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ABSTRACT Detection and diagnosis of material degradation are of a complex and challenging task since it is
presently hand-operated by a human. Therefore, it leads to misinterpretation and avoids correct classification
and diagnosis. In this paper, we develop a computer-assisted detection method of material failure by utilizing
a deep learning approach. A deep convolutional neural network (CNN) model, combined with an image
processing technique, e.g., adaptive histogram equalization, is trained to classify a real-world turbine tube
degradation image data set, which is retrieved from a power generation company. The experimental result
demonstrates the effectiveness of the proposed approach with predictive classification accuracy is up to
99.99% in comparison with a shallow machine learning algorithm, e.g., linear SVM. Furthermore, perfor-
mance evaluation of a deep CNNwith and without an above-mentioned image processing technique is exhib-
ited and benchmarked. We successfully demonstrate a novel application in constructing a deep-structure
neural network model for material degradation diagnosis, which is not available in the current literature.

INDEX TERMS Material degradation, deep learning, creep damage, convolutional neural network,
histogram equalization, boiler tube, high temperature.

I. INTRODUCTION
In an engineering field, degradation is specified as an unex-
pected condition of particular properties of material which
occurs continuously due to gradual exposure during the oper-
ating condition. The greatest root causes that significantly
contribute to the degradation of engineering material such as
exceedingly high temperature, deviation within the chemical
composition, mechanical loading, and other environment-
related factors [1]. Among these elements, a higher operating
temperature from those specified leads to the major changes
in themicrostructure [2]. The degradation induced by an envi-
ronmental effect is commonly restricted to the near-surface
zone and involves certain processes such as corrosion and its
various forms, oxidation, creep, and so forth [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Madhusanka Liyanage.

Since the changes brought about by degradation include
material loss or changes in physical properties, most indus-
tries have released a tremendous expense against material
degradation. Moreover, it becomes the central problems in
particular industries, i.e. marine environments, oil and gas
production, and energy conversion and generation systems.
The process of analyzing the degradation of concrete roughly
composes the following actions: (i) site visit in order to obtain
representative failure samples, (ii) samples test, i.e. micro-
scopic examination, and (iii) analysis, interpretation, and
diagnosis of failure [4]. However, failure diagnosis requires
an intensive prior knowledge of an expert which occasionally
leads to misinterpretation as some forms of failure might not
be visibly apparent. For instance, surface corrosion might be
immediately observed, yet another form of corrosion could
be solely verified microscopy.

Moreover, major power plants operate at high temperature
operating conditions and are exposed to high temperature
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environments for a long time, so it is necessary to accurately
evaluate and manage the state of high temperature compo-
nents for a stable operation. Such power plant components,
i.e. boiler tubes, piping, and turbine, are exposed to high tem-
perature environments for a long period of time because of
the purpose of generating and transporting steam, resulting in
deterioration due to continuous material damage, particularly
creep damage. Creep damage means permanent deformation
at high temperature over time. If high stress occurs for a
long period of time under high temperature environment,
the strength of the part decreases, which shortens useful life
of high temperature components. When creep damage occurs
in boiler tubes, piping and turbine, the pores grow in the
micro structure to create cracks and increases the size of the
carbides.

The gap between the carbides increases and the hardness
decreases. At present, micro-structures on the surface of the
damaged part are replicated by the film at the power plant site,
brought to the laboratory, observed using a microscope, and
used by the human-eyes. These evaluation methods depend
on individual subjective judgment and experience, and it
takes time from field measurement to laboratory analysis and
evaluation. Also, in practice, it is not possible to distinguish
between classes utilized in the evaluation criteria. Therefore,
quantitative, systematic and objective evaluation methods are
necessarily important.

With the rapid evolution of information discovery
approaches, artificial intelligence and machine learning
remain to demonstrate a prominent role in an overabun-
dance of applications ranging from technological and non-
technological domain [5]. They have brought a tremendous
impact in the purview of engineering by providing a smart
way of manufacturing process, for instance [6]. Smart man-
ufacturing is defined as a new manufacturing paradigm in
which machines are fully connected via wireless networks,
monitored by sensors, and controlled by next-generation
artificial intelligent techniques in order to efficiently enhance
the whole manufacturing process [6]–[8]. Furthermore, data-
driven strategies, i.e. big data analytics are more possible to
be implemented thereby enabling companies to increase their
competitive advantages [9], [10].

There is presently a lack of literature discussing deep neu-
ral network for material degradation detection and diagnosis.
Nevertheless, there have been constant studies of employ-
ing deep neural network for gearbox fault identification and
diagnosis [11], [12]. The papers combine wavelet analy-
sis and deep convolutional network to solve gearbox fault
classification problem. More recently, deep learning in fault
diagnosis of rotating machinery has been outlined in [13],
in which the paper also reviews other machine learning
techniques, i.e. k-NN, support vector machine, and naive
Bayes. A research presented in [14] proposes stacked autoen-
coder to extract features from mechanical vibration signals,
then uses the softmax regression to characterize the machine
health conditions. The stacked autoencoder is also harnessed
by [15] to detect fault in rotating machinery. The detection

performance of the stacked autoencoder is evaluated over
multiple data sets, i.e. four roller bearing and a planetary
gearbox data set.

Furthermore, it is worth mentioned that other researchers
have applied deep convolutional neural network in a plethora
of engineering applications. Work in [16] have developed
convolutional neural networkmodel for condition monitoring
of rotating machinery. With similar fashion, [17] and [18]
exploit convolutional neural network for bearing fault diag-
nosis, followed by [19] and [20] who take into account
convolutional neural network for defect detection and motor
fault detection, respectively. Finally, a real time vibration-
based structural damage detection is recommended by [21].
The merit of the proposed method includes an automatic
extraction of damage features from the input which does not
require any extra processing.

In this paper, we utilize deep convolutional neural net-
work for identifying and classifying the material degradation.
We take into account a preliminary processing technique of
image data set by incorporating an image-processing meth-
ods, e.g. histogram equalization. Histogram equalization is a
technique, where image intensity/contrast is adjusted in such
a way that the intensities could be better distributed on the
histogram. It enables a lower contrast to obtain higher con-
trast, hence the distribution of pixels is not too far from uni-
form [22]. We prove that an above-mentioned preprocessing
technique, combined with deep convolutional neural network
yield higher detection performance than a deep convolutional
neural network model with no preprocessing technique.

The remaining part of the paper is decomposed into follow-
ing parts. Section II briefly describes an overview material
degradation and its current diagnosis method. Section III
presents a brief overview of histogram equalization and deep
convolutional neural network. The experimental result is dis-
cussed in Section IV, and finally we draw the outline of the
paper in Section V.

II. AN OVERVIEW OF MATERIAL DEGRADATION
AND ITS ASSESSMENT METHOD
Some major damages in a power plant such as creep, material
degradation, fatigue, creep-fatigue, thermal shock, erosion,
and various types of corrosion are the principle of deteri-
oration mechanisms in hot-section equipment of a power
plant [23]. Creep damage is one of the most critical high
temperature deterioration mechanisms. Depending on the
characteristic of the material, classification of creep damage
in a power plant components, i.e. turbine and boiler has been
carried out qualitatively [24]. They characterize the damages
based on the distribution of creep voids and microcracks
conducted by an extensive observation on steam pipes in
Germany power plants, then classify the cavity evolution in
steels into four stages, i.e. isolated cavities, oriented cavities,
microcracks, and macrocracks. Finally, they devise recom-
mendations in accordance with the four stages of degrada-
tion. For class A damage, no action would be necessary. For
class B damage, re-inspection within the designated period
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is necessary. For class C, repair or replacement would be
required. For class D, an immediate repair is mandatory [25].

Assessment of the material degradation relies on the
inspection, or an estimation of the accumulation of degrada-
tion based on a model for degradation accumulation, or both.
According to [23], assessment procedures of creep damage
can follow the general practice summarized in the American
Petroleum Institute (API) Recommended Practice 579,
‘‘Fitness-for-Service’’, which it was firstly published in 2000.
These series of steps are as follows: (i) identification of
deterioration mechanism, (ii) identification of the applica-
bility of the assessment procedures applicable to the par-
ticular deterioration mechanism, (iii) identification of the
data requirements, (iv) evaluation of the assessment proce-
dures and techniques, (v) evaluation of the remaining life of
material, (vi) remediation if necessary, (vii) monitoring, and
(viii) documentation, allowing suitable records for further
evaluation.

Hitherto, there have been increased approaches of predict-
ing creep damage and remaining material life assessment,
e.g. continuum damage mechanics [26]–[29], in terms of
practical use. The growth in cracks in equipment operating
at high temperature can be appraised using predictive meth-
ods, for instance, by [30]. However, rather than employing a
conventional technique using complex human-eye analysis,
in this study, we aim at simplifying the method of creep
damage evaluation by taking into account an automatic clas-
sification using deep learning model while ensuring accuracy
and reliability.

III. PREPROCESSING AND CLASSIFICATION TECHNIQUE
A combination of histogram equalization and deep convolu-
tional neural network is proposed for material degradation.
In this section, a brief theory of histogram equalization is
firstly discussed, followed by the illustration of image classi-
fication using deep convolutional neural network.

A. HISTOGRAM EQUALIZATION
Histogram equalization is an effective method in enhancing
the appearance of a poor image. It transforms the histogram
of the resultant image as flat as possible (the overall shape
of histogram remains the same). The fundamental theory for
histogram equalization involves probability theory, where the
intensity levels in an image might be viewed as a random
variable of the gray levels [22], [31]. The resultant image
is obtained by mapping each pixel in the input image with
intensity ratio rk into a corresponding pixel with level sk in
the output image using Equation 1 [22].

sk = T (rk ) = (L − 1)
k∑
j=0

pr (rj)

=
(L − 1)
MN

k∑
j=0

nj k = 0, 1, 2, . . . ,L − 1 (1)

whereMN is the total number of pixels in the image, nk is the
number of pixels that have intensity rk , and L is the number

of possible intensity levels in the image. The mapping T (rk )
in Equation 1 is known as histogram equalization.

Generally speaking, the histogram equalization process for
digital images can be broken down into four steps: (i) find the
running sum of histogram values, (ii) normalize the values
from step (i) by dividing by the total number of pixels,
(iii) multiply the values from step (ii) by the maximum gray-
level value and round, and (iv) map the gray-level values
to the results from step (iii) using a one-to-one correspon-
dence [31]. Histogram equalization of an image will not
commonly offer a histogram that is faultlessly flat, yet it
will make the distribution of gray-level values as evenly as
possible.

The preprocessing so far has been applied uniformity to
the whole part of the image. However, it is not always useful
for a typical image which is a mixture of bright and dark
areas. Adaptive Histogram Equalization (AHE) [32] is an
image processing technique that divides an image into tiles of
small size and partially applies histogram equalization. Using
the AHE, it has an excellent effect in enhancing the partial
contrast of the image and detecting the contour, rather than
using the original histogram equalization. However, there is
a drawback that it is sensitive to the noise of the image.
Thus, image-processing algorithms called contrast limited
adaptive histogram equalization (CLAHE) are used to prevent
amplification of noise. CLAHE sets a limit of contrast, and
if the value of a particular pixel exceeds that value, it redis-
tributes the value over the other area. Figure 1 illustrates
the difference between original histogram equalization and
CLAHE.

B. DEEP CONVOLUTIONAL NEURAL NETWORK
Deep learning is made up of a number of processing layers to
learn representations of data with numerous levels of abstrac-
tion. Unlike conventional machine learning techniques which
require a corresponding feature representation from which
a classification algorithm could detect or classify patterns,
deep learning enables a machine to be inserted with raw data
and automatically find out the representations required for
detection and classification [33]. In addition, a deep learning
technique transforms the representation from one level into a
higher abstract level, hence very complex functions are able
to be learned. The differences between deep learning and
conventional machine learning models can be summarized
in Table 1.

Deep convolutional neural network (CNN) is a type of deep
learning models oftentimes used in image processing and
classification. It comprises hierarchically arranged trainable
stages that, besides can learn spatial hierarchies of patterns,
it also needs fewer training samples to learn representa-
tions that have generalization power. These two properties
make a CNN efficient when processing images [34], [35].
A CNN is designed to process data that come in the
form of multiple arrays, called feature maps, in case of
image processing is a 2D array. A typical CNN architec-
ture (Figure 2) is composed of a series of stages containing
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FIGURE 1. The difference between histogram equalization (left) and adaptive histogram
equalization (right).

TABLE 1. The differences between deep learning and traditional machine learning models.

FIGURE 2. A typical architecture of deep convolutional neural network.

two types of layers, i.e. convolutional layers and pooling
layers.

Let suppose the input to a convolutional layer is an image
of size a× b, and c× d becomes the size of k feature map of
the convolutional layer, which is less than the size of the input
image, then the output of the convolutional layer is a set of k
feature maps of size (a−c+1)× (b−d+1) by stepping over
one pixel. In order to acquire pixels in convolutional map,
we assign a weight kij to each pixel in the input image, com-
pute the weighted sums, and extract corresponding features in
the image. A bias is appended to the weighted sums then send
them to a non-linear activation function, i.e. tanh() or sigm().
The output of activation function ytr of a particular feature
map r in convolutional layer t is defined as:

ytr = ξ
[
btr +

∑
i∈M t

r

yt−1i ⊗ k tir

]
(2)

where ξ is non-linear activation function, whilst btr denotes
bias for the t th layer.M t

r and⊗ represent the selected feature

maps i in the (t − 1)th layer and convolutional operator,
respectively.

The operation continues within pooling layer which
secures the pixels processed in previous layer are carried for-
ward. The output of the pooling layer leads to a dimensional
reduction, with respect to the selected stride. The activation
output f rh after reduction-sampling the feature map r into a
feature map h in a layer t is specified as:

f th = ζ
(
gtr ,N

t
)

(3)

where ζ is the reduction-sampling function, i.e. mean or
maximum function that reduces the samples by a factor of
N t and gtr is the convoluted feature map to be reduced.
Finally, the last layer of the network is characteristically a
classification layer. The output of classification layer o can
be as follow.

o = ψ
(
bo +Wz

)
(4)
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TABLE 2. Fault classes representing five different deterioration conditions.

FIGURE 3. Flowchart of the material degradation classification and diagnosis.

where bo is the bias of the output layer, W is weight matrix
between the second-to-last layer and the output layer, and z is
the concatenated feature maps of the second-to-last layer.

CNN relies on several learning parameters, i.e. btr , k
t
ir , bo,

and W during the training process. A stochastic gradient
descent method, i.e. back propagation is utilized at the train-
ing stage which aims at minimizing the error between the
actual output and the desired output. The error function of
the back propagation method is calculated as:

E =
1
2

N∑
n=1

c∑
k=1

(tnk − y
n
k )

2 (5)

where N depicts the number of training images, c is the
number of output neurons, tnk is the k th element of the target
output for the nth pattern and ynk is the actual output of the
network for the nth pattern.

IV. IMPLEMENTATION AND RESULT
This section describes the data used in the experiment, steps
of the experiment, architecture of deep convolutional neural
network, as well as experimental results and discussions.

A. EXPERIMENTAL DATA
Real-world material degradation images that represent the
grade of boiler tubes in power plants are used in the experi-
ment. Data set is collected from a power generation company

in Korea. It is made up of a number of actual micro-
scopic (< 100µm) image samples containing five class label
attributes. The images are labeled with five different fault
assessments performed by some experts in this field with
respect to a work of [24]. Since the industry is engaging with
power generation, thus the material degradation detection and
diagnosis are very critical in order to maintain the continuity
and reliability in supplying power to the end users. The five
classes of the faults employed for classification and analysis
are outlined in Table 2.

B. EXPERIMENT SETTING
The flowchart presented in Figure 3 depicts the steps per-
formed in the experiment. The experiment is begun with
image data collection. The output of this step is raw data
set that requires preprocessing methods prior to be used as
input of classifier. Images collected through data acquisition
are not suitable for determining degradation ratings due to
non-uniform reflection of illumination, non-uniformity of the
surface, and unclear patterns. We used an image processing
technique, called histogram equalization in order to transform
the raw image data set in such a way that the intensity
of pixels are distributed uniformly. The acquired image is
partially cut through the histogram equalization algorithm to
sharpen the contrast, and the color of an image is converted
into a gray-scale one, so that it is robust against illumination
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FIGURE 4. The result of applying histogram equalization (left) and CLAHE (right).

and reflection. In addition, the image file is converted to a
pickling file so that we can load into Python environment.
More precisely, since degraded images used to build our

CNN model are not always obtained in the same lighting
condition and the number of samples is not too large, his-
togram equalization (HE) algorithm is applied to general-
ize the lighting condition of acquired data for more stable
learning and reducing an aleatory uncertainty deriving from
in-homogeneous characteristics of specimen materials. How-
ever, the lighting of the microscopic image tends to be con-
centrated in the center of the subject, surface of boiler tube,
thus we adopt the CLAHE algorithm to solve such different
local illumination conditions. The result of applying CLAHE
for degradation image is shown in Figure 4.

All degraded images are labelled with A, B, C, D, and E
classes. There are in total 90 sample images, where 10 images
for class A and 20 images for class B to class E, respec-
tively. In the experiment, 80% (72 images) of them are used
as a training set and 20% (18 images) are used as testing
set. However, 72 images are not enough to build the deep
learning model as a small training data set might lead to
overfitting. Therefore, we randomly cut, flip and rotate the
degraded images in order to raise the number of training
samples using only images in original training set. This
method is also known as data augmentation (see Figure 6).
The microstructures analyzed in the sample image have the
same degradation characteristics regardless of their location.
Thus, data augmentation for each pixel can produce 400 ×
440 × 8 images. The pattern of degraded images are evenly
distributed throughout the image, so it is possible to learn
stably by cropped images. A cropped image (400×400) used
for training after applying an image processing technique is
shown in Figure 5.

In the training phase, we build an effective CNN architec-
ture for image classification. The structure of the CNNmodel
is described in detail in Section IV-C. We train the model,
then save the model for further validation/testing analysis.
In the learning process, the softmax cross entropy is used to
store low loss parameters. In the CNN model update process,
the stored parameters are retrieved through learning, and

FIGURE 5. A cropped image used as input of CNN.

FIGURE 6. Illustration of data augmentation.

parameters of the learned model are obtained and rewritten
when necessary.

C. NETWORK ARCHITECTURE
The network architecture used to evaluate the grade of the
T91 steel boiler tubes is summarized in Table 3. The first layer
following the input layer is two convolutional layers, with
16 feature maps of 3×3 kernel size each. This is followed by
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TABLE 3. The proposed CNN structure in our experiment.

FIGURE 7. The proposed deep learning architecture.

a max-pooling layer of kernel size 2× 2. The next layers are
two convolutional layers which share the same kernel size of
3× 3 and 32 feature maps, followed by a 2× 2 max-pooling
layer. The output layer is made up of 5 neurons representing
five different degradation classes (see Figure 7). We employ
ReLu as the activation function.
All layers are fully-connected. A gradient descent method

is utilized with learning and decay rate is 0.001 and 0.965,
respectively. The batch size is set to 50, whilst the network is
trained for 30,000 epochs. To optimize our object functions,
we used AdamOptimizer implemented in TensorFlow. The
experiment takes several minutes on a GPU-based computer.
Randomly chosen 50 cropped images are used for every
iterations. The change in error rate for training and testing
is visualized in Figure 8. As shown in the figure, the more
iteration we perform, the more chance we have of getting
small error rate.

D. RESULT AND DISCUSSION
In order to verify the CNN model that we have built in
the training, supplied test set is used for validation analysis.

FIGURE 8. Change in error rate for training and testing set.

We take into account the performance accuracy as a metric.
The accuracy rate is calculated as the ratio of the number
correctly classified validation samples to the total number of
validation samples. Our CNN model predicts the classes of
the cropped images with an accuracy of 99.80%. However,
because the actual data is a full-size image and not a cropped
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one, in order to estimate the class of the full-size image,
the following algorithm is taken into account.

argmax(pred(imagei,j)) (6)

where imagei,j is cropped image from full-size images, and
pred is a function to get predicted class from each cropped
images, and argmax is a function to get the maximum predic-
tion of given values. Hence, the above expression notes that
the predicted class of a full-size degradation image is deter-
mined by the argmax function of the cropped image classes.
The prediction result can be represented as a probability value
with respect to the degradation class defined beforehand
using argmax function. In this case, full-size degradation
images are predicted by our model with 99.90% accuracy.
Figure 9 shows a prediction result of a full-size image using
cropped images. Different colors in the image belong to
different degradation classes, which the smaller number of
image pieces represent false prediction for a particular class.

FIGURE 9. An original image (left) and the cropped images are used to
predict a full size image (right).

FIGURE 10. Model comparison of CNN model with and without histogram
equalization.

The average accuracy of the proposed CNN architecture
with and without histogram equalization are also bench-
marked in order to indicate the effectiveness of histogram
equalization in improving a deep learning model to classify
degradation images. As shown in Figure 10, the proposed
histogram equalization combined with convolutional neural
network (HE+CNN) significantly be able to outperform the
convolutional neural network with no histogram equalization
is applied (CNN-HE). In the absence of histogram equaliza-
tion, the CNN model yields an average classification accu-
racy of 98% and 97.78% in predicting cropped and full-size
image, respectively. The result signifies the importance of

such preprocessing technique, e.g. histogram equalization,
so as an improved prediction accuracy of a CNN model
could be obtained considerably. Furthermore, it is aligned
with previous works presented in the current literature such
as [36] and [37].

We are also interested to compare the impact of different
kernel sizes in the convolutional layer on the performance
accuracy. The result is summarized in Table 4. It can be
observed that increasing the number of kernel size by 5 × 5
and 7× 7 do not give us a substantial classification improve-
ment, even decreasing the classification rate. The first convo-
lution layer with a kernel size of 7 × 7 does not detect any
additional features, hence the test samples are classified as
belonging to the same class.

TABLE 4. Comparison of performance accuracy with respect to various
kernel sizes.

An advantage of CNN over traditional machine learning
algorithms is a feature learning ability, where the represen-
tations required for feature detection and classification are
proceeded automatically. This takes place a manual feature
engineering approach that needs well-designed feature repre-
sentation to both learn the features and use them to perform
classification task. Therefore, it would be beneficial to bench-
mark the performance of CNN against a machine learning
baseline, i.e. support vector machine (SVM). The SVM is
one of well-known classification techniques that has been
introduced for solving pattern recognition problems. In this
classier, the data is projected into a high dimensional space
and the classifier builds an optimal separating hyperplane
in this space. This requires several kernels and parameters
for solving a quadratic problem. As we cope with a large
number of features, a linear-based SVM (LIBLINEAR) [38]
is used for the purpose of obtaining a classification model
with competitive accuracy and somewhat faster training time
than other kernels, e.g. LIBSVM [39]. We only carry out
a performance benchmark for cropped-image classification,
given the fact that it is a computationally infeasible for SVM
to classify large size image.

We first extract dense local descriptors of the images using
local binary pattern (LBP) approach [40]. After extracting
dense local descriptors, we perform classification task using
SVM within 1000 iterations. As a result, SVM classifier
achieves 72.1% with respect to classification accuracy. This
result demonstrates the effectiveness of CNN model in con-
trast to SVM classifier. Furthermore, in terms of computa-
tional time, LBP and SVM take 942.78 seconds for extracting
and classifying the degradation images, respectively. This is
slightly faster than CNN which needs 6840.04 seconds to
train the training set. However, for practical implementation,
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the performance of CNN is still acceptable, considering that
training task can be done offline and can then be used for an
off-line degradation detection/diagnosis tool.

V. CONCLUSION
In this paper, a classification and diagnosis method for mate-
rial degradation of the T91 steel boiler tubes was presented
based on the combination of an adaptive histogram equaliza-
tion and convolutional neural network (CNN). A raw image
data set was firstly preprocessed by histogram equalization
algorithm in such a way that the intensity of pixels of each
image was distributed uniformly. As we suffered from a small
number of data set, we generated more training samples by
cutting, flipping, and rotating randomly the images for the
input of CNN model.

Our proposedCNNmodel, whichwasmade up of four con-
volution layers and two pooling layers had shown a promis-
ing performance result in detecting and classifying material
degradation image by 99.80% and 99.90% for the cropped
image and full-size image prediction, respectively. To the
best of our knowledge, this work is the first attempt so far
in applying CNN based technique for material degradation
image. For future work, it is necessary to consider class acti-
vation mapping of CNN with global average pooling which
can perform localization within a degradation image.
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