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ABSTRACT Acquiring the locations of WiFi access points (APs) not only plays a vital role in various
WiFi related applications, such as localization, security and AP deployment, but also inspires the emergence
of novel applications. Thus, many efforts have been invested in studying AP localization. Most existing
studies adopt the well-known lognormal distance path loss (LDPL) model, which only accounts for large-
scale fading but ignores small-scale fading induced by multipath propagation. In this paper, we tackle the
problem of AP localization based on the Rayleigh lognormal model which characterizes the influence
of both large-scale fading and small-scale fading. In addition, particle filtering is used to sequentially
narrow the scope of possible locations of the target AP. In order to label the locations of received signal
strength (RSS) measurements in real time, manual configuration or certain indoor and outdoor localization
techniques, including GPS, pedestrian dead reckoning (PDR) and WiFi fingerprinting, can be leveraged.
Moreover, due to the bias caused by unavailable or inaccurate state space, a particle area dynamic adjustment
strategy (PADAS) is designed to improve the AP localization accuracy. Extensive experiments were carried
out in typical indoor and outdoor scenarios. It is shown that, if accurate location labels are available,
the proposed method is able to achieve an average localization accuracy of 2.48 m indoors and 4.21 m
outdoors. In comparisonwith the LDPL based solutions, the proposedmethod improves by 23.82% – 70.38%
indoors and 14.13% – 35.94% outdoors; more importantly, the proposed method enhanced by using PDR,
PADAS, GPS and WiFi fingerprinting can achieve localization accuracy comparable to that with accurate
location labels. In addition, an Android application (APP) was developed to demonstrate the feasibility of
the proposed algorithm on smartphones.

INDEX TERMS WiFi access points localization, Rayleigh lognormal model, particle filtering, pedestrian
dead reckoning.

I. INTRODUCTION
With the popularization of IEEE 802.11 networks, various
novel services and products have been spurred [1]–[3], and
WiFi access points (APs) have been ubiquitous in cities.
Therefore, acquiring the knowledge of the locations of mas-
sive WiFi APs can contribute to various applications [4]–[7].
For example, the locations of nearby WiFi-enabled mobile
devices can be inferred with the locations of APs via, e.g.
trilateration, after converting received signal strength (RSS)
measurements to distances [8], [9]; GPS-free outdoor local-
ization solutions can be available when using the locations
of APs [10]; the locations of APs can also help to localize
malicious AP or deploy new APs [11].

Most existing studies [12]–[16] employed the lognormal
distance path loss (LDPL) model to localize WiFi APs.
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approving it for publication was Shuai Han.

However, the LDPL model only accounts for large-scale
fading but ignores small-scale fading induced by multipath
propagation. In a complex real environment such as indoor
offices and urban commercial districts, the multipath effect is
very serious and can influence the results of signal reception
a lot [17]. Moreover, a few studies [18], [19] established
some empirical models to replace the LDPL model, but the
accuracy of AP localization was quite limited. In addition,
by asking a user to walk and rotate, an interactive approach
was presented in [20] to determine the direction of an AP.

Consider localizing a target AP through a crowdsourc-
ing approach in the following scenario: when a user walks
by carrying a smartphone, his/her locations can be deter-
mined through manual configuration or some localization
techniques, e.g. GPS in outdoor environments, WiFi finger-
printing in indoor environments and so on [21], [22]; during
the period of walking, the smartphone automatically and
continuously collects RSS measurements of beacon packets
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from the target AP; after that, the location of the target AP
can be estimated in real time and further leveraged in various
fields. To do so, one has to address two critical issues, namely
how to label the location of each RSSmeasurement as precise
as possible and how to accurately infer the AP location by
using a sequence of RSS measurements from this AP.

In this paper, we tackle the above two issues from the
following aspects. First, instead of the LDPL model, a more
practical Rayleigh lognormal model that reflects both large-
scale and small-scale fading [23] is adopted to characterize
the relationship between RSS measurements and correspond-
ing distances. Given that the wireless channel between an
AP and a mobile device is often non-line-of-sight (NLoS) in
both indoors and outdoors, it is evident that the Rayleigh log-
normal model is more suitable than the Rician fading model
which considers line-of-sight (LoS) channels. Second, since
the RSS measurements arrive sequentially, the AP localiza-
tion problem is formulated as a particle filtering optimization
problem [24], [25]. Third, GPS and WiFi fingerprinting are
used to respectively obtain the location labels of RSS mea-
surements in outdoor and indoor scenarios. In order to further
improve the localization accuracy, PDR is adopted. Fourth,
since the localization estimates of APs severely suffer from
biases, a particle area dynamic adjustment strategy (PADAS)
is presented to mitigate the bias influence. Finally, extensive
experiments were conducted in both typical indoor and out-
door scenarios. It is shown that the proposed method signifi-
cantly outperforms existing methods. In addition, an Android
application (APP) was developed to confirm that it is totally
acceptable to apply the proposed method in practice. Part of
the content in this paper has been reported in [26].

The rest of this paper is organized as follows. In Section II,
the literature is briefly reviewed. In Section III, given an ideal
scenario where location labels are accurate, the proposed
method is elaborated based on the Rayleigh lognormal model
and particle filtering. In Section IV, given practical scenarios,
the improvements of the proposed method are presented in
detail. In section V, the experiments are conducted to verify
the proposed method and its improved version. Section VI
finally draws the conclusions and sheds lights on future
works.

II. RELATED WORKS
In the literature, efforts for AP localization have been made.
Most existing studies were conducted based on the well
known LDPL model [12]–[15].

In [12], a method called AP_Area was proposed to infer the
location of a target AP. This method obtained the propagation
parameters of the LDPLmodel offline, and acquired the loca-
tions of RSS measurement points by GPS. Only simulations
were conducted and the results showed that the cumulative
probability of positioning error less than 5 m is 80% (RSS
distortion was set to be less than 20%).

In [13], the weighted nonlinear least square (NLS) was
used to simultaneously infer the propagation parameters
of the LDPL model and the location of a target AP.

Besides, a multi-level quality control mechanism was pro-
posed to further improve the performance of this method.
Experiments were carried out in an indoor environment
and the results indicated that the localization accuracy was
improved by 47% ∼ 86% compared to the previous LDPL-
based methods.

Ji et al. used the Monte Carlo simulation method to
estimate the location of a target AP and the propagation
parameters of the LDPL model [14]. Both simulations and
experiments in an office building were conducted and showed
that the localization errors were around 10 m with a 95%
confidence interval.

In order to reduce the costs of collecting RSS measure-
ments, the Taylor expansion and Lagrange’s method with
crowdsourcing RSS measurements were adopted in [15]. The
results of experiments showed that the average accuracy of
AP localization was as good as 4 m. However, the good result
is partly due to the fact that the path where RSS measure-
ments were collected was very close to the target AP’s real
location [27], [28].

In addition, some other methods didn’t adopt the LDPL
model. Koo et al. established a linear relationship between
RSSmeasurements and distances to replace the LDPLmodel,
but the accuracy of AP localization was quite limited [18].
In [19], a modified Hata-Okumara model was applied and
experimental results suggested that, if the positions of RSS
measurements were carefully selected, the AP localization
accuracy could be improved compared to the method men-
tioned in [18], but the improvement was limited too.

In summary, although different signal propagation models
and various optimization methods are used in the existing
works, AP localization still can not be effectively applied
in practical applications due to its accuracy and environ-
mental limitations. Therefore, this paper tackles this prob-
lem by using the Rayleigh lognormal model and particle
filtering, and aims to improve the accuracy and feasibility of
AP localization.

III. METHODOLOGY
In this section, we suppose that accurate location labels are
available, and will elaborate the basic methodology.

A. RAYLEIGH LOGNORMAL MODEL
The Rayleigh lognormal model used in this paper are briefly
introduced in this subsection.

Different from the LDPL model, the Rayleigh lognormal
model can both take into account large-scale fading and
small-scale fading. In [23], the probability density function
of Rayleigh lognormal model can be approximated by

p(µc) =
4

0(ms)
hms+1µmsc Kms−1(2µch), (1)

where µc is the signal amplitude at the receiver, 0(·) is a
Gamma function, Kv(·) is the modified Bessel function of
the second kind and order v and ms inversely reflects the
shadowing severity.
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By letting σ be the standard deviation of the shadowing
effect (satisfying σ = σdB ln 10/10) and Pr be the area mean
power (namely that both the shadowing and multipath effects
are averaged out) at a specific position, define

ms =
1

eσ 2 − 1
, (2)

�s = Pr

√
ms + 1
ms

, (3)

h =
√
ms
�s
, (4)

Pr = Pr (d0)− 10n log10(
d
d0

), (5)

where�s is the gamma shadow area mean power [23]. Then,
according to [29], the instantaneous signal power, denotedPr ,
can be expressed as

Pr =
1
2
µ2
c . (6)

B. AP LOCALIZATION BASED ON PARTICLE FILTERING
First, define si to be the state at time instance i, ski =
{xki , y

k
i , n

k
i , σ

k
i , r

k
i } and wki to be the k-th particle and its

weight with k = 1, · · · ,N , where [xki , y
k
i ] is the location

coordinates, nki is the path loss exponent, σ ki is the standard
deviation of the shadowing effect, and rki is the average
received power at reference distance d0 which is set to be 1 m
without loss of generality. Let mi be the observation at time
instance i, namely the RSS measurement from the target AP.
In particular, the initial state s0 can be obtained by sam-

pling the random and uniform distribution based on the priori
knowledge of the spatial and channel characteristics, and the
corresponding weight wk0 = 1/N . Given the RSS measure-
ment at each time instance, say mi, the weight wki can be
updated by

ŵki = wki−1 × p(µc), (7)

where µc and p(µc) can be calculated by using (6) and (1).
Then, the weights are normalized as below

wki =
ŵki∑N
j=1 ŵ

j
i

. (8)

The location estimate can be calculated in a weighted
average manner as follows

[x̂i, ŷi] =
N∑
k=1

wki × [xki , y
k
i ]. (9)

An importance sampling step is initiated based on the
Bayesian bootstrap to avoid particle degradation [30]

1∑N
k=1(w

k
i )

2
<

2N
3
. (10)

Repeat the above steps until there is nomore RSSmeasure-
ment. Finally, [x̂i, ŷi] is returned as the location estimate of the
target AP, and we call the proposed method RP as described
in Algorithm 1.

Algorithm 1 The RP Algorithm
Input: The set of RSS measurements before time instance q,

denotedmi with i = 1, · · · , q; the corresponding location
labels, denoted (Xi,Yi); the particle’s area, denoted PA,
and the particle’s number, denoted N;

Output: The estimated position of the target AP, denoted
[x̂q, ŷq]; the path loss exponent, denoted nq; the standard
deviation, denoted σq; the average received power at 1 m,
denoted rq;
Let si to be the state at time instance i, ski =

{xki , y
k
i , n

k
i , σ

k
i , r

k
i } and w

k
i to be the k-th particle and its

weight with k = 1, · · · ,N ;
Initialize s0 by sampling according to a random and
uniform distribution in PA, and the corresponding weight
wk0 = 1/N ;

1: for each mi and (Xi,Yi), do
2: for each ski−1, do
3: Calculate p(µc) using the Rayleigh lognormal

model;
4: Update the weight ŵki = wki−1 × p(µc);
5: end for
6: for each ŵki , do

7: Normalize the weight wki =
ŵki∑N
j=1 ŵ

j
i

;

8: end for
9: if 1∑N

j=1

(
wji

)2 < 2
3N , then

10: Break;
11: end if

Resampling;
12: for each wki , do
13: Update the weight wki =

1
N ;

14: end for
15: end for

Caculate [x̂q, ŷq], nq, σq and rq using the weighted aver-
age method;
Return [x̂q, ŷq], nq, σq and rq.

FIGURE 1. System architecture.

IV. ENHANCING THE AP LOCALIZATION METHOD
The overall system architecture is depicted in Fig. 1.
As can be seen, GPS and WiFi fingerprinting are used to
obtain the location labels of RSS measurements; PDR is
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employed to further improve the localization accuracy;
finally, the improved RP method based on PADAS is applied
to fuse the above information in the estimation of AP location.

A. PDR
PDR generally involves estimating three critical quantities,
namely step length, heading and step count. In order to esti-
mate the step length of a user, the method proposed by Shin
et al is used [31]; the yaw angle mentioned in [32] is calcu-
lated to decide the heading; the fast Fourier transform (FFT)
based step detection and counting method proposed in [33] is
used to obtain the step count. After obtaining the estimates of
the step length, heading and step count, the displacement of
two consecutive positions can be calculated.

We improve the RP method by incorporating the dis-
placement information into the particle filtering. The par-
ticle’s state is extended with [X ki ,Y

k
i ] which denotes the

approximate location label used for calculating p(µc), and is
updated according to the location label at the previous time
instance, displacement information and current localization
result, namely

[X ki ,Y
k
i ] =

[X ki−1,Y
k
i−1]+ [DXi,DYi]+ [Xi,Yi]

2
, (11)

where [DXi,DYi] is the displacement at time instance i;
[Xi,Yi] is the localization result returned by, e.g. GPS orWiFi
fingerprinting, at time instance i. The improved RP algorithm
is described in Algorithm 2.

B. PADAS
The localization results suffer from severe biases, which
is attributed to the fact that the performance of the AP
localization method based on particle filtering is greatly
dependent on the area in which particles are distributed.
Therefore, we propose the PADAS, including the initial
particle area determination and particle area adjustment,
to mitigate the bias influences, thereby enhancing the AP
localization accuracy.

1) INITIAL PARTICLE AREA DETERMINATION
Given an arbitrary RSS measurement from a target AP,
the distance between the location where the RSS measure-
ment is made and the target AP can be roughly estimated as

d̂ = 10
Pr (d0)−Pr

10n . (12)

However, the d̂ is inaccurate according to [34]. Therefore,
we set the Pr (d0) and n to be −28 dBm and 2 to increase d̂
appropriately, so that the target AP can be covered as possible.
After that, a square initial particle area can be determined
by letting the location label be its center and 2d̂ be the side
length.

2) PARTICLE AREA ADJUSTMENT
Prior to resampling in Algorithm 2, the particle area is
updated by generating a new square which is centered at

Algorithm 2 The Improved RP Algorithm
Input: mi; (Xi,Yi); PA and N; the displacements, denoted

(DXi,DYi); i = 1, · · · , q;
Output: [x̂q, ŷq]; nq; σq; rq;

Let si to be the state at time instance i, ski =

{xki , y
k
i , n

k
i , σ

k
i , r

k
i ,X

k
i ,Y

k
i } and w

k
i to be the k-th particle

and its weight with k = 1, · · · ,N ;
Initialize s0 by sampling according to a random and
uniform distribution in PA, X k0 and Y k0 are generated
according to random and normal distributions based on
the initial location label, and the corresponding weight
wk0 = 1/N ;

1: for each mi, (Xi,Yi) and (DXi,DYi), do
2: Update (X ki , Y

k
i ) according to (X ki−1, Y

k
i−1), (DXi,DYi)

and (Xi,Yi);
3: for each ski−1, do
4: Calculate p(µc) using the Rayleigh lognormal

model, and
(
X ki ,Y

k
i

)
is used to replace (Xi,Yi);

5: Update the weight ŵki = wki−1 × p(µc);
6: end for
7: for each ŵki , do

8: Normalize the weight wki =
ŵki∑N
j=1 ŵ

j
i

;

9: end for
10: if 1∑N

j=1

(
wji

)2 < 2
3N , then

11: Break;
12: end if
13: Adjust particle area;
14: Resampling;
15: for each wki , do
16: Update the weight wki =

1
N ;

17: end for
18: end for

Caculate [x̂q, ŷq], nq, σq and rq using the weighted aver-
age method;
Return [x̂q, ŷq], nq, σq and rq.

FIGURE 2. Particle area adjustment.

the weighted average of AP location estimates in all the
particles’ states and a fixed number (say 30 m) as the side
length. Based on the updated particle area, the resampling is
implemented to generate new particles randomly and evenly.
As shown in Fig. 2, the red dashed square represents the
previous particle area, the blue dashed square represents the
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FIGURE 3. The layout of the routes and buildings in the experiments.

updated particle area, the red and green dots represent the
center of the red square and the true target AP position,
the blue dot represents the weighted average result of AP
location estimates in all the particles’ states.

V. EXPERIMENTS
In this section, both indoor and outdoor scenarios are taken
into consideration to verify the effectiveness of the proposed
method and its improved version. In addition, the Android
APP developed is used to validate the feasibility of the pro-
posed method.

A. EXPERIMENTS WITH ACCURATE LOCATION LABELS
First of all, in order to evaluate the performance of the
proposed method, we have carried out extensive experi-
ments in typical indoor and outdoor scenarios by assum-
ing that accurate location labels of RSS measurements are
available.

1) EXPERIMENTAL SETUP
As shown in Fig. 3, the experiments were conducted in
6 typical scenarios. One WiFi AP was installed on a
1.5-meter high tripod placed in the position marked by a
blue WiFi icon, and the routes where RSS measurements
were collected are marked by red dotted lines. Two students
(1 male and 1 female) were requested to walk along the
specified route 5 times at constant speeds in each scenario.

Another two methods based on the LDPL model, termed
LP (using particle filtering) and LN (using NLS), were
implemented. As for the implementation of Particle Filtering,
the particle number is set to be 5000, and the state space in
each scenario is set to be a rectangle drawn in black dashed
lines in Fig. 3.

2) LOCALIZATION PERFORMANCE
In the first place, the distributions of the localization errors
produced by the three methods are depicted in Fig. 4. It’s
obvious that the proposed RP method is superior to the
other two methods; moreover, it is clear that the proposed
RP method incurs a small error variations compared to the
other two methods, indicating that the proposed method is
relatively stable.

Regarding to the 3 indoor scenarios, the localization errors
in the Shopping Mall and Dormitory scenarios are much less
than those in the Office scenario, which can be explicated in
the following two dimensions: (1) the routes are closer to the
target AP in the ShoppingMall andDormitory scenarios com-
pared to the Office scenario; (2) the curved routes in the Shop-
ping Mall and Dormitory benefit AP localization according
to the existing localization performance studies [35].
In addition, the average localization errors and the rela-
tive improvement are listed in Table 1 (including indoor
scenarios) and Table 2 (including outdoor scenarios) to make
a clear comparison.
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FIGURE 4. Location error distributions.

TABLE 1. The comparison of the mean localization errors in indoor scenarios.

TABLE 2. The comparison of the mean localization errors in outdoor scenarios.

Therefore, it can be concluded that the proposed RP
method surpasses the other two LDPL based methods, and
the results of experiments agree with the advantages of the
Rayleigh lognormal model.

3) THE EFFECT OF THE PARTICLE NUMBER
The localization errors of different particle densities (equal to
the average number of particles in 1m2) produced by the pro-
posed method RP in the office scenario are depicted in Fig. 5.
As can be seen, there is no more significant improvement
in localization accuracy when increasing the particle number
beyond 1 particle per squared meter. Similar results can be
observed in other scenarios. On these grounds, the particle
density adopted in our following experiments is 1 m−2 with
the result that the particle number is less than 10000 if the
particle area is maximally 100× 100.

B. EXPERIMENTS WITHOUT ACCURATE LOCATION LABELS
In order to validate the improved method, we first conduct
experiments only in the outdoor urban street due to the

FIGURE 5. The location error distributions of different particle densities.

difficulties in aligning outdoor coordinate systems; then,
we carry out experiments in the indoor office scenario where
the WiFi fingerprint-based localization system is available
for approximately determining the location labels of RSS
measurements.
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1) OUTDOOR EXPERIMENTS
As shown in Fig. 3(f), outdoor experiments are carried out in
the urban street. One WiFi AP (ASUS RT-N16) was installed
on a 1.5-meter high tripod placed in the position marked by a
blueWiFi icon, and the route alongwhich RSSmeasurements
from the target AP were collected is marked by a red dotted
line. 5 participants (3 males and 2 females) held the same
smartphone and walked along the specified path twice to
collect data.

In order to obtain the true coordinate of the target APwhich
is placed inside a shop, an indirect approach was adopted
due to the unavailability of GPS for indoor environments.
First, we collect GPS data at a selected outdoor position for
5 minutes and average the collected data; then, the distance
and direction from the outdoor position to the target AP are
measured by using a ruler and a compass; finally, by combin-
ing the measurements above, the true coordinates of the target
AP can be obtained.

In order to evaluate the performance of every part of the
improved method, we implement the following four differ-
ent versions: the RP-G (using the RP method and GPS),
the RP-GA (including the PADAS into the RP-G), the RP-GD
(including PDR into the RP-G) and the RP-GDA (including
the PADAS into the RP-GD).

FIGURE 6. The location error distributions of outdoor experiments.

TABLE 3. The comparison of the mean localization errors in the outdoor
urban street.

The boxplots of the localization errors produced by the four
methods are shown in Fig. 6. It can be observed that the intro-
duction of the PADAS and PDR can substantially improve
the AP localization results. To make a clear comparison,
the average localization error and the relative improvement
are listed in Table 3. It can be seen that the improvement
ratio by PDR is 25.13%, while that by PADAS is only 7.72%.

The reason why the improvement of PADAS is not signifi-
cant is because the bias caused by the initial particle area is
sufficiently small, such that there is no more need to reduce
the bias. When the PADAS and PDR are introduced together,
the average localization error can be as low as 6.57 m, and the
improvement ratio is 44.23%.

Therefore, we can conclude that the enhanced method can
effectively improve the AP localization accuracy of the RP
method in the outdoor urban street scenario.

2) INDOOR EXPERIMENTS
In order to validate the improved method in indoor scenarios,
we conduct experiments in the typical indoor office where
the WiFi fingerprint-based localization system is available.
As shown in Fig. 7, the office in Fig. 3(c) is partitioned into
Office A, Office B and Office C. It should be noted that
the WiFi fingerprint-based localization system achieves the
localization accuracy between 2 m and 4 m.

FIGURE 7. The indoor layout in experiments.

In the indoor experiments, one WiFi AP (ASUS RT-N16)
was placed at the position marked by a blue WiFi icon,
and 5 participants (3 males and 2 females) were asked to
hold the same smartphone and walk around in each area
(e.g., Office A, Office B and Office C) to collect two sets
of RSS measurements from the target AP.

Similar to the outdoor experiments, we compare the RP-F
(using the RP method and WiFi fingerprint-based localiza-
tion), the RP-FA (including the PADAS into the RP-F),
the RP-FD (including PDR into the RP-F) and the RP-FDA
(including the PADAS into the RP-FD).

The boxplots of the localization errors produced by the
four methods are shown in Fig. 8. It can be observed that the
introduction of PDR and the PADAS can both reduce the AP
localization errors. To make a clear comparison, the average
localization errors and the relative improvement are listed
in Table 4. It can be seen that, after introducing the PADAS,
the average localization error can be as low as 3.52 m, and
the improvement ranges between 22.98% and 52.59%; after
introducing PDR, the average localization error can be as
low as 3.66 m, and the improvement ranges between 19.91%
and 39.02%; after introducing both the PADAS and PDR,
the average localization error can be as low as 2.47 m, and
the improvement ranges between 45.95% and 65.92%.

Therefore, we can conclude that the enhanced method can
effectively improve the AP localization accuracy of the RP
method in the indoor office scenario.
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FIGURE 8. The location error distributions of indoor experiments.

TABLE 4. The comparison of the mean localization errors in the indoor office.

FIGURE 9. The biases of AP localization results.

Besides, the biases of AP localization results produced by
the four methods are shown in Fig. 9. It can be observed that
the PADAS can effectively reduce the biases, thereby reduc-
ing the AP localization errors; additionally, PDR also helps
to reduce the biases, but the reduction is not as significant as
the PADAS.

C. ANDROID APP
In order to confirm that the proposed method can be deployed
in practice, we have developed an Android APP named

L-AP based on Baidu MAP API. After starting L-AP, one
can select a target AP from the list of surrounding APs, and
configure three key parameters, including the RSS sampling
interval, the number of particles and the range of AP local-
ization; after that, RSS measurements and GPS data can be
automatically and continuously collected, and then, the AP’s
estimated location can be updated and displayed.

By setting the sampling interval to be 1 s, the number of
particles 5000 and the range 80m × 80m, the localization
results of the AP at 1 s, 5 s and 30 s are illustrated in Fig. 10.
In each figure, the blue dot denotes the current position of
a participant, the red dot denotes the estimated location of
target AP and the green dot which is drawn by us denotes the
true AP location. It can be observed that, with the increasing
number of RSS measurements, the location estimate of the
target AP approaches to the true AP location; specifically,
at 5 s, the localization error is around 10 m.

Furthermore, we evaluate the time efficiency of the pro-
posed algorithmwith respect to different numbers of particles
on a smartphone. To be specific, the smartphone used is
Xiaomi MI 8 SE with Snapdragon 710, 6GB RAM and 64GB
storage. Given a specific number of particles, 10 sequences of
RSSmeasurements are fed into the algorithm and the average
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FIGURE 10. The displays of different moments in L-AP.

TABLE 5. The time costs with respect to different numbers of particles.

time of processing each RSS measurement is calculated. The
results with the particle number rising from 5000 to 35000
are listed in Table 5. As can be seen, with the particle number
below 35000, the execution time of processing one RSS
measurement is often below 1 s; it’s obvious that as long as
the RSS sampling interval is greater than 1 s, it is normally
acceptable to have the particle number up to 35000. However,
according to the aforementioned discussion in relation to the
number of particles, having more than 10000 particles does
not contribute to the estimation accuracy of the proposed
algorithm. Therefore, it can be summarized that running the
proposed algorithm on smartphones is feasible.

VI. CONCLUSION
In this paper, we presented a novel AP localization method by
adopting the Rayleigh lognormal model and particle filtering.
Differently from the well-known LDPL model, the Rayleigh
lognormal model incorporates the pervasive small-scale fad-
ing (caused by themultipath effect). Moreover, we introduced
PDR, PADAS, GPS in the outdoor case and WiFi finger-
printing in the indoor case to improve the practicality and
accuracy of the proposed method. Indoor and outdoor exper-
iments were carried out, and verified the effectiveness of the
enhanced method. Finally, an Android APP was developed
and confirmed the feasibility of the proposed method.

However, the proposed method is still restricted by the fol-
lowing limitations. First, only the 2-dimensional space is con-
sidered. Secondly, the localization accuracy of our method
is dependent on the accuracy of any adopted localization
technique, but their mathematical relationship is unknown.

Therefore, we would like to advance our method by solving
the above limitations in our future works.
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