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ABSTRACT AnAround ViewMonitor (AVM) is widely used as one of the perception sensors for automated
parking systems. By applying semantic segmentation based on a deep learning approach, the AVM can detect
two essential elements for automated parking systems: slot marking and obstacles. However, the perception
based on the deep learning approach in the AVM has certain limitations such as occlusion of the ego-
vehicle region, distortion of 3D objects, and environmental noise. We overcome the problems by proposing
an evidence filter that improves the detection performance based on evidence theory and a Simultaneous
Localization and Mapping (SLAM) algorithm. The proposed algorithm is composed of three parts: the
semantic segmentation of the AVM image, confidence modeling based on evidence theory, and evidence
SLAM. Semantic segmentation classifies the grids in the AVM image into three states: slot marking,
freespace, and obstacle. The grids with these three states are modeled by a confidence model based on
evidence theory. Finally, the states of the grids around the ego-vehicle are accumulated and estimated by the
evidence SLAM. The proposed filter was evaluated by experiments in real parking-lot environments.

INDEX TERMS Filtering, around view monitor, evidence theory, semantic segmentation, SLAM.

I. INTRODUCTION
Parking lots where vehicles usually stay for long times are one
of the most important places that must facilitate access after
driving. However, many drivers suffer when using relatively
unfamiliar driving controls in parking lots such as back-
ward movement and driving in high curvatures. In addition,
the high vehicle density boosted by the increase of vehicles
and rapid urbanization has caused that 23% car accidents have
occurred in the parking lots [1]. To improve driver comfort
and safety, automated parking systems have been widely
researched [2]–[8].

When performing automated parking, perceiving the slot
markings and other obstacles near the ego-vehicle is essential.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chenping Hou.

The perceived information has three key roles in automated
parking systems: parking position selection, obstacle detec-
tion, and ego-vehicle pose estimation. The position where
the ego-vehicle will be parked can be selected through slot
markings and empty spaces that are unoccupied by other
obstacles [9]. In addition, measured obstacles are used to
avoid collisions in path planning [8]. Finally, measured slot
markings can provide the inferences to estimate the rel-
ative pose between the selected parking position and the
ego-vehicle for controlling the ego-vehicle [8].

The perception information for automated parking sys-
tems has highly intimate connections with the perception
sensors installed in the ego-vehicle; the perception sensors
in automated parking systems have two requirements: cost
and measurement range. Since automated parking systems
are applied in mass-produced products, the sensors for the
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system must be cheap to install or must be existing sensors
that are installed in conventional vehicles for other purposes.
Furthermore, the sensors are required to detect close envi-
ronments in all directions for automated parking systems in
narrow regions.

A semantic segmentation based on a deep learning
approach, which has been recently researched in an image
processing area, provides the potential to detect the slot mark-
ings and obstacles solely based on AVM [8], [9]. The seman-
tic segmentation based on the deep learning can classify an
AVM image as slot marking, freespace, and obstacle. Despite
the potential, it is difficult to use the semantic segmentation
algorithm practically, since the algorithm has five inherent
problems caused by the properties of the AVM and the deep
learning approach, as shown in figure 1.
• Occlusion: Information within the ego-vehicle region
cannot be detected from the AVM.

• Misclassification: The deep learning can provide incor-
rect information due to environmental noise.

• Geometric distortion: A geometric relationship
between the cameras and the ground can be distorted
by the roll and pitch motion of the ego-vehicle.

• Calibration error: Incorrectly calibrating the AVM can
cause errors in the AVM image.

• Stretched obstacle: Since the AVMmakes 3D obstacles
to be stretched, the information behind obstacles cannot
be inferred.

FIGURE 1. Limitations of the semantic segmentation in the AVM image:
(1) occlusion, (2) misclassification, (3) geometric distortion, (4)
calibration error, and (5) stretched obstacle.

In order to improve the semantic segmentation perfor-
mance by overcoming five problems, we propose an evidence
filter. Along with the moving of the ego-vehicle, the filter
would accumulate sequential measurements from the seman-
tic segmentation into a grid map around the vehicle. Since
each grid in the grid map has information accumulated by
previous and present measurements, the filter can determine
the grid’s precise state.

In order to apply the filter, three problems are consid-
ered. First, the reliability of the measurements is evaluated
in advance to give more credit to reliable measurements in
the accumulation process. The reliability is determined by
five confidence models designed to reflect the inaccuracy of
the five inherent problems. Second, a method to accumulate
the measurements must be considered in each grid. Although
probabilistic theory is generally used to accumulate measure-
ments, this theory can only treat binary class problems which
determine existence of objects [10] or slot markings [11]. The
proposed filter solves the problem by applying an evidence

theory to accumulate multiple class measurements such as
slot marking, freespace, and obstacle. Finally, it is essential
that the filter estimates the moving of the vehicle precisely
because the filter accumulates measurements into the grid
map based on the vehicle pose. To estimate the moving,
we apply a Simultaneous Localization andMapping (SLAM)
algorithm based on motion information and matching infor-
mation between measured slot markings.

This paper’s goal is to improve the semantic segmentation
performance based on the AVMby overcoming the five inher-
ent problems. To achieve the goal, the paper has three main
contributions.
• We propose the evidence filter based on Evidence the-
ory and SLAM to improve the semantic segmentation
performance.

• The evidence filter applies the confidence models
designed to overcome the five inherent problems caused
by the properties of the AVM and deep learning.

To describe the evidence filter, this paper is organized
as follows. Section II explains works related to the paper.
Section III describes the system architecture of the proposed
algorithm. Sections IV, V, and VI explain semantic seg-
mentation based on the deep learning approach, confidence
modeling to accumulate the semantic information, and the
evidence SLAM based on the evidence theory and the SLAM
algorithm. In Section VII, experiments evaluate the proposed
algorithm in real environments. Finally, the paper is con-
cluded with Section VIII.

II. RELATED WORKS
In the automated parking system, the targets of perception
are categorized into two types: parking space detection
and obstacle detection. Various range-finding sensors are
widely used to perform these two functions: Ultra-sonic
sensors [12]–[15], Short-range radars [16]–[18], single-layer
LIDARs [19]–[21], structure from motion [22]–[24], and
binocular stereo [25]–[27]. Since the introduction of auto-
mated parking systems to the public as a product, ultra-
sonic sensors installed in both sides of the bumper of the
ego-vehicle have primarily been used due to their low cost.
However, this approach has three problems: the compulsion
of driving, positioning errors due to inaccurate motion sen-
sors, and failures in no obstacle environments. Measuring
empty spaces for parking space selection requires that the
ego-vehicle is driven in front of empty spaces because the
sensors have narrow measurements. Furthermore, since
the measured empty spaces are registered based on the
inaccurate vehicle motion sensors, the positioning errors can
occur based on drift errors. Finally, ultra-sonic sensor-based
perceptions cannot cope with the situation in no-obstacle
environments. Although approaches based on short-range
radar [16]–[18] and single-layer LIDAR [19]–[21] excluded
the compulsion of driving problems, it is difficult for such
sensors to be used in mass-produced products due to their
high price. Since the range-finding sensors based on imaging
sensors such as structure from motion [22]–[24] and the
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binocular stereo [25]–[27] are relatively cheap, imaging sen-
sors are researched. However, feature point matching, which
determines the performance of ranging sensors, is greatly
affected by environmental noise such as day and night, under-
ground, and rain. In addition, the generally used hand-craft
features do not have any semantic information for geometric
points such as obstacle and slot markings.

To cope with the environments without any obstacles,
the parking slot marking detection has been researched. The
slot marking detection can be classified into two categories:
hand craft feature-based and artificial intelligence-based.
The methods to extract the slot marking features from the
images have been widely researched such as local thresh-
old [28], PHD filter [29], steerable filter [30], canny edge
method [31], randomized Hough transform [32], and proba-
bilistic Hough transform [33]. However, the feature extrac-
tion methods suffered from false-positive features affected
by the 3D objects and environmental noises. In order to
remove the false-positive features, Lee et al. [11] proposes
an occupancy filter based on probabilistic theory. Although
themethod can remove the false-positive features, themethod
can detect only slot markings other than the 3D obstacles.
In addition, since the method uses only motion information
to estimate the trajectory of the vehicle, the images are accu-
mulated inaccurately. In addition to the hand-craft features,
the slot marking detection based on the artificial intelligence
started from Xu et al. [34]. They recognized colored slot
markings through the neural network based color segmenta-
tion [34]. Recently, many approaches based on deep learning
have been researched since the success of the AlexNet [35].
Valipour et al. determined the occupancies of the parking slots
based on deep learning using the surveillance camera [36].
However, the system is not suitable for an automated park-
ing system because the system requires infrastructures such
as the surveillance cameras and the communication sys-
tem with the vehicle. For the automated parking system,
Zhang et al. proposed the deep convolutional neural network
based parking slot detection algorithm using the AVM system
[37], [38]. However, since the method did not consider the
other vehicles, the parking system cannot be performed in the
environment only with the other vehicles.

To detect both other obstacles and parking slot markings,
Li et al. used amapping vehicle with a 3DLIDAR sensor [39].
However, since the 3D LIDAR sensor is a high-cost sensor,
it is not suitable for mass production of the intelligent vehi-
cles. Different from this approach, Suhr et al. proposed the
sensor fusion algorithm with the AVM system and ultrasonic
sensors [40]. Since the approach detects the slot markings
based on the hand-craft features, it can suffer from false-
positive features. Also, it is difficult to fit the coincidence of
calibration parameters of the multiple sensors.

III. SYSTEM ARCHITECTURE
As shown in figure 2, the evidence filter consists of three
parts to measure the slot markings and obstacles precisely:
a) semantic segmentation, b) confidence modeling,

c) evidence SLAM. a) The semantic segmentation based
on the deep learning approach [9] splits the AVM image
measured from the intelligent vehicle into three semantic
probabilistic channels: slot marking p(S), freespace p(F),
and obstacle p(O). Each pixel in the semantic segmented
AVM image has three probabilities whose summation is 1.
In the process, the ego-vehicle region is excluded, because
the region cannot be measured from the AVM image.

b) The confidence modeling based on the evidence
theory is performed in order to reflect the reliability of the
semantic segmented AVM image. The modeling converts the
semantic segmented AVM image into the local Evidence
Grid Map (EGM), which consists of two-dimensional dis-
crete cells around the ego-vehicle. To overcome the five
problems as shown in figure 1, the local EGM considers
the five confidence models with the properties of the AVM
image and the deep learning approach: (1) ego-vehicle model,
(2) misclassification model, (3) geometric distortion model,
(4) calibration error model, and (5) stretched obstacle model.
First, the ego-vehicle model classifies the region in the ego-
vehicle as unknown states. Second, the misclassification
model applies the classification accuracy of the deep learn-
ing approach. Third, the geometric distortion model reflects
the error of the image deformed from inaccurate geometric
relationship between the cameras and the ground. Fourth,
the calibration error model reflects the rectified errors of the
AVM cameras. Finally, the stretch of the 3D obstacle from the
AVM image is considered in the confidence model. As shown
in figure 2-(b), the pixel in the local EGM modeled by the
five confidence models includes four channels such as the
red, green, black, and blue colors. The four channels represent
slot marking, freespace, obstacle, and unknown, respectively.
The local EGM is used as the measurement of the evidence
SLAM based filtering algorithm.

c) The evidence SLAM-based filtering algorithm is applied
to estimate the precise states around the ego-vehicle by
accumulating the local EGM to a global EGM, which is
represented in the global coordinate. Since the relative posi-
tioning in the local coordinate is important to accumulate the
local information, the evidence SLAM uses the GraphSLAM
algorithm [41]. The GraphSLAM algorithm based on the
motion and matching information with the slot markings
is effective to estimate the relative positioning, because the
slot markings on the ground do not have the deformation
property differently with the obstacles. Based on the relative
positioning, the evidence SLAM merges the local EGM to
the global EGM. The states in the global EGM can be more
precisely estimated by accumulating the past-and-present
measurements than by the present measurement only. Finally,
the semantic states around the ego-vehicle are extracted from
the global EGM and determined to the deterministic filtered
states.

IV. SEMANTIC SEGMENTATION
Many researchers have worldwide researched line extraction
algorithms to acquire the slot markings for advanced driver
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FIGURE 2. System architecture of the evidence filter.

assistance systems. However, the approaches have some
limitations to an automated parking system, because other
environmental information such as freespace and obstacle
is not recognized. The deep learning approaches widely
researched in the computer vision area allow detection of
all information from the image. In order to detect the slot
marking, freespace, and obstacle, a fully convolutional neural
network(FCN)-based semantic segmentation algorithm is
applied [42]. It has been researched in several papers that it is
effective for the deep learning approach to classify the AVM
image into semantic information in the automated parking
system [8], [9].

A semantic segmentation model consists of two parts: the
encoder and decoder. The encoder plays a role in high-level
feature extraction from the AVM image. Using the high-
level features, the decoder estimates pixel-wise semantic
information by using an up-sampling method. The archi-
tecture of the semantic segmentation is based on the paper
proposed by Long et al. [42]. The proposed structure has
three benefits: usage of predefined parameters, end-to-end
learning, and scalability. In order to extract high-level fea-
tures, an effectiveness-proven model (VGG 16) is used as
predefined parameters for the encoder. Finally, the structure
has no effect from the image size. As a result of the learning
algorithm, the semantic inference from the AVM image gives
the pixel-wise semantic information, which consists of three
states: slot marking, freespace, and obstacle. Each pixel
except the ego-vehicle region has three probabilities for the
three states, the summation of which must be one. The ego-
vehicle region is not treated in the semantic segmentation
process.

To train the learning model for semantic segmentation,
6, 763 images with manual annotations are constructed man-
ually [43]. The dataset has many images under various
environments, such as rainy day, sunny day, and indoor
environments. In order to improve the performance of the
deep learning approach, an augmentation of the data set is
required. For the augmentation, random cropping, flipping,
and rotating are applied. The result of the semantic segmen-
tation is shown in figure 3.

FIGURE 3. Result of semantic segmentation from the AVM image.

V. CONFIDENCE MODELING
A. LOCAL EGM BASED ON EVIDENCE THEORY
As shown in figure 2, the semantic segmented AVM image
is accumulated into the global semantic space for acquiring
the semantically estimated information around the vehicle.
Unfortunately, the semantic segmented AVM image cannot
reflect the real semantic information around the ego-vehicle
precisely due to the several properties of the AVM image
and the deep learning approach as shown in figure 1. First,
the region in the ego-vehicle cannot be measured in the
AVM image. Next, inaccurate geometric distortion between
the cameras and the ground can distort the AVM image,
because it is assumed that the AVM image is rectified in the
parallel condition between the ego-vehicle and the ground.
In addition, the inaccurate calibrations of the camera sensors
can distort the AVM image. Furthermore, 3D objects with
heights are stretched in the AVM image. Finally, the seman-
tic segmentation based on the deep learning can misclas-
sify the semantic information from the AVM image. These
problems cause the inaccuracy in each pixel of the semantic
AVM image. Since the inaccuracy affects the performance of
accumulation into the global semantic space, the inaccuracy
must be considered in the accumulation process. In order to
reflect the inaccuracy of the information, the semantic AVM
image is converted to the local EGM based on the evidence
theory [44].

The local EGM models environments around the ego-
vehicle into two-dimensional discrete cells. Each cell of the
local EGM is inherently affiliated to one of three states: slot
marking (S), freespace (F), and obstacle (O). The three states
are used as a frame of discernment� = {S,F,O}. The states
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of the local EGM can be extended to the power set 2� =
{∅, S,F,O, S∪F, S∪O,F∪O, S∪F∪O}, which is the set of
all subsets of the � = {S,F,O}. To quantify the evidence of
each element of the power set, a mass function, m, is applied.
Them(∅) denotes the conflictmass function, which represents
a situation where the different measurements are in conflict.
Them(S),m(F), andm(O) demote the mass functions that the
cell is slot marking, freespace, and obstacle, respectively.
The m(S ∪ F) denotes the mass function that the cell is
either slot marking or freespace. Similarly, the m(S ∪O) and
m(F ∪ O) denote the mass functions that the cell is either
slot marking or obstacle, and either freespace or obstacle,
respectively. Finally, the m(S ∪ F ∪ O} means the evidence
of the unknown that there is no inference for the cell, which
is denoted as m(�). The summation of all mass functions in
the power set must be one based on the evidence theory.

For conversion of the local EGM from the semantic
segmented AVM image, the eight mass functions mL(i,j)
located at index L(i, j) in the local EGM are determined by
probabilities pL(i,j) of the semantic segmented AVM image.
As shown in equation (1), the probabilities of slot mark-
ing p(S), freespace p(F), and obstacle p(O) in the pixel of the
semantic segmented AVM image are propagated to the mass
functions of slot marking m(R), freespace m(F), and obstacle
m(O), respectively. Since some mass functions, mL(i,j)(∅),
mL(i,j)(S∪F),mL(i,j)(S∪O),mL(i,j)(F∪O), are zeros, only four
mass functions, mL(i,j)(S), mL(i,j)(F), mL(i,j)(O), mL(i,j)(�),
are explicitly managed. In order to consider the inaccuracy of
the semantic AVM image, the confidence λL(i,j) is applied at
each cell. While low confidence entails a high unknown state,
high confidence entails a low unknown state. To overcome
five problems as shown in the figure 1, the confidence of
each pixel is determined by the five models explained in the
section V-B. As a result, the semantic segmentation of deep
learning in the figure 2-(a) is converted to the local EGM in
the figure 2-(b). The red, green, black, and blue colors in the
EGM mean slot marking, freespace, obstacle, and unknown,
respectively.

mL(i,j)(∅) = 0
mL(i,j)(S) = λL(i,j) · pL(i,j)(S)
mL(i,j)(F) = λL(i,j) · pL(i,j)(F)
mL(i,j)(O) = λL(i,j) · pL(i,j)(O)

mL(i,j)(S ∪ F) = mL(i,j)(S ∪ O) = mL(i,j)(F ∪ O) = 0
mL(i,j)(�) = 1− λL(i,j) (1)

B. CONFIDENCE MODELING FOR LOCAL EGM
In order to reflect inaccuracy of the measurements, the confi-
dence λL(i,j) is applied in equation (1). The confidence λL(i,j)
consists of five confidence models: ego-vehicle model λe,
classification rate model λr , unexpected motion model λm,
calibration error model λc, and obstacle model λo.

1) EGO-VEHICLE MODEL
The ego-vehicle model considers the no inference region
from the semantic segmented AVM image. The confidence λe

located in the ego-vehicle region Rego is set to 0. In contrast
with the ego-vehicle region, the confidence λe is set to 1 in
the other region.

λL(i,j),e =

{
0, if L(i, j) ∈ Rego
1, if L(i, j) /∈ Rego

(2)

2) MISCLASSIFICATION MODEL
In the semantic segmentation algorithm, the class of each
pixel is not sometimes estimated precisely. In order to reflect
the false classification, the classification confidence model
reflects the classification rate of the semantic segmentation
algorithm. The classification rate is the constant value deter-
mined by the performance of the pre-trained learning model
of the semantic segmentation. As shown in equation (3),
the confidence λm is the ratio of the correctly estimated cases
to all cases N .

λm =

N∑
f (x)
N

, f (x) =

{
0, if x 6= x̂
1, if x = x̂

(3)

where the x means a true class in a cell and the x̂ means the
estimated class in the cell. The confidence λm is acquired in
Section VII. The confidence λm is the same in all regions.

3) GEOMETRIC DISTORTION MODEL
The inaccurate geometric distortion by the pitch and roll of
the vehicle in real-driving conditions can cause deformation
of the AVM image, which degrades the performance of the
accumulation. To relieve the effect of the unexpected vehicle
motion, the confidence λg of each pixel in the AVM image
can be applied. As represented in figure 4-(a) and (b), the
Gaussian distribution at each pixel is derived by applying
the real vehicle motion data to the geometry relation between
the ground information and the AVM image [45]. In other
words, the mean µg and the covariance 6g at every pixel
in the image are acquired based on the real-driving vehicle
motion data. Accordingly, eachGaussian distributionwith the
mean µg and the covariance 6g represents the model of the
true position in the real driving. The confidence λg, which
means the probability that the true position is located in the

FIGURE 4. Confidence model by geometric distortion. (a) 10 samples for
displaying the Gaussian distributions. (b) Integration of the Gaussian
distribution within a pixel of the mean. (c) Confidence map considering
geometric distortion model.
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pixel of the mean, is acquired by the integral of the distri-
bution defined by the pixel resolution pres, as represented in
equation (4).

λµg,g =
1

|det(6g)|
·∫∫

µg±pres/2

exp(−
1
2
(X − µg)T6−1g (X − µg))dydx, (4)

where X (x, y) means true position including x to the
longitudinal direction and y to the lateral direction. Since
the λg is derived by the integral of the Gaussian distribution,
the λg is represented from 0 to 1. Finally, a confidence map
considering the non-horizontal model in the AVM image is
derived as shown in figure 4-(c).

4) CALIBRATION ERROR MODEL
The error of the calibration from the cameras to the AVM
image can cause the deformation of the AVM image. In order
to relieve the effect of the calibration error, a confidence
model based on the calibration error is proposed. In the AVM
image, the position X̂ computed by the image geometry is
known based on themultiplication between the location of the
cell and the pixel resolution. On the other hand, to calculate
the image position X measured in the AVM image, the AVM
image is acquired on the chessboard with 1 m grids as shown
in figure 5-(a). Since the image positions at the vertices of the
grids are measured from the AVM image, other image posi-
tions are acquired through the interpolation. The position X̂
computed by the image geometry and the image position X
are represented as a red point and a blue point in figure 5-(b).
The difference between two points ismodeled as theGaussian
distribution for calibration error model. In every pixel in the
AVM image, everyGaussian distributionwith themeanX and
covariance 6c is derived as shown in figure 5-(b), assuming
that the covariance 6c is predefined. As shown in equa-
tion (5), the calibration confidence is derived by computing
the value about the position of the computed position X̂ in the
Gaussian distribution of the image position X . Accordingly,
the high calibration error causes the low confidence. As a
result, the confidence map from the calibration error model

FIGURE 5. Confidence model by calibration error. (a) AVM image on the
chessboard. (b) Gaussian distribution of pixel error at the corner points of
the chessboard. (c) Confidence map considering calibration error model.

is represented in figure 5-(c).

λc = exp(−
1
2
(X − X̂ )T6−1c (X − X̂ )) (5)

5) STRETCHED OBSTACLE MODEL
The property that the AVM models the ground image from
multiple cameras causes the stretch problem of the 3D obsta-
cles with height information such as other vehicles, curbs,
and poles. Each pixel in the AVM image stretched from the
height-ed obstacles has high obstacle probability pL(i,j)(O)
from the semantic segmentation algorithm.However, the state
of the region behind the obstacles cannot be known exactly.
In order to solve this problem, the confidence λs is mod-
eled. In figure 6-(a), the pixel information can be measured
along to the ray started at the camera. When the ray crosses
the obstacle region, the confidence λs is considered. As it
is assumed that the object has the rectangle shape, there
are many candidates to represent the region from the xstart
point to the xend point as the obstacle states, as shown in
figure 6-(b). Since the probability of thewidth of the rectangle
is equal as shown in figure 6-(c), the existence probability of
each rectangle is represented as 1

N . Therefore, the obstacle
probability of each state is derived by the integral of the
existence probability as represented in figure 6-(d), which
is computed by equation (6). Finally, the confidence map
considering the stretched obstacle model is represented in
figure 6-(e).

λs =

∫ xend

x

1
N
dx, xstart ≤ x ≤ xend (6)

FIGURE 6. Confidence model by stretched obstacles. (a) Semantic AVM
image with stretched obstacles. (b,c,d) Confidence modeling for stretched
obstacles. (c) Confidence map considering stretched obstacles.

6) INTEGRATED CONFIDENCE MAP BASED
ON FIVE MODELS
A confidence map represented by the confidences of grids
in the local EGM is derived by equation (7). The five con-
fidences λe, λm, λg, λc, and λs are multiplied. The result
of the product has the value between 0 and 1 because five
confidences do not exceed the 1. Therefore, the semantic
segmented AVM image is converted to the local EGM based
on the confidence map shown in figure 7.

λ = λe · λm · λn · λc · λd (7)
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FIGURE 7. Integrated confidence map.

VI. EVIDENCE SLAM BASED FILTERING ALGORITHM
The local EGM modeled by the confidence map in figure 7
is used in the evidence SLAM for filtering of semantic infor-
mation. In order to estimate the states around the ego-vehicle,
the local EGM is incrementally accumulated to the global
EGM as shown in figure 8-(a). In other words, the multiple
states of each cell in the local EGM can be accumulated
into the multiple states of each cell in the global EGM. The
global EGM, represented by the cells of Cartesian coordinate,
has an origin which is predefined at the starting point of the
algorithm. The cells of the global EGM far from the ego-
vehicle are thrown out to process the algorithm in real-time by
reducing the processing time. Accordingly, the relative posi-
tioning between the present pose and the previous poses is
an important factor for successful updating the global EGM.
After updating the global EGM, the cells of the global EGM
around the ego-vehicle are extracted. Finally, the estimated
states around the ego-vehicle can be acquired. In this process,
there are three problems to be solved: how to merge the four
states, how to know the precise relative positioning of the ego-
vehicle, and how to extract the estimated information. The
solutions are explained in following three sections.

FIGURE 8. Merging of global EGM based on the local EGM. (a) Merging of
several local EGMs. (b) Mass of each pixel in the global EGM.

A. MERGING SECTION
First of all, the mass functions of all cells in the global EGM
mG(i,j) are initialized by equation (8), which means no prior
information to merge the local EGM as shown in figure 8-(a).

mG(i,j)(∅) = 0

mG(i,j)(S) = mG(i,j)(F) = mG(i,j)(O) = 0

mG(i,j)(S ∪ F) = mG(i,j)(S ∪ O) = mG(i,j)(F ∪ O) = 0

mG(i,j)(�) = 1 (8)

When the relative pose from the global coordinate is
estimated precisely, the cells of the local EGM mL(i,j),t at
time t can update the corresponding cells of the global
EGM mG(i,j),t−1 at time t − 1 to the mG(i,j),t . In order to
update the multiple mass functions from the local EGM
mL(i,j),t to the global EGM mL(i,j),t−1, the Demster-Shafer
merging rule based on the evidence theory is applied (9).
As a result, the mass functions of slot marking, freespace,
obstacle, and unknown can be updated in each pixel as shown
in figure 8-(b).

mG(i,j),t = mG(i,j),t−1 ⊕ mL(i,j),t

∀A ⊆ �,m1∩2(A) =
∑

B∩C=A|B,C⊆�

m1(B) · m2(B)

m1⊕2(A) =
m1∩2(A)

1− m1∩2(φ)
, ∀A ⊆ �, A 6= φ

m1⊕2(φ) = 0 (9)

Similar with the local EGM, the global EGM has explicitly
only four mass functions, mG(i,j)(S), mG(i,j)(F), mG(i,j)(O),
and mG(i,j)(�), because the merging rule (9) does not gen-
erate other mass functions such as mG(i,j)(∅), mG(i,j)(S ∪ F),
mG(i,j)(S ∪ O), and mG(i,j)(F ∪ O).

B. POSITIONING SECTION
The precise positioning is very important to accumulate the
local EGM to global EGM precisely. For the positioning,
the GraphSLAM algorithm [41] is used. The algorithm con-
sists of four parts: node, edge, solver, and node management.
The node represents the target states to be estimated, mea-
surements, and global EGMas the circle in figure 9. The edge,
represented as the arrow connecting nodes in figure 9, means
the relative constraint between nodes. The solver estimates
the target states by optimizing the relationships based on the
nodes and the edges. Finally, the node management manages
addition and delete of the nodes to perform the GraphSLAM
algorithm in real-time.

1) NODE
The node consists of four parts: vehicle pose xt , motion
information ut , local EGM mL,t , and global EGM mG. The
pose of the ego-vehicle is represented as two-dimensional
Special Euclidean groups (SE(2)). The SE(2) takes the rela-
tive distance and relative heading angle from the fixed origin
of the global EGM. The motion information ut consists of
the velocity and the yaw rate at time t . The local EGM and
the global EGM are each represented as two-dimensional grid
spaces.

The optimization for the GraphSLAM algorithm requires
that the estimation target state, the vehicle pose xt , is ini-
tialized. The initialized pose which is approximated near
the real pose can improve the performance of the opti-
mization. Accordingly, the vehicle pose is initialized by
the vehicle motion information and the vehicle motion
model [46].
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FIGURE 9. Graph representation for evidence SLAM.

2) EDGE
The edge refers to the constraint between connected nodes.
The edges consists of three parts: motion constraint, pairwise
matching constraint, and map matching constraint.

The motion constraint is derived by the transition model
p(xt |xt−1, ut ). The next pose xt at time t is predicted from
the previous pose xt−1 at time t − 1 based on the motion
information ut at time t .

xt = g(xt−1, ut )+ εp,t (10)

Fp,t = εTp,tP
−1
p,t εp,t (11)

The term g(xt−1, ut ) in equation (10) predicts the next vehicle
pose based on the motion model. However, the motion-based
prediction has some error εp,t from the real pose xt . Assuming
that the error, εp,t , is modeled as a Gaussian noise model with
zero mean and covariance Pp,t , the motion constraint is repre-
sented as negative likelihood Fp,t as shown in equation (11).
Accordingly, the vehicle pose can be estimated precisely by
minimizing the motion constraint Fp,t .
The pairwise-matching constraint connects two local

EGMs mL,t−k and mL,t . The matching between these EGMs
can cause the effect similar with the motion constraint.

xt = hpm(xt−k ,mL,t−k ,mL,t )+ εm,t−k,t (12)

Fpm,t−k,t = εTpm,t−k,tP
−1
pm,t−k,tεpm,t−k,t (13)

The next vehicle pose xt can be computed by the match-
ing model hpm(xt−k ,mL,t−k ,mL,t ) based on the two local
EGMs and other pose, xt−k , as shown in equation (12). For
the matching process, the cells with dominant slot mark-
ing are extracted as points, because the slot marking has
the properties of invariability. The extracted slot marking
points from two local EGMs are matched based on the nor-
mal distributions transform (NDT) matching algorithm [47].
At that time, in order to reflect the inaccuracy of the slot
marking in the local EGM, the modified NDT which can
consider the weights of the points is applied based on the
confidence of the local EGM. This algorithm can calcu-
late the transformation matrix between two selected poses

xt−k and xt . Though the process for precise matching, there
may be some error εpm,t−k,t by inaccurate calibration and
matching performance. Assuming that the error εpm,t−k,t is
modeled as a Gaussian noise model with zero mean and
covariance Ppm,t−k,t , the pairwise matching constraint can
be represented as negative likelihood Fpm,t−k,t , as shown in
equation (13).

A map-matching model matching between the accumu-
lated global EGM mG,t , and the local EGM mL,t generates
the map-matching constraint.

xt = hmm(mG,t ,mL,t )+ εmm,t (14)

Fmm,t = εTmm,tP
−1
mm,tεmm,t (15)

The vehicle pose xt can be derived by the map-matching
model (14). Similarly with the pairwise-matching process,
the map-matching also uses the weighted NDT algorithm
based on the slot-marking points. The weights of the slot
marking points can be extracted by the confidences in the
local EGM and the global EGM. The consideration of the
map-matching model makes the global EGM consistent.
Like the pairwise-matching model, there may be an error
εmm,t in map-matching estimation by inaccurate calibration
and matching performance. Assuming that the error εmm,t
is modeled as a Gaussian noise mode with zero mean and
covariance Pmm,t , the negative log likelihood Fmm,t can be
derived in equation (15).

3) SOLVER
An optimization of the GraphSLAM can be performed by the
minimization of a cost function derived from the summation
of the negative log likelihoods in three equations ((11), (13),
and (15)) as shown in equation (16).

J =
∑
t

εTp,tP
−1
p,t εp,t +

∑
t,k

εTpm,t−k,tP
−1
pm,t−k,tεpm,t−k,t

+

∑
t

εTmm,tP
−1
mm,tεmm,t (16)
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In the cost function (16), the local EGM mL is derived by
the semantic segmented AVM image. In addition, the global
EGM mG is derived by the accumulation of the local
EGM mL . The unknown variables xt are estimated by min-
imizing the cost function (16).

4) NODE MANAGEMENT
Whenever time is passing, to add the node into the graph
causes too many loop closure edges and nodes in the graph.
The big graph makes it difficult for the GraphSLAM algo-
rithm to be processed in real-time. For real-time processing
of the filtering algorithm, the node size in the graph is limited
along to the time window scheme as shown in figure 10. The
principle of the time window scheme follows the first-input
and first-output (FIFO) rule. When a new node is generated
and entered into the time window buffer, the latest node is
omitted from the buffer. The edges connected from the latest
node are also removed. Along with the limited node size,
the GraphSLAM based filtering algorithm can be processed
in real-time.

FIGURE 10. Time windows scheme for real-time processing.

C. EXTRACTING SECTION
After the GraphSLAM algorithm, the merged global EGM
consists of the cells with evidence masses for slot mark-
ing, freespace, obstacle, and unknown. This global EGM is
cropped with AVM image size whose center is calculated
from the optimized vehicle pose. In order to determine the
class of each cell in the cropped EGM, an extraction process
is applied. In this extraction process, if the summation of the
three evidence masses for slot marking, freespace, and obsta-
cle is higher than the confidence value from the confidence
model of a corresponding cell, the class with the highest
evidence mass is selected for the cell’s class. Otherwise,
if the summation is less than the confidence value, then the
cell cannot be classified by one specific class. For this cell,
the class of the cell is determined by unknown.

VII. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENTS
A test site for the experiments is a parking lot in Korea,
as shown in figure 11. A test vehicle acquired five scenar-
ios data for evaluation in the parking lot. The test vehicle
was equipped with in-vehicle motion sensors (a wheel speed
sensor and a yaw rate sensor), a commercial AVM system
with four cameras, two LIDARs with 16 layers (Velodyne
VLP-16), and a high-precision GNSS/INS (OXTS RT3002).

FIGURE 11. Test site for experiments: Parking lot in Korea.

The in-vehicle motion information is obtained from the
Controller Area Network (CAN). The AVM generates the
reconstructed image around the ego-vehicle by stitching four
images measured from the four cameras. The size of the
AVM image is 240×420 pixels whose resolution is 0.024 m.
The LIDARs can measure the surrounding environment by
acquiring reflected point clouds at 10 FPS in horizontal 360◦.
The high-precision GNSS/INS have 0.01m position accuracy
and 0.1◦ heading angle accuracy. As represented in figure 11,
the test vehicle was driven at a similar speed in the parking lot
for five test scenarios. The test scenarios include two straight-
forward driving scenarios (1st and 2nd), one curved sce-
nario (3rd), one parking scenario (4th), and one loop closing
driving (5th).

The semantic information from the proposed algorithm
is evaluated by comparing with the ground truth semantic
information in the test site. In order to extract the ground truth
semantic information, two LIDARs and the high-precision
GNSS/INS are used. By accumulating the point cloud from
the two LIDARs along to the trajectory of the vehicle mea-
sured by the high-precision GNSS/INS, the point cloud map
is generated as shown in figure 12-(a). Since each point
in the point cloud map has each intensity, slot marking
and freespace are distinguished from the points located at
the ground precisely. In addition, through the heights of
the points, the obstacle information is extracted delicately.
A professional refines the automatically-extracted semantic
map manually to improve the labeling result. Therefore,
the ground truth semantic map with the four channels, slot
marking, freespace, obstacle, and unknown, is constructed as
represented in figure 12-(b). A ground truth semantic image
can be exactly acquired from the ground truth semantic map

FIGURE 12. (a) Precise point cloud map with intensities. (b) Semantic
information for the test site.
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FIGURE 13. Sample data for constructing confusion matrix: (a) a ground
truth semantic image, (b) a semantic image based on the deep learning,
and (c) a filtered semantic image based on the proposed algorithm.

as shown in figure 13-(a), because the precise position of
the vehicle is measured from the GNSS/INS. The extracted
ground truth semantic image is used as evaluation data set.

B. COMPARISON WITH DEEP LEARNING
The three images in figure 13 show the semantic information
from the ground truth, the deep learning, and the evidence
filter, respectively. Since the images represent semantic infor-
mation in the same region, the evaluation of two algorithms
such as deep learning and the evidence filter can be performed
through the pixel-wise comparison-based confusion matrix.

In each test scenario, sets of the three images including
the ground truth image, the deep learning image, and the
evidence filtered image are extracted at vehicle poses along
the trajectory. The sets of images are sampled with a 0.5 m
interval based on the distance. The results of the confusion
matrices based on the sampled sets of images are shown
in figure 14. The first column in figure 14 refers to the
division for ground truth information in test driving scenarios.
The second and third columns in figure 14 mean confusion
matrices of the deep learning images and the semantic filtered
images, respectively.

The scenarios, including straightforward driving, curved
driving, parking, and loop closing, have their own specifica-
tions. In the straightforward driving scenarios, the ratio of slot
marking and obstacle is less than the other driving scenarios’,
because the vehicles in other driving scenarios passed the slot
marking as shown in figure 11. In the two straightforward
driving scenarios, accuracy of slot marking in the evidence
filter increase by 4.6% and 9.3% from 84.0% and 81.0%
in the deep learning, respectively. Accuracy of freespace in
the evidence filter dramatically increase to 96.7% and 95.9%
from 70.4% and 70.6%. In addition, the obstacle accuracy
increase slightly from 83.7% and 78.3% by 2.3% and 1.2%,
respectively.

The parking scenario has more ratio of obstacle than
others. In the parking scenario, accuracy of slot marking,
freespace, and obstacle in the evidence filter increase dras-
tically by 17.1%, 21.8%, and 14.4%, from 72.8%, 70.5%,

and 64.7%, respectively. Although the curved and loop clos-
ing scenarios have more ratio of slot marking than others,
the performances of the evidence filter in two scenarios are
improved similarly with other scenarios.
The total samples from the multiple driving scenarios are

summed up into the final row. The classification perfor-
mance of slot marking, freespace, and obstacle is boosted by
11.1%, 26.3%, and 4.6% from 78.4%, 70.7%, and 78.4%,
respectively. To summarize the result of the proposed algo-
rithm, the total accuracy is acquired. The evidence filter
improves the performance of semantic segmentation from
71.37% to 96.27%.
The most dominant factor related to the improvement is the

consideration of the ego-vehicle occlusion. The ego-vehicle
regions, represented as unknown regions, can be estimated
by the evidence filter. If the ego-vehicle regions (a blue rect-
angle in figure 13-(b)) is excluded in the evaluation process,
accuracy of the deep learning approach is 92.74%. When the
accuracy of the evidence filter except the ego-vehicle region
is approximated to be 96.27%, consideration of other factors
improves the performance of the evidence filter by 3.53%.

C. COMPARISON WITH PROBABILISTIC FILTER
In order to confirm the improvement by the proposed algo-
rithm, we compared the evidence filter with the previous
method which is denoted as the probabilistic filter [11]. The
probabilistic filter improves the performance of the slot mark-
ing detection by accumulating slot markings measured by a
Pillbox Kernel [48]. For the comparison except for the effect
of the feature detection method, the deep learning, as well
as the pillbox kernel, is applied in the probabilistic filter.
The three algorithms (the probabilistic filter with the pillbox
kernel, the probabilistic filter with the deep learning, and
the evidence filter with the deep learning) make the filtered
images as shown in figure 16-(a), (b), and (c), respectively.
Since the probabilistic filter can estimate only slot markings,
confusion matrices with two states (slot marking and non-
slot marking) are used to evaluate the performances. The
three confusion matrices derived from three algorithms are
represented in figure 15.
The accuracy of the probabilistic filter with the deep learn-

ing is 96.86% which is higher than the 94.99% of the proba-
bilistic filter with the pillbox kernel. Since the pillbox kernel
does not distinguish false positive slot markings from other
obstacles within yellow circles (A) of figure 16, the false
positive measurements can degrade the performance of the
slot marking detection. The evidence filter causes the perfor-
mance improved to 98.39% from 96.86% of the probabilistic
filter due to two reasons: confidence map and GraphSLAM
algorithm. The confidence map composed of five confidence
models can relieve false positive estimation as represented in
blue circles (B) of figure 16. In addition, the GraphSLAM
algorithm in the evidence filter prevents misclassification by
misalignment of slot markings as shown in red circles (C) of
figure 16. On the other hand, the evidence filter does not only
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FIGURE 14. Confusion matrices of deep learning and evidence filter for 5 drivings.

FIGURE 15. Confusion matrices of probabilistic filter with pillbox kernel, probabilistic filter with deep learning, and evidence filter with deep learning.

have better performance than the previous work, but the filter
also estimates the multiple states as shown in figure 16-(c).

D. PROCESSING PERIOD OF PROPOSED ALGORITHM
In order to process the proposed algorithm, a computer with
the Intel (R) Core i7-8750H CPU at 2.20 GHz and NVIDIA
GTX 1050TI GPU was used. The proposed algorithm is
composed of three huge computing major modules: semantic
segmentation, evidential merging, and GraphSLAM. In order
to process the algorithm in real-time, the three modules are

distributed to heterogeneous platforms. The semantic seg-
mentation based on the deep learning was processed on the
CUDA platform under the NVIDIA GTX1050TI GPU to
accelerate the TensorFlow library. The evidential merging
algorithm was performed on the OpenCL platform, support-
ing parallel processing, under the Intel (R) UHD Graphics
630 GPU to boost the evidence theory in each pixel. Finally,
the GraphSLAM algorithm was optimized under the Intel (R)
Core i7-8750H CPU. As shown in figure 17, the semantic
segmentation, evidential merging, and GraphSLAM took
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FIGURE 16. Result images derived from three algorithms :
(a) probabilistic filter with pillbox kernel, (b) probabilistic filter
with deep learning, and (c) evidence filter with deep learning.

FIGURE 17. Processing time of three major parts in the proposed
algorithm.

0.041 sec, 0.026 sec, and 0.019 sec on average, respec-
tively. Since the three computing modules were performed
on heterogeneous platforms, the longest processing time
determines the processing period of the proposed algorithm.
Accordingly, the average of the frame rate of the algorithm
is 24.27 FPS.

VIII. CONCLUSION
AVM based semantic segmentation based on deep learning
have five inherent problems: occlusion, misclassification,
geometric distortion, calibration error, and stretched obstacle.
The problems cause the poor performance of slot marking
and obstacle detection. For overcoming the problems, we pro-
pose the evidence filter. The evidence filter estimates precise
states around the ego-vehicle by accumulating the multiple
semantic measurements based on the evidence theory and the
GraphSLAM algorithm. In order to determine the reliability
of the measurements, the confidence map based on the five
models (ego-vehiclemodel, misclassificationmodel, geomet-
ric distortion model, calibration error model, and stretched
obstacle model) is considered in the filter. The evidence filter
has two remarkable benefits compared with the previous
works such as the deep learning [9] and the probabilistic
filter [11].

1) Different from the probabilistic filter estimating only
slot markings, the evidence filter can estimate the multiple
states including slot markings and obstacles based on the
evidence theory.

2) The evidence filter can estimate precise states in
the regions, which are misclassified by measurements

or occluded by the ego-vehicle, by applying the GraphSLAM
algorithm and the confidence map based on the five confi-
dence models. The improvement of the performance by the
evidence filter is validated in the experiments compared with
the deep learning and the probabilistic filter.

The evidence filter has some limitations. The filter has
better performance at the low vehicle speed than the high
vehicle speed because more measurements in the same region
are accumulated. Accordingly, the evidence filter is suitable
for parking lot environments where the vehicles are driven
at a low speed. In addition, the evidence filter requires high
computing powers for processing the deep learning, the evi-
dence merging, and the GraphSLAM algorithm. It is difficult
for a commercial vehicle to install high-performance com-
puting units. In order to solve this problem, the authors plan
to research edge computing based on the wireless network
within the parking lot.
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