problem. In [17],
the authors aimed to find routes for the vehicles to collec-
tively visit all the customers such that the maximum traveling
cost of the vehicles was minimum. Xu et al. [18] studied
a min-max location-routing problem, which aimed to deter-
mine both the home depots and the tours for a set of vehicles
to service all the customers in a given weighted graph, so that
the maximum working time of the vehicles was minimized.
In [19], Xu et al. designed approximation algorithms and
derived inapproximability results for min-max path cover
problems. Zhao et al. [20] designed trajectories of multiple
mobile collectors such that the maximum data gathering time
among the mobile collectors was minimized. Xu et al. [21]
focused on devising approximation algorithms that achieved
constant approximation ratios for the min-max tour cover
problem and its variants. Sathyan et al. [22] designed a
cluster-first approach which did not take the vertices weight
into consideration. To sum up, most of works did not consider
the point’s cost. In the reconnaissance mission, it represents
the communication and hovering energy consumption. There-
fore, these works cannot be directly applied to solve the
fairness of reconnaissance UAV energy consumption.

C. APPROXIMATION ALGORITHM OF MIN-MAX TOUR
COVER PROBLEM
Some related literatures studied the min-max tour cover
problem, where their feasible solutions were a set of tours.
In [23], Prasad et al. studied the min-max tree cover problem
related to the min-max tour cover problem. For one thing,
the optimal value of the min-max tree cover problem cannot
be greater than that of the min-max tour cover problem.
For another thing, by duplicating each edge of a feasible
solution of min-max tree cover problem, we obtain a feasi-
ble solution of min-max tour cover problem with a doubled
objective value. Even et al. [23] and Arkin et al. [24] pro-
vided a 4-approximation algorithm for min-max tree cover
problem. Xu et al. [18] also derived a 6-approximation algo-
rithm. Xu et al. improved the approximation ratio to 16

3 [21].
Prasad et al. [25] gave a three phase algorithm to solve task
allocation and presented 5-approximation algorithm. Khani
and Salavatipour [26] presented a 2.5-approximation algo-
rithm for min-max tree cover problem and improved the
3-approximation bound. There were other literatures study-
ing the min-max tour cover problem without the use of
min-max tree cover problem. Frederickson et al. proposed
a (1 + e − 1/k)-approximation algorithm where e is the
best approximation ratio for the classic TSP problem [27].
For the uncapacitated rooted min-max tour cover problem,
Xu et al. [21] developed a 6 1

3 -approximation algorithm.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. NETWORK MODEL
As shown in Fig. 1(b), we consider a reconnaissance scenario
where UAVs are employed to serve n > 1 target points whose
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TABLE 1. Main notations used in the paper.

distribution follows a homogeneous Poisson Point Process
(PPP). In this paper, we only consider one relay UAV [11].
Under this scenario, the distance between the target area and
the base station is too long to ensure that the UAVs with
limited energy complete the whole mission. Hence, recon-
naissance UAVs collect the information from the target area,
and they only need to transmit it to the relay UAV instead of
the base station. Then the relay UAV delivers the information
to base station. In this paper, the energy consumption of a
reconnaissance UAV mainly consists of two parts. The first
part is the communication-related energy consumption for
circuitry and signal processing. The other part is the propul-
sion energy consumption, which is required for the UAV
to remain hovering and move freely [16], [28]–[31]. In fact,
we mainly aim to propose an algorithm, which is applicable
for any energy consumption model. The extension to more
realistic energy consumptionmodels will be left for our future
work.

The multi-UAV system is modeled as a complete undi-
rected graph G = (V ,E), where each vertex in V represents
a target point to be covered and each edge in E represents a
path to be travelled. For vertex vj ∈ V , a vertex weight h(vj)
is given to represent the communication and hovering energy
consumption. For edge e(vj, vj+1) ∈ E , an edge weight
w(vj, vj+1) represents the motion energy consumption. The
optimization objective is to cover all vertices in the graphwith
k tours such that themaximum tour weight which includes the
vertices weight and edges weight is minimized. To tackle this
problem, we formulate it as a min-max tour cover problem.

FIGURE 2. Position-critical communication model.

It is an extension of the well-known Traveling Salesman
Problem (TSP). The TSP is NP-hard when k = 1, the min-
max tour cover problem is also NP-hard for any k ≥ 1 [21].

B. PROPULSION ENERGY CONSUMPTION MODEL
The propulsion energy consumption is required for the UAV
to remain aloft and move freely [16]. In our paper, the UAVs
fly at a constant height. Under this condition, the major
propulsion energy consumption includes motion and hov-
ering energy consumption. The motion energy consump-
tion mainly depends on the trajectory length of UAV move-
ment. Therefore, the motion energy consumption Em can be
expressed as [31]–[33]

Em = Q · l, (1)

where Q is the energy consumption rate per unit length,
measured in J/m, and l represents the trajectory length that
the UAV has to move.

Under many scenarios, such as taking picture and shooting
video, reconnaissance UAVs have to hover for a period of
time t jhv for collecting information over target point vj. The
hovering energy consumption of reconnaissance UAVs per
unit time is defined as Phv. The hovering energy consumption
can be modeled as [32]

E jhv = t jhv · Phv. (2)

The hovering time t jhv can be calculated based on the
amount of data Nj that needs to be transmitted at each point
vj. Furthermore, the information transmission rate is defined
as B. Therefore, the hovering energy consumption is given by

E jhv =
Nj
B
· Phv. (3)

C. COMMUNICATION ENERGY CONSUMPTION MODEL
In this paper, the communication energy consumption model
is based on what is defined in [31]. The energy required
for successful wireless data transmission is affected by the
distance between two communication nodes and other factors
like noises, interferences, and multi-path fading.

As shown in Fig. 2, we use the position-critical commu-
nication model [33]. In this model, a reconnaissance UAV
needs to collect information from target points, and imme-
diately transmits the information to the relay UAV. The com-
munication energy consumed over target point vj to transmit
Nj bits over distance d can be expressed as

E jtx = Nj · dα · etx , (4)
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where etx is the energy to transmit one bit over one meter
and α is the path loss exponent of the transmission medium,
which depends on the transmission environment. In addition,
d is the distance between the reconnaissance UAV and the
relay UAV.

D. PROBLEM FORMULATION
According to [15] and [16], we assume that UAVs fly hor-
izontally at a constant altitude H . All UAVs start from an
initial location SR = (xR, yR,H ) to execute reconnaissance
mission. We assume that one of the UAVs is used as a static
relay UAV, which located at SR, and the remaining k UAVs
are used as reconnaissance UAVs. Meanwhile, the number of
reconnaissance UAVs is less than the number of the target
points.

In order to complete the whole reconnaissance mission,
each reconnaissance UAV is responsible for different target
points. We introduce the following binary coverage variable
g
vj
Ui ∈ {0, 1}, for ∀vj ∈ target points, Ui ∈ reconnaissance
UAVs such that

g
vj
Ui =

{
1 Ui covers target point vj
0 otherwise.

(5)

Without loss of generality, we consider a three-dimensional
(3D) Cartesian coordinate system where the coordinate of
target point vj is located at (xj, yj, 0). The time-varying
coordinate of reconnaissance UAV Ui can be expressed as
Si(t) = (x ti , y

t
i ,H ), with x ti and yti denoting the reconnais-

sance UAV’s time-varying x-coordinate and y-coordinate,
respectively. And we denote UAV Ui trajectory projected on
the ground as li(t) ∈R2×1. The distance from reconnaissance
UAV Ui to the relay UAV can be expressed as

dSi(t),R =
√
(x ti − xR)

2
+ (yti − yR)

2
. (6)

The communication energy consumption of reconnais-
sance UAV Ui can be expressed as

E itx =
∑
vj∈UTi

Nj · dvj,R
α
· etx , (7)

where UTi is the trajectory of reconnaissance UAV Ui.
The total energy consumption of reconnaissance UAV Ui

includes communication, motion and hovering energy con-
sumption,

EUi = E itx + E
i
m + E

i
hv. (8)

Thus, the total energy consumption of reconnaissanceUAV
Ui can be obtained as

EUi =
∑
vj∈UTi

Nj · dvj,R
α
· etx +

∑
l∈UTi

Q · l +
∑
vj∈UTi

Nj
B
· Phv,

(9)

Assuming that the locations of target points are known,
the objective is to minimize the maximum total energy con-
sumption of the reconnaissance UAVs by optimizing their

trajectories. Define Emax = max
1≤i≤k

EUi as the function of Si(t).

The optimization problem is formulated as

min
Si(t)

Emax (10)

s.t.

∥∥∥∥ ·li(t)∥∥∥∥ ≤ vmax, ∀i, t, (11)

‖li(t)− li′ (t)‖ ≥ dmin, ∀i 6= i′, t (12)∑
1≤i≤k

g
vj
Ui = 1, ∀vj. (13)

In (10), Si(t) is the optimization variable, which represents
the position of the reconnaissance UAV Ui in time t . In prac-
tice, the trajectories of UAVs are also subject to the maximum

velocity vmax constraint (11), where
·

li(t) denotes the time
derivative of li(t). As UAVs fly at the same altitude, the tra-
jectories of UAVs are also subject to the collision avoidance
constraint [34]. In (12), dmin denotes the minimum inter-UAV
distance to ensure collision avoidance. The constraint (13)
ensures that each target point vj is covered by exactly one
reconnaissance UAV.

IV. HEURISTIC ALGORITHM
We put forward a heuristic algorithm to plan the trajectory of
each reconnaissance UAV. The main idea of this algorithm is
to get a trajectory covering all target points, and then decom-
pose the trajectory. This algorithm is mainly divided into
three steps. First of all, we utilize the ant colony algorithm
to calculate a trajectory. As a new class of global searching
algorithms, it could solve TSP problems [35]. Then, the tra-
jectory is decomposed into k segments by using tour splitting
algorithm [19]. At last, since each reconnaissance UAV needs
to go back to the initial location, we join SR to plan the k
closed trajectories [36].

The tour splitting for heuristic algorithm to obtain k seg-
ments is summarized in Algorithm 1 and proceeds as follows.
First of all, we define Bi as the bound vector, i.e. Bi = i

k ·

W (C), whereW (C) = w(C)+ h(C). In this algorithm, w(C)
and h(C) represent the weight of all edges and the weight of
all vertices in tour C, respectively (Line 1). Next, in order to
take the weight of vertices into consideration in the decom-
position process, we define wh(vj, vj+1) as a new weight
variable (Line 2). And then, for each segment Ci, we find
the ending point vj(i) such that the segment (v0, . . . , vj(i))
satisfies wh(vo, v1, . . . , vj(i)) ≤ Bi (Line 3). After finding
vj(i), we can obtain k segments C = {C1, . . . ,Ci, . . . ,Ck}
for reconnaissance UAVs (Line 4-5).

V. APPROXIMATION ALGORITHM
Although it is simple, the heuristic algorithm has no rigorous
theoretical analysis and cannot provide performance guaran-
tees. In this section, we propose an approximation algorithm
for the fair energy consumption problem. It can be applied to
certain scenarios where the Quality of Service (QoS) perfor-
mance is critical. As shown in Fig. 3, the approximation algo-
rithmmainly includes three steps. First of all, the Christofides
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Algorithm 1 Tour Splitting for Heuristic Algorithm
Input: G = (V ,E), tour C , k .
Output: k segments of tour C .
1: Compute B = (B1, . . . ,Bi, . . . ,Bk ),Bi = i

kW (C);
2: Denote wh(vj, vj+1) = w(vj, vj+1)+ h(vj)+ h(vj+1);
3: vj(i)←

{
wh(vo, v1, . . . , vj(i)) ≤ Bi

}
∧ (vj(i) ∈ V );

4: Starting vertex of next segment v′j(i) = vj(i)+1;
5: Get the segment Ci = (v′j(i−1), . . . , vj(i)), for 1 ≤ i ≤ k .

FIGURE 3. Approximation algorithm.

algorithm is used to calculate a tour C covering all target
points. And then, a novel tour splitting algorithm is proposed
to split tour C into k segments. This tour splitting algo-
rithm can achieve better fairness than the approach proposed
in [19]. Finally, for k segments, we join the initial location
SR to construct k closed trajectories of reconnaissance UAVs.
TrajectoryUT i contains the path to be travelled and the target
points to be covered.

A. CHRISTOFIDES ALGORITHM
The Christofides algorithm is improved by the double span-
ning tree algorithm, so the worst solution is within 1.5 times
of the optimal solution, and the worst solution of the double
spanning tree algorithm is within 2 times of the optimal
solution [37]. As of 2017, this is the best approximation
ratio that has been proved for the TSP on general metric
spaces, although better approximations are known for some
special cases. In our approximation algorithm, we use the
Christofides algorithm as shown in Algorithm 2 to calculate
a tour C covering all target points.
We model the multi-UAV system as a complete undirected

graph G = (V ,E), where each vertex in V represents a
target point to be covered and each edge in E represents
a path to be travelled. The Christofides algorithm proceeds
as follows. First of all, we compute a minimum spanning

Algorithm 2 Christofides Algorithm
Input: G = (V ,E), w(vj, vj+1),∀vj, vj+1 ∈ V .
Output: tour C
1: MST ← (∀vj ∈ V , vj ∈ MST ) ∧ w(MST ) = min;
2: D← (vj ∈ V ) ∧ (mod(deg ree(vj), 2) == 1);
3: M ← (vj ∈ D) ∧ w(M ) = min;
4: H ← (e(vj, vj+1) ∈ M ) ∨ (e(vj, vj+1) ∈ MST );
5: EC ← (e(vj, vj+1) ∈ H ) ∧ (times(e(vj, vj+1)) = 1);
6: C = EC − repeat vertices.

Algorithm 3 Tour splitting for approximation algorithm
Input: G = (V ,E), tour C , k .
Output: k segments of tour C .
1: Compute B = (B1, . . . ,Bi, . . . ,Bk ),Bi = i

kW (C);
2: Construct VE = (ve0 = v0, ve1 = e(v0, v1), ve2 =
v1, ve3 = e(v1, v2), . . . , ve2n+1 = v0);

3: Denote wh{ve0, ve1} = h(v0)+ w(v0, v1);
4: vej(i)← {wh(veo, ve1, . . . , vej(i)) ≤ Bi} ∧ {(vej(i) ∈ E) ∨

(vej(i) ∈ V )};
5: if vej(i) ∈ E then
6: vej(i) = vej(i)−1, ve′j(i) = vej(i)+1;
7: else
8: vej(i) = vej(i)−2, ve′j(i) = vej(i);
9: end if
10: Get the segments C = {C1, . . . ,Ci, . . . ,Ck}, Ci =

(ve′j(i−1), . . . , vej(i)), for 1 ≤ i ≤ k .

tree MST which covers all vertices (Line 1). A minimum
spanning tree or minimum weight spanning tree is a subset of
the edges of a connected, edge-weighted (un)directed graph
that connects all the vertices together, without any cycles and
with the minimum possible total edge weight. In the MST ,
we build a set D to store target points with odd degrees
(Line 2). Node degree is the number of edges associated with
the node. According to the handshaking lemma, D has an
even number of vertices. The target points in D constitute a
subgraph, and we find a minimum-weight perfect matching
M (Line 3). This step is a key step in this algorithm and a
difference from the double spanning tree algorithm which
repeats all the edges to obtain the cycle. We combine the
edges of M and MST to form a connected multi-graph H in
which each vertex has even degree (Line 4). In multi-graph
H , we form an Eulerian circuit EC which covers all target
points (Line 5). Some points are more than once covered in
the EC . Therefore, we make the EC found in previous step
into a Hamiltonian circuit by skipping repeated vertices (Line
6).

B. SPLITTING ALGORITHM
In order to guarantee the fairness of energy consumption,
we propose a novel tour splitting algorithm as shown in
Algorithm 3 to get the trajectory of each reconnaissance UAV.

At the beginning of algorithm, we compute the bound
vector B = (B1, . . . ,Bi, . . . ,Bk ) which is the key to divide
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tour C into k segments (Line 1). Bi is calculated based on
the total weight of the vertices and edges of tour C , Bi =
i
k · W (C), where W (C) = w(C) + h(C), for all 1 ≤ i ≤ k .
w(C) and h(C) represent the weight of all edges and the
weight of all vertices in tour C, respectively. Bi represents
the weight of demarcation point between the segments in
the tour C . Second, along the path we construct a sequence
of vertices and edges which contains 2n + 1 elements, and
denote it as VE = (ve0 = v0, ve1 = e(v0, v1), ve2 =
v1, ve3 = e(v1, v2), . . . , ve2n+1 = v0), e(vj, vj+1) represents
edge between two points (Line 2). The sequence consists
of vertices and edges in tour C in order. The weight of
vertices and edges is defined as wh(ve0, . . . , vej) (Line 3).
The weight of each vertex is only calculated once, which
is different from [19]. In this way, the weight of vertices
is taken into account in the tour splitting. Then, we find k
demarcation points that satisfy the fairness conditions (Line
4). From the first element ve0, for each i, 1 ≤ i ≤ k ,
we find an ending vertex vej(i) along the tour C such that
the weight of the segment wh(veo, ve1, . . . , vej(i)) satisfies
wh(veo, ve1, . . . , vej(i)) ≤ Bi. There may be two cases at the
demarcation point (Line 5-9).
Case 1: If demarcation point vej(i) is an edge, we would

delete this edge when we build the tour. We define the ending
vertex of this segment as vej(i) = vej(i)−1, and the starting
point of the next segment is defined as ve′j(i) = vej(i)+1
(Line 5-6).
Case 2: If demarcation point vej(i) is a vertex, we would

take this point as the starting point for the next segment.
We define the ending vertex of this segment as vej(i) = vej(i)−2
(Line 7-9).

Finally, we obtain a set of C = {C1, . . . ,Ci, . . . ,Ck}
which represents k segments of the tour C . Segment Ci con-
tains the edges to be travelled and the vertices to be covered
(Line 10).

VI. ALGORITHM ANALYSIS
In this section, we prove the approximation ratio of the
proposed approximation algorithm and analyze its time
complexity.

Before analyzing trajectoryUTi, we analyze the properties
of segments obtained by Algorithm 3.
Lemma 1: For Algorithm 3, segment Ci that it returns

satisfies:

cost(C) = max
1≤i≤k

{w(Ci)+ h(Ci)}

≤ Bi − Bi−1 +max
vj∈V

h(vj)

=
W (C)
k
+max

vj∈V
h(vj), (14)

where cost(C) represents the maximum energy consumption
of k segments and w(Ci) is the total weight of all edges of
segment Ci. The total weight of all vertices of segment Ci is
defined as h(Ci). In addition, we define the maximum vertex
weight as max

vj∈V
h(vj).

Proof: According to the first step to the fourth step
in Algorithm 3, there are four cases for vej(i−1) and vej(i),
where vej(i−1) satisfieswh(ve0, . . . , vej(i−1)) ≤ Bi−1 and vej(i)
satisfies wh(veo, ve1, . . . , vej(i−1), . . . , vej(i)) ≤ Bi.
Case 1: The demarcation point vej(i−1) and vej(i) are edges.

According to the fifth and sixth step in Algorithm 3, the start-
ing point of segment Ci is defined as ve′j(i−1) = vej(i−1)+1.
Meanwhile, the ending point of segment Ci is defined as
vej(i) = vej(i)−1. Therefore we can obtain

w(Ci)+ h(Ci) ≤ Bi − Bi−1. (15)

Case 2: The demarcation point vej(i−1) and vej(i) are ver-
tices. According to the seventh and eighth step in Algo-
rithm 3, the starting point of segment Ci is defined as
ve′j(i−1) = vej(i−1). Meanwhile, the ending point of segment
Ci is defined as vej(i) = vej(i)−2. Therefore we can obtain

w(Ci)+ h(Ci) ≤ Bi − Bi−1 +max
vj∈V

h(vj). (16)

Case 3: The demarcation point vej(i−1) is an edge and
vej(i) is a vertex. According to the fifth and sixth step in
Algorithm 3, the starting point of segment Ci is defined as
ve′j(i−1) = vej(i−1)+1. According to the seventh and eighth
step in Algorithm 3, the ending point of segmentCi is defined
as vej(i) = vej(i)−2. Therefore we can obtain

w(Ci)+ h(Ci) ≤ Bi − Bi−1. (17)

Case 4: The demarcation point vej(i−1) is a vertex and
vej(i) is an edge. According to the seventh and eighth step
in Algorithm 3, the starting point of segment Ci is defined
as ve′j(i−1) = vej(i−1). According to the fifth and sixth step
in Algorithm 3, the ending point of segment Ci is defined as
vej(i) = vej(i)−1. Therefore we can obtain

w(Ci)+ h(Ci) ≤ Bi − Bi−1 +max
vj∈V

h(vj). (18)

In conclusion, for segment Ci = (ve′j(i−1), . . . , vej(i)),
we can obtain

w(Ci)+ h(Ci) ≤ Bi − Bi−1 +max
vj∈V

h(vj), ∀i. (19)

We define the weight of the segment with the maximum
weight as cost(C) = max

1≤i≤k
{w(Ci)+ h(Ci)}. For this, for 1 ≤

i ≤ k , Eq. 14 can be obtained directly.
For k segments, we join the initial location SR to construct k

closed trajectories of reconnaissance UAVs. Next, we analyze
the properties of trajectory UTi.
Lemma 2: According to Lemma 6.1, trajectory set UT

satisfies:

cost(UT ) = max
1≤i≤k

{w(UTi)+ h(UTi)}

≤
W (C)
k
+max

vj∈V
h(vj)+ 2 max

vm∈V
w(SR, vm),

(20)

where cost(UT ) represents the maximum energy consump-
tion of k trajectories.
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TABLE 2. Relationship between the optimized problem and the graph theory representation.

Proof: For a set of k segments C = {C1, . . . ,Ci, . . . ,
Ck}, we join the initial location SR to form k closed trajecto-
ries UT . The total energy consumption of a closed trajectory
needs to add two parts of motion energy consumption, from
SR to the segment and from the segment back to the SR. The
energy consumption of these two parts is w(SR, ve′j(i−1)) +
w(vej(i), SR). It satisfies w(SR, ve′j(i−1)) + w(vej(i), SR) ≤
2 max
vm∈V

w(SR, vm). We can obtain

cost(UT ) = cost(C)+ w(SR, ve′j(i−1))+ w(vej(i), SR)

≤
W (C)
k
+max

vj∈V
h(vj)+ 2 max

vm∈V
w(SR, vm).

(21)

To analyze the approximation ratio of proposed approxi-
mation algorithm, we prove the following lower bound opt
of this min-max tour cover problem.
Lemma 3: For the min-max tour cover problem in this

paper, we can obtain

opt ≥ max{ w(C
∗)+h(C)
k , 2 max

vm∈V
w(SR, vm)+max

vj∈V
h(vj)},

(22)

where C∗ is the optimal tour for covering all vertices in V ,
opt is the optimal maximum energy consumption of recon-
naissance UAVs.

Proof: For the optimal solution P∗ to the min-max tour
cover problem, since ∪ki=1P

∗
i covers all vertices of V and

adds edges which are from SR to the segment and edges

which are from the segment back to SR, we have
k∑
i=1

w(P∗i ) ≥

w(C∗), which implies
k∑
i=1
{w(P∗i )+ h(P

∗
i )} ≥ w(C∗)+ h(C).

Therefore, there must exist P∗i ∈ P
∗ with w(P∗i ) + h(P∗i ) ≥

w(C∗)+h(C)
k . Thus, opt ≥ w(C∗)+h(C)

k .
Reconnaissance UAVs start from the initial location SR to

cover the target area. w(SR, vm) is proportional to the distance
from the target point to the relay UAV. Amount of data

FIGURE 4. The second possible scenario.

collected by the reconnaissance UAVs at each target point is
comparable, which means the hovering energy consumption
is roughly the same. Meanwhile, the point farthest from the
relay UAV is also the target point where the communication
energy consumption is the maximum. Therefore, we can
obtain max

vm∈V
w(SR, vm),max

vj∈V
h(vj),m = j.

We prove opt ≥ 2 max
vm∈V

w(SR, vm) + max
vj∈V

h(vj) from the

following three possible scenarios.
Case 1: The most energy-consuming UAV covers the tar-

get point with the maximum vertex weight, and this target
point is the first point to be covered. Therefore, opt includes
max
vm∈V

w(SR, vm) and max
vj∈V

h(vj). In this case, inequality opt ≥

2 max
vm∈V

w(SR, vm)+max
vj∈V

h(vj) must be satisfied.

Case 2:Themost energy-consumingUAV covers the target
point with themaximum vertex weight, and this target point is
not the first point to be covered. As shown in Fig. 4, red solid
lines represent the trajectory of the reconnaissance UAV, and
black dotted line represents max

vm∈V
w(SR, vm). According to the

triangle inequality, opt ≥ 2 max
vm∈V

w(SR, vm)+max
vj∈V

h(vj).

Case 3: The most energy-consuming UAV does not cover
the target point with the maximum vertex weight. In this case,
its energy consumption is definitely greater than that of the
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UAVwhich covers max
vj∈V

h(vj). Moreover, the above two cases

have proved that the inequality is true when the UAV covers
the target point with the maximum vertex weight.

From Lemma 6.3, we can obtain the following theorem,
which implies that the approximation algorithm can achieve
2.5-approximation ratio.
Theorem 4: Approximation algorithm proposed in previ-

ous section can achieve an approximation ratio of 2.5 for the
min-max tour cover problem.

Proof: By Lemma 6.2, we obtain cost(UT ) ≤ W (C)
k +

max
vj∈V

h(vj) + 2 max
vm∈V

w(SR, vm). This implies that for i =

1, . . . , k , the total weight of each trajectory UTi ∈ UT ,
must satisfy w(UTi) + h(UTi) ≤

W (C)
k + max

vj∈V
h(vj) +

2 max
vm∈V

w(SR, vm).

We use the Christofides algorithm to calculate tour C .
It is an approximation algorithm that guarantees its solu-
tions will be within a factor of 3

2 of the optimal solution
length [37]. Therefore, we can obtain w(C) ≤ 3

2w(C
∗).

Thus,

W (C) = w(C)+ h(C)

≤
3
2
w(C∗)+ h(C)

≤
3
2

{
w(C∗)+ h(C)

}
, (23)

and
W (C)
k
≤

3
2
·
{w(C∗)+ h(C)}

k
. (24)

Moreover, by Lemma 6.2 and Lemma 6.3, we have

cost(UT ) ≤
W (C)
k
+max

vj∈V
h(vj)+ 2 max

vm∈V
w(SR, vm)

≤
3
2
·
{w(C∗)+ h(C)}

k
+max

vj∈V
h(vj)+ 2 max

vm∈V
w(SR, vm)

≤
3
2
opt + opt

≤
5
2
opt. (25)

Hence, the proposed approximation algorithm can achieve
an approximation ratio of 2.5.
Theorem 5: Given a metric complete graph G = (V ,E)

and a positive integer k , there is a 2.5-approximation algo-
rithm for the fair energy consumption problem, which takes
O(n3) time.

Proof: The approximation algorithm includes three
steps, mainly two algorithms, Christofides algorithm and tour
splitting algorithm. First, we analyze the time complexity of
the Christofides algorithm. This algorithm consists of two
parts: the calculation of a minimum spanning tree and finding
a minimum-weight perfect matching. Finding the MST in G
takes O(n2) time. The time complexity of minimum-weight
perfect matching algorithm is O(n3). Therefore, the time

TABLE 3. Simulation parameters.

complexity of Christofides algorithm is O(n3) [37]. Second,
we analyze the time complexity of the tour splitting algo-
rithm. The time complexity of the tour splitting algorithm
is related to the number of target points. The tour splitting
algorithm takes O(n) time. The overall time complexity of
2.5-approximation algorithm is O(n3).

VII. SIMULATION RESULTS
In this section, simulation results are provided to evaluate the
performance of our proposed heuristic algorithm (HA) and
approximation algorithm (AA).

A. SIMULATION SETUP
For our simulations, we assume that n target points are dis-
tributed in a square area of side length equal to 5km. All UAVs
start from an initial location (0, 0,H ).Moreover, it is assumed
that UAVs fly at a fixed altitude of 50m, and the minimum
inter-UAV distance is set to 100m [34]. We set the maximum
velocity to be 20m/s. According to the energy consumption
models in Section III, we assume the movement parameter Q
equals to 13.19J/m and the hovering energy parameter Phv
equals to 237J/s. We set communication energy parameter
etx to be 10pJ/(m · bit) [38]. As stated in [39], the simple
free space propagation model can be utilized for estimating
the link performance for air-to-air links. Therefore, we set
the path loss exponent to be 2. The simulation parameters are
listed in Table 3.

B. SIMULATION RESULTS
In this subsection, we conduct extensive simulations under
different settings. We present simulation results to validate
the performance of our proposed algorithms as compared to
the following five benchmark schemes:

• PB algorithm: each UAV is responsible for the same
number of target points. It calculates a trajectory to cover
all target points and then decomposes the trajectory.

• KTSP algorithm: it utilizes the K-Traveling Salesman
Problem (KTSP) algorithm to get the trajectory of each
reconnaissance UAV [40].

• CF algorithm: it first assigns n target points into k clus-
ters and then uses the TSP algorithm to calculate the
trajectory for each cluster [22].
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FIGURE 5. Different number of target points.

• EE algorithm: it uses the Hungarian method to solve
the assignment problem. And then it finds the optimal
trajectories of the UAVs [12].

• CS algorithm: it proposes a trajectory planning method
based on Cuckoo Search (CS) algorithm [41].

1) DIFFERENT NUMBER OF TARGET POINTS
We set the number of reconnaissance UAVs to be 3 and
compare the seven algorithms under different number of
target points. Fig. 5(a) shows the trend of the maximum
energy consumption of the seven algorithms. The maximum
energy consumption of heuristic algorithm is reduced by
5.6% − 63.3% compared with other five algorithms. The
maximum energy consumption of approximation algorithm is
reduced by 4.5%−61% compared with other five algorithms.
As the number of target points increases, the advantages of
our algorithms are more obvious. This is mainly because the
increase of target points leads to add communication and
hovering energy consumption. Meanwhile, our algorithms
consider the point’s cost which represents the communication
and hovering energy consumption. However, the other five
algorithms only calculate the edges weight as the total weight
when planning the trajectory. As shown in Fig. 5(a), we can
also observe that the maximum energy consumption of EE
algorithm is larger than other algorithms when m ≥ 30.
This is due to the fact that EE algorithm is mainly applicable
to time-varying ground networks. However, in this paper,
the target points’ locations are fixed during the whole mis-
sion. In addition, it only considers the minimization of total
energy consumption.

Fig. 5(b) shows the trend of average energy consumption
as the number of target points changes. When the number
of points is less than 70, the average energy consumption of
KTSP algorithm is lower than our proposed algorithms. How-
ever, when the number of points is greater than 70, the average
energy consumption of our algorithms is the lowest. This is
mainly because the proportion of point’s weight increases as
the number of target points increases. From Fig. 5(c) we can
see the standard deviation of seven algorithms. Compared
with other five algorithms, the standard deviation of heuristic

algorithm is reduced by 29.7% − 91.6% and the standard
deviation of approximation algorithm is reduced by 39.2%−
91.5%. The standard deviation of CS algorithm is very large.
This is reasonable since it only considers minimizing the total
energy consumption, while neglecting the individual UAV
energy consumption. CS algorithm is a feasible scheme, but
it cannot guarantee the performance. The performance of
PB algorithm is the closest to the approximation algorithm
because different tour splitting algorithms are used in the
same tour. However, from Fig. 5(c), the results show that
the fairness of our tour splitting algorithm is better than PB
algorithm.

2) DIFFERENT NUMBER OF RECONNAISSANCE UAVS
Second, we set the number of target points to be 100 and
compare the seven algorithms under different number of
reconnaissance UAVs. Fig. 6(a) and Fig. 6(b) show that the
maximum energy consumption and the average energy con-
sumption decrease as the number of reconnaissance UAVs
increases. In fact, increasing the number of reconnaissance
UAVs is not an effective approach since it also increases
the cost. When the number of UAVs is above 5, the average
energy consumption and the maximum energy consumption
drop very slowly and they also bring economic pressure.
Therefore, when the number of reconnaissance UAVs is
greater than 5, the advantages of our algorithms are not obvi-
ous. Fig. 6(c) shows that as the number of UAVs increases,
the standard deviation of our algorithms is minimal.

3) DIFFERENT AMOUNT OF DATA
We set the number of target points to be 120, the number of
reconnaissance UAVs to be 3 and compare the seven algo-
rithms under different amount of data. Fig. 7(a) shows that
the maximum energy consumption increases as the amount of
data increases. The maximum energy consumption of heuris-
tic algorithm is reduced by 12.2% − 74.2% compared with
other five algorithms. The maximum energy consumption
of approximation algorithm is reduced by 4.3% − 71.6%
compared with other five algorithms. As the amount of data
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FIGURE 6. Different number of reconnaissance UAVs.

FIGURE 7. Different amount of data.

FIGURE 8. Different reconnaissance area sizes.

increases, the proportion of communication and hovering
energy consumption in total energy consumption increases.
Therefore, the advantages of our proposed algorithms are
more obvious. By combining Fig. 7(a) and Fig. 7(b), it is
found that EE algorithm is a feasible schemewhich is suitable
for dynamic networks, but it has the worst performance in
static networks. Fig. 7(b) shows that the performance of PB
algorithm is the closest to our algorithms. However, its stan-
dard deviation is much larger than our algorithms as shown

in Fig. 7(c). On the contrary, the standard deviation of CF
algorithm is the closest to our algorithms, but the maximum
and average energy consumption are large.

4) DIFFERENT RECONNAISSANCE AREA SIZES
We set the number of target points to be 100, the number
of reconnaissance UAVs to be 3 and compare the seven
algorithms under different reconnaissance area sizes. The
reconnaissance area we considered is square, and the abscissa
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FIGURE 9. Energy consumption of each reconnaissance UAV.

of Fig. 8 represents the side length of reconnaissance area.
As the reconnaissance area becomes larger, the flying range
of UAVs becomes larger, resulting in more motion energy
consumption. Therefore, the maximum energy consump-
tion and average energy consumption increase as the scope
of the reconnaissance area increases. As shown in Fig. 8,
the proposed algorithms perform the best under different
reconnaissance area sizes. When the reconnaissance area size
increases, heuristic algorithm exhibits better performance
than approximation algorithm. Compared with other five
algorithms, the maximum energy consumption of heuristic
algorithm is reduced by 7% − 63.4% and the maximum
energy consumption of approximation algorithm is reduced
by 3.1% − 60.5%. By observing Fig. 8(b) and Fig. 8(c),
it is found that the average energy consumption and standard
deviation of our proposed algorithms are also the lowest
under different reconnaissance area sizes.

5) ENERGY CONSUMPTION OF EACH RECONNAISSANCE
UAV
Fig. 9 shows the trend of energy consumption of each recon-
naissance UAV as the number of target points changes. As can
be seen from the figure, the proposed two algorithms can
guarantee the fairness of energy consumption between recon-
naissance UAVs, because the energy gap between three UAVs
is small.

VIII. CONCLUSION
This paper has studied the fair-energy trajectory plan prob-
lem for multi-UAV system in reconnaissance mission. The
maximum energy consumption is minimized by planning
the trajectory of each reconnaissance UAV. We first convert
the formulated optimization problem into a min-max tour
cover problem. Then we propose a heuristic algorithm and an
approximation algorithm whose approximation ratio is 2.5.
Finally, numerical results are provided to evaluate the per-
formance of the proposed algorithms under different setups.
The results show our algorithms can reduce the maximum
energy consumption of reconnaissance UAVs by 74.2% at
most, as compared with other five algorithms. In addition,
there are many other interesting research directions that could
be pursued in our future work. For one thing, we will con-
sider other practical constraints on UAV trajectory, such as
the maximum turning angle and maximum acceleration. For
another thing, we will consider planning the relay UAV’s
trajectory.
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