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ABSTRACT Density peaks clustering is a novel and efficient density-based clustering algorithm. However,
the problem of the sensitive information leakage and the associated security risk with the applications
of clustering methods is rarely considered. To address the problem, we proposed differential privacy-
preserving density peaks’ clustering based on the shared near neighbors similarity method in this paper. First,
the Euclidean distance and the shared near neighbors similarity were combined to define the local density of
a sample, and the Laplace noise was added to the local density and the shortest distance to protect privacy.
Second, the process of cluster center selection was optimized to select the initial cluster centers based on
the neighborhood information. Finally, each sample was assigned to the cluster as its nearest neighbor with
higher local density. The experimental results on both the UCI and synthetic datasets show that compared
with other algorithms, our method more effectively protects the data privacy and improves the quality of the
clustering results.

INDEX TERMS Privacy preservation, differential privacy, density peaks clustering algorithm, shared near
neighbors similarity.

I. INTRODUCTION
The rapid development of information technology and net-
work technology has brought people from the traditional
Internet era into the big data era, the artificial intelligence era,
and the IoT era. Facing huge amounts of data, traditional data
analysis technology appears to be overstretched [1]. Extract-
ing valuable information and models from vast amounts of
data has become vital. As an important technology of data
mining, clustering [2] is a kind of unsupervised data analysis
method that classifies the original data into clusters based
on the similarity between samples such that the similarity
of samples in the same cluster is high and the similarity of
samples that belong to different clusters is low.

Currently, several companies and organizations have large
amounts of sensitive personal information, including patient
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disease information, online payment transaction records, and
personal financial records. Hiding the identifying information
(name, ID number, etc.) can protect the user’s information
security. Clustering is a technology mainly for mining and
reuse of data, and the sensitive information may be leaked.
Therefore, privacy-preserving clustering becomes an impor-
tant issue.

Density peaks clustering (DPC) [3] is a density-based clus-
tering algorithm, which can simply and efficiently identify
clusters of arbitrary type without iteration. However, it has the
following shortcomings: 1) The subjectively selected cutoff
distance, which is denoted as dc, can substantially influence
the performance of the DPC algorithm. 2) The cluster centers
that are selected by the DPC algorithm may be incorrect
when it is applied to a large and complex dataset with large
density variations. 3) In the density and distance calculations,
private information may be leaked. Recently the proposed
and existing privacy-protection models that are based on
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equivalence classes include K -anonymity [4], l-diversity [5]
and t-closeness [6]. They do not provide sufficient security
and must be continuously improved according to emerging
attack models. Therefore, the differential privacy-preserving
model was proposed by Dwork [7]–[10], which overcomes
the shortcomings of the traditional privacy- preserving
models.

The main contributions of this paper can be summarized as
follows:

1) The local density (denoted as ρ) and shortest distance
(denoted as δ) with differential privacy are presented. To real-
ize the objective of differential privacy preservation, ran-
dom noise is added in the calculations of the local density
and shortest distance to distort the data. At the same time,
the shared near neighbors similarity and Euclidean distance
are combined to calculate the local density of the sam-
ples, which effectively avoids selecting parameter dc in the
DPC algorithm.

2) Differential privacy-preserving density peaks clustering
based on shared near neighbors similarity (DP-DPCSNNS)
is proposed. The DP-DPCSNNS algorithm provides
ε-differential privacy preservation and improves the accuracy
of the clustering results. Shared near neighbors similarity is
applied to detect cluster centers with neighborhood informa-
tion, which improves the accuracy of cluster center selection.

3) Several comparative experiments are performed and six
algorithms are compared in terms of ACC, AMI, F-Measure,
and ARI metrics on UCI datasets and synthetic datasets. The
experimental results verify the effectiveness of the proposed
algorithm.

The remainder of this paper is organized as follows:
Section II reviews the related work. In Section III, we intro-
duce the basic definitions and processes of differential pri-
vacy and propose the DP-DPCSNNS schema. In Section IV,
experiments are conducted to evaluate the performance of our
proposed schema. Finally, we present the conclusions of this
work and discuss future work in Section V.

II. RELATED WORK
Clustering analysis is an important field in data mining
research and clustering methods have been widely applied in
pattern recognition [11]–[13], social networks [14]–[16], and
image processing [17]–[19]. Existing clustering algorithms
mainly include partitioning, density, hierarchy grids andmod-
els. K -means [20] and DBSCAN [21] are classical cluster-
ing algorithms that are based on partitioning and density,
respectively.
K -means identifies the optimal cluster centers through

multiple iterations and allocates the remaining samples
according to their distances to each cluster center. However,
it cannot detect nonspherical clusters because the sample is
always assigned to the nearest cluster center. If the initial
cluster centers are selected incorrectly, the algorithm easily
falls into a local optimum. DBSCAN measures the closeness
of the data distribution by the selection of parameters eps
(the neighborhood radius) and minpts (the minimum number

of samples within the neighborhood radius of the core sam-
ple). This algorithm is sensitive to the value of parameter eps.
A smaller value of eps may lead to overclustering, whereas a
larger value of eps may cause small clusters to be merged.
The DPC algorithm relies on density and distance to detect

clusters, and clusters various types of datasets using neither
an iterative process nor additional parameters. Moreover,
it is not necessary to map the data to the vector space and
the performance is not affected by the dimension of the
data space. Wu and Wilamowski [22] applied a grid to the
DPC algorithm to reduce the number of distance calculations
between samples and improve its performance. The density
of the grid nodes instead of the samples is calculated. The
main advantages of the DPC algorithm are that it detects noise
data and identifies clusters of arbitrary shapes. Du et al. [23]
used the concept of k-nearest neighbors to calculate the local
density and reduced the dimension of the data by princi-
pal component analysis (PCA). Xie et al. [24] proposed
a k-nearest neighbors density peaks clustering (KNN-DPC)
algorithm. The algorithm defines the local density of the
samples to be independent of the cutoff distance dc and uses
two new assignment strategies of samples that are based
on k-nearest neighbors. Based on the KNN-DPC algorithm,
Xie et al. [25] proposed a fuzzy weighted k-nearest neigh-
bors density peaks clustering (FKNN-DPC) algorithm. The
weights are defined to assign the remaining samples, which
depend on the Euclidean distances between the samples.
Mehmood et al. [26] proposed a fuzzy DPC algorithm.
First, the expected cluster center set is filtered based on
the Euclidean distance. Then, the lower density samples are
excluded from this set. Next, the near clusters are merged
according to the Euclidean distance between the local clus-
ter centers. Xu et al. [27] applied a hierarchical clustering
algorithm to design a new clustering algorithm. The linear
fitting approach is used to determine the potential cluster
centers based on the γ value. Some potential cluster centers
will be ‘‘degraded’’ as noncenter samples in the hierarchical
clustering process. Finally, the leading tree is used to allocate
the remaining samples.

The DPC algorithm is often used in the Internet of things,
social networks and other fields. Zhang et al. [28] combined
the DPC algorithm with the k-medoids algorithm to design
a dynamic clustering algorithm for sensor technology and
wireless communication in the industrial Internet of things.
Jia et al. [29] used theDPC algorithm to select a hyperspectral
band during image processing. The ranking score of each
band is computed from the local density and an exponential-
based learning rule is employed to adjust the cutoff dis-
tance dc. Wang et al. [30] applied the DPC algorithm to
identify initial social circles with overlap in social networks.
Then, cluster centers with smaller local density values were
integrated. However, the DPC algorithm has the following
drawbacks:

1) The subjectively selected cutoff distance dc can sub-
stantially influence the performance of the DPC algorithm.
The clustering accuracy depends on the density estimate of
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the dataset. If there is a large difference between two clusters
in terms of density, the local densities of the centers of the
two clusters should also differ substantially. However if dc is
very small, the local densities of the two cluster centers will
be similar, thereby resulting in unsatisfactory clustering.

2) The DPC algorithm may select incorrect cluster centers
if it is applied to a large and complex dataset with large
density variations. This is because the density and distance
metrics that are used by the DPC algorithm are relatively sim-
ple and the process does not take into account the impact of
the neighborhood environment of the samples. If the density
of a cluster is low and its distance from a cluster with a higher
density is small, the cluster center of the low-density cluster
is likely to be mistakenly selected because compared to the
ρ values of the centers of low-density clusters, border samples
of the high-density cluster have higher values of ρ, while their
δ values are similar. The erroneous selection of cluster centers
will directly lead to incorrect clustering results.

3) Privacy security problem. The purpose of data mining is
to analyze the available data and obtain valuable knowledge.
In the process of data analysis, it may lead to the outflow
of sensitive personal data. And there is the risk of personal
privacy disclosure. The selection of cluster centers is easy to
divulge personal privacy information during clustering. And
the publishing of the local density ρ and shortest distance δ
may result in the disclosure of privacy in DPC algorithm.

Recently, differential privacy-preserving clustering has
become a research hotspot. Blum et al. [31] proposed the
differential privacy K -means algorithm on the SuLQ plat-
form. However, the sensitivity of its query function is high
and the algorithm does not specify how to set the privacy bud-
get, which reduces the availability of the clustering results.
Yu et al. [32] proposed an outlier-elimination K -means
approach that is based on differential privacy. The outliers
are eliminated in the data preprocessing step according to
the density of the samples and Laplace noise is added in the
selection of cluster centers. Yang et al. [33] proposed a differ-
ential privacy-preserving K -means clustering (IDP-Kmeans)
algorithm. The dataset is divided into several subsets and the
center of each subset is calculated after data distortion, which
is used as the initial cluster center and improves the clustering
performance. Gao and Zhang [34] combined cuckoo search
and the particle swarm optimization algorithm to improve the
selection process of K -means cluster centers. The algorithm
realizes differential privacy protection and applies parallelism
on the Apache Spark engine. Ni et al. [35] proposed a dif-
ferential privacy-preserving multicore DBSCAN clustering
(DP-MCDBSCAN) algorithm, which redefines the selection
process of the initial cluster centers and adds Laplace noise in
the calculation of the distance to realize differential privacy
preservation.

The DP-DPCSNNS algorithm is proposed in this paper,
which overcomes the shortcomings of the DPC algorithm
under the framework of the differential privacy-preserving
model. It realizes a satisfactory balance between clustering
performance and data availability.

III. DP-DPCSNNS ALGORITHM
A. DIFFERENTIAL PRIVACY-PRESERVING MODEL
The differential privacy-preserving model defines a rigorous
attack model, which is derived from a hypothesis. On the
one hand, the traditional privacy protection technology limits
the background knowledge of an attacker. On the other hand,
it assumes a special attack mode. A split attack hypothesis
is the greatest background knowledge an attacker can grasp.
An attacker can have all the data record information except
the privacy record of the target being attacked. Differential
privacy can still guarantee the privacy of target data under
this maximum attack assumption. For other possible attacks,
the attacker’s background knowledge must be less than the
maximum attack assumption.

Consider a dataset D that contains an arbitrary attack
object A. Assume the attacker has the highest possible level
of background knowledge, namely, the attacker already has
information on all records except A. Then, the attacker per-
forms arbitrary query operations f on D and the result is
denoted as f (D). Dataset D′ is obtained by removing A
from D. The attacker performs the same query operation
f on D′ and the result is denoted as f

(
D′
)
. If f

(
D′
)
is

approximately equal to f (D), then regardless of whether A
belongs to D, the attacker cannot obtain additional infor-
mation about A from similar query results. The differential
privacy-preserving model guarantees that the results of query
operations on two neighboring datasets (two datasets that
differ in at most one row) are similar, which protects the
privacy of each sample in the dataset.
Definition 1 (Differential Privacy): Assume R is a random

function, S represents all outputs of R, and ε represents the
disclosure risk of an event E . For all datasets D and R that
differ in at most one row, R provides ε-differential privacy if
R satisfies the following inequality:

Pr[R(D) ∈ S] ≤ exp(ε)× Pr[R(D′) ∈ S] (1)

where ε is the privacy budget, which represents the level of
privacy protection. The smaller the value of ε, the higher the
degree of privacy protection. Usually, ε is less than 1; it is
often set to 0.01 or 0.1 or, in some cases, is set to ln2 or
ln3. [36].

Differential privacy is achieved by adding noise to the
query results, the amount of noise depends on the sensitivity
of the query function. The sensitivity is the maximum change
in the value of a function that is caused by adding or deleting
a single row and is defined as follows:
Definition 2 (Sensitivity): Assume query function

f : D → Rd , where D is the input dataset and the output
is a d-dimensional real vector. For any datasets D and D′ that
differ in at most one row, the sensitivity of the function f is
defined as follows:

1f = max
D,D′

∥∥f (D)− f (D′)∥∥1 (2)

Definition 3 (Laplace Mechanism): Given dataset D, assume
query function f : D → Rd and its sensitivity 1f .
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FIGURE 1. The system architecture of DP-DPCSNNS schema.

TABLE 1. Notations and descriptions.

Suppose the random algorithm R(D) = F(D) + Y provides
E differential privacy protection, where Y ∼ Lap(b) is ran-
dom noise with scale parameter b = 1f /ε. The probability
density function of the Laplace mechanism is:

P(x) =
1

21f /ε
exp(−

|x|
1f /ε

) (3)

In the era of big data, malicious attackers can use a variety
of methods to obtain background knowledge of data privacy.
When any record of the data set is changed, an attacker with
the highest levels of background knowledge cannot infer
relevant details about the stored information in DP-DPSNNS.
The system architecture of DP-DPCSNNS is shown
in Fig. 1.

B. CORRECTNESS OF THE ALGORITHM
The notations and descriptions of the matrices and vec-
tors that are used in the DP-DPSNNS algorithm are listed
in Table 1. The algorithm is based on the assumption that

the ideal cluster centers are surrounded by neighbors of lower
local density and are relatively far away from another sample
with higher local density. The algorithm that is proposed
in this paper consists of three main steps: First, Laplace
noise is added when measuring the local density ρ and the
shortest distance δ of the samples. The noise satisfies the
Laplace mechanism according to the definition of differential
privacy. Second, the samples that have relatively large ρ and
large δ are selected as cluster centers. Third, each remaining
sample is assigned to the cluster of its nearest neighbor with
higher local density. Fig. 2 demonstrates the main processes
of DP-DPCSNNS.

Shared near neighbors similarity is a nonparametric clus-
tering method that is based on k-nearest neighbors, which
is suitable for dealing with the practical problems of big
data. Typically, a sample and its neighbors are more likely
to be assigned to the same cluster. Therefore, the distribution
of data can be more correctly reflected by the shared near
neighbors similarity between samples.
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FIGURE 2. The main processes of DP-DPCSNNS.

Definition 4 (Shared Near Neighbors Similarity): Suppose
xi and xj are random samples in dataset X ,KNN (xi) is the set
of k-nearest neighbors of sample xj, andKNN

(
xj
)
is the set of

k-nearest neighbors of sample xj. The shared near neighbors
similarity of xi and xj is calculated as follows:

SNNS
(
xi, xj

)
= |KNN (xi) ∩ KNN (xj)| (4)

According to the DPC algorithm, the cluster centers and
cluster sizes are determined by the local density ρ and the
shortest distance δ. The leakage of the local density and
the shortest distance information may cause the threat of
privacy disclosure. Differential privacy not only protects the
usability of clustering results, but also makes it impossible
for an attacker to infer the certain privacy information by
his background knowledge. This protects the privacy of each
individual in the data set. Therefore, differential privacy is
used to prevent the leakage of privacy when calculating ρ
and δ. To prevent the leakage of privacy and to avoid reducing
the availability of the data, the values of ρ and δ are disturbed.
The definitions are as follows.
Definition 5 (Local DensityWith Differential Privacy):The

local density of sample xi is defined as follows:

ρi =
∑

j∈KNN (xi)

exp(−
d(xi, xj)

SNNS(xi, xj)+ 1
)+ Lap(

1f
ε

) (5)

If
∑

j∈KNN (xi) SNNS
(
xi, xj

)
is constant and the distances

between xi and the k-nearest neighbors of xi are small, that
is, if

∑
j∈KNN (xi) d

(
xi, xj

)
is small, the local density of the

sample xi is large; if
∑

j∈RNN (xi) d
(
xi, xj

)
is constant and

the shared near neighbors similarity of xi and the k-nearest
neighbors of xi are large, that is, if

∑
j∈KNN (xi) SNNS

(
xi, xj

)
is large, the local density of sample xi is large.
To further illustrate the relationship between the shared

near neighbors similarity and the Euclidean distance,
we present the following example: Fig. 3 shows a distribution
of two-dimensional data in which p, q, r, s, t, v are samples

FIGURE 3. Diagram for the shared near neighbors similarity.

of the data and the number of nearest neighbors is k = 6.
As shown in this figure, there are two clusters: p, q and t
are in the upper cluster (dots); s and r are in the cluster
below (triangle); and v is an outlier sample. The samples
satisfy SNNS(p, q) = SNNS(q, v) = 2; however, because
dist(q, v) > dist(p, q), the probability that p and q are
assigned to the same cluster is large and the probability that
q and v are assigned to the same cluster is small. Thus, sam-
ple v, which has smaller local density ρv and larger shortest
distance δv, is an outlier sample. In addition, d(s, t) = d(s, r);
hence, if only the Euclidean distance is used to measure the
similarity of the samples, s and r , which do not belong to
the same cluster, will likely be assigned to the same cluster.
However, since SNNS(s, r) = 2 and SNNS(s, t) = 0, it is
more likely that s and r will be assigned to the same cluster.
Thus, the combination of the shared near neighbors similarity
and the Euclidean distance can more accurately measure the
similarity of samples so that the information about the cluster
structure can be obtained from the local density.
Definition 6 (Shortest Distance With Differential Privacy):

The shortest distance of the sample xi is defined as follows:

δi =

min
j
(d(xi, xj))+ Lap(

1f
ε
), ρj > ρi

max
j
(d(xi, xj))+ Lap(

1f
ε
), otherwise

(6)

δi is the shortest distance between xi and other higher local
density samples. If xi is already the highest density sample,
δi is equal to the maximum distance to the other
samples.

The DPC algorithm often uses the decision graph to select
cluster centers. This process requires artificial intervention.
For a big dataset or a dataset with many cluster centers,
selecting the cluster centers by using the decision graph is
complicated. If the DPC algorithm uses (7) to select the
cluster centers, the neighborhood distribution of the sample
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is not considered; thus, the error rate may be high.

γi = ρi × δi (7)

The erroneous selection of cluster centers will directly lead
to the erroneous allocation of the sample; therefore, a new
cluster center selection strategy is presented in this paper.
In the process of cluster center selection, the cluster centers
set centers and queue Q must be initialized and the value
of γ is calculated according to (7). The samples that are
not allocated and have the largest γ values are added to the
queue Q in turn until all samples have been visited. The head
h of Q is removed and added to centers. This is repeated until
the condition length(centers) ≤ L is satisfied. If sample h
satisfies SNNS(h, p) = 0(∀p ∈ centers), then h is added
to centers. Additional details on cluster center selection are
presented in Algorithm 2.

Algorithm 1 implements the primary steps of
DP-DPCSNNS. Line 4 of algorithm 1 calculates the local
density and shortest distance with differential privacy accord-
ing to (5) and (6). Line 7 of algorithm 1 corresponds to
the process of remaining sample allocation. Set centers and
the corresponding cluster labels are obtained from algo-
rithm 2. Then, the samples are sorted in descending order
of local density ρ. The sorted samples are sequentially
removed and if a sample is not in centers, it is not allo-
cated to any cluster. In this case, the sample is allocated
to the same cluster as its nearest neighbor of higher local
density.

Algorithm 1 DP-DPCSNNS
Input: D(a dataset of N samples inM dimensions), L(the

number of clusters), ε(privacy budget parameter),
1f (sensitivity), k(the number of nearest neighbors)

Output: C = {C1,C2, . . . ,CL}
1: normalize D;
2: use 1f and ε to calculate Lap(1f

ε
) by (3);

3: calculate SNNS by (4);
4: calculate ρ by (5);
5: calculate δ by (6);
6: use ρ and δ to calculate γ by (7);
7: centers = SCC(D, ρ, δ, γ,L, SNNS);
8: allocate the sorted sample to the cluster

Cj ∈ C(j = 1, 2, . . . ,L) as its nearest neighbor with
higher local density;

9: return C .

C. TIME COMPLEXITY ANALYSIS
The time complexity analysis of DP-DPSNNS is as follows,
where N is the size of dataset. Our method consists of three
steps:

Step 1, the calculation of the local density ρ and the
shortest distance δ. To calculate ρ,O

(
N 2
)
is required for

calculating the distance, O
(
kN 2

)
for calculating the shared

near neighbors similarity O(N ) for calculating the noise, and
O(kN ) for querying the k-nearest neighbor information to

Algorithm 2 SCC
Input: X (a dataset of N samples inM dimensions), ρ(local

density with differential privacy), δ(shortest distance
with differential privacy), γ (the elementwise product of
ρ and δ), L(the number of clusters), SNNS (the
shared near neighbors similarity between samples)

Output:centers
1: sort X in descending order of γ as
X ′ =

{
x ′1, x

′

2, . . . , x
′
N

}
and initialize a queue Q to be X ′;

2: initialize the set centers;
3: remove the head h of Q and add h to centers;
4: select the head h of Q; if h does not belong to any cluster

and satisfies SNNS(h, p) = 0(∀p ∈ centers) then add h to
centers;

5: remove the head h of Q;
6: if length(centers) ≤ L, then go to 4; else, go to 7;
7: return centers.

FIGURE 4. Four synthetic datasets.

calculate ρ. The cost of δ is the same as in traditional DPC:
O
(
N 2
)
. Therefore, the total time complexity of this step is

O
(
N 2
)
+ O

(
kN 2

)
+ O(N )+ O(kN ) ∼ O

(
N 2
)
.

Step 2, the selection of the cluster centers. We require
O(N logN ) to sort the samples, O(N ) to calculate γ , and
O(N ) to loop to identify the cluster centers in the worst
case. Therefore, the total time complexity of this step is
O(N logN )+ O(N )+ O(N ) ∼ O(N logN ).

Step 3, the allocation of the remaining samples. The
cost of this step is the same as in the traditional DPC
algorithm: O(N ).

The overall time complexity of DP-DPCSNNS is
O
(
N 2
)
. It is the same as that of the traditional DPC

algorithm.
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FIGURE 5. ACC comparison among six clustering algorithms on eight datasets.
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FIGURE 6. The clustering results of aggregation by six clustering algorithms.

D. PRIVACY ANALYSIS
Assume S and S ′ are the query results of the algorithm on
D and D′ respectively; Part represents the clustering result;
C is the clustering result without noise; R (D) is the clustering
result of D with noise; and R

(
D′
)
is the clustering result of D

without noise. According to the above equations, the follow-
ing is obtained:

Pr[S ∈ Part]
Pr[S ′ ∈ Part]

=

exp(− ε|C−R(D)|
1f )

exp(− ε|C−R(D
′)|

1f )

≤ exp(
ε|R(D)− R(D′)|

1f
)

≤ exp(
ε ‖ R(D)− R(D′) ‖1

1f
)

≤ exp(ε)

IV. EXPERIMENT
This paper uses real-world datasets and synthetic datasets
to evaluate the performance of the DP-DPCSNNS algo-
rithm. These datasets, which are listed in Table 2, are
classic datasets in clustering analysis. The four real-world
datasets come from the UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/). The four synthetic datasets
are Aggregation [37], Eyes [38], Long1 [39] and Size5 [39],
which are shown in Fig. 4. The experiment for DP-DPCSNNS

TABLE 2. Datasets.

is programmed in MATLAB 2013b. The hardware configu-
ration is a computer with the Windows 7 operating system,
4 G physical memory and a 1.9 GHz CPU.

The performance of DP-DPCSNNS is compared with
those of five new clustering algorithms that are based
on differential privacy including DP-MCDBSCAN [35],
IDP-Kmeans [33], DP-DPC (differential preserving DPC),
DP-KNNDPC (differential preserving KNNDPC) and
DP-FKNNDPC (differential preserving FKNNDPC). Laplace
noise is added during the calculation of the distance between
samples in DP-MCDBSCAN. Laplace noise is added dur-
ing the calculation of the cluster centers in IDP-Kmeans.
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FIGURE 7. The clustering results of Eyes by six clustering algorithms.

DP-DPC is generated by adding noise to the calculation of
the local density ρ and the shortest distance δ in the DPC
algorithm. Differential privacy preservation is achieved by
adding noise, which affects the clustering results. Therefore,
DP-KNNDPC and DP-FKNNDPC are rewritten under the
framework of differential privacy preservation by KNN-DPC
and FKNN-DPC, respectively.

The six clustering algorithms that are being com-
pared require various parameters to be set: For the
MP-MCDBSCAN algorithm, the author of the algorithm
provides minpts = 1/25×N and 1f = M . To find the
optimal value of eps, the range of eps is obtained from the dist
graph [21]. Then, the experiment is randomly run 50 times
in the range of eps and the optimal eps value is selected.
For the IDP-Kmeans algorithm, the author of the algorithm
provides1f = M+1 and the maximum number of iterations
is set to 1000. For the DP-DPC algorithm, as a rule of thumb,
the author of the DPC algorithm provides percent = 0.2 so
that the average number of neighbors is between 1% and 2%
of the total and 1f is calculated according to (2). For the
DP-KNNDPC, DP-FKNNDPC and DP-DPCSNNS algo-
rithms, k = 6 and 1f is calculated according to (2).
For all the above experiments, to ensure the same level
of privacy, we set ε = ln 2 [36]. Since the addition
of noise in the differential privacy framework is random,
the above experiments are repeated 20 times and the final
results are average values. In this paper, we use (8) to
preprocess the dataset so that the effect of eliminating

missing values and differences in dimensional ranges is
eliminated.

x ′ij =
xij −min(xj)

max(xj)−min(xj)
(8)

where x ′ij is the normalized result of xij, which is the element
of i-th row and j-th column in dataset X ; max(xj) is the
maximum value in the j-th column attribute in dataset X ; and
min(xj) is the minimum value in the j-th column attribute in
dataset X.

A. EVALUATION METRICS
Accuracy(ACC) [40], adjusted mutual information(AMI)
[41], F-Measure [42], adjusted Rand index (ARI) [43] and
T-test are used to evaluate the performance of the above
clustering algorithms. These fivemetrics are classical metrics
for evaluating the performance of a clustering algorithm. The
ranges of ACC and F-Measure are [0,1]. The ranges of AMI
and ARI are [−1,1]. The bold values correspond to the better
clustering results.

1) ACC METRIC
ACC calculates the proportion of correctly classified samples
relative to the total sample. The formula is as follows:

ACC =
1
N

N∑
i=1

ω(ui, vi), ω(ui, vi) =

{
1, ui = vi
0, ui 6= vi

(9)
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FIGURE 8. The clustering results of Long1 by six clustering algorithms.

where ui is the standard label of sample xi and vi is the class
label of sample xi that is obtained by the clustering algorithm.

2) AMI METRIC
AMI measures the relevance of two event sets in terms of
mutual information (MI). I (U ,V ) is the mutual information
between event U and event V . E{I (U ,V )} is the expected
mutual information between U and V . The calculation
formula is as follows:

AMI(U ,V ) =
MI (U ,V )− E{MI (U ,V )}

max{H (U ),H (V )} − E{MI (U ,V )}
(10)

3) F-MEASURE METRIC
F-Measure combines the metrics, namely, precision and
recall, and its advantage lies in its overall performance in
distinguishing clustering results. The information between
two clustering results, namely, U = {U1,U2, . . . ,UR} and
V = {V1,V2, . . . ,VC }, can be summarized in the form of a
contingency table; the contingency table is shown as Table 3.

In Table 3, nij represents the number of samples that are
in both cluster Ui and cluster Vj, N11 represents the number
of samples that are in the same cluster in both U and V ,
N00 represents the number of samples that are in different
clusters in U and V , N01 represents the number of samples
that are in the same cluster in U but in different clusters in V ,
andN01 represents the number of samples that are in different
clusters in U but in the same cluster in V .

TABLE 3. Contingency table for comparing partitions U and V.

Precision and recall are expressed in (11) and (12), respec-
tively. Recall and precision are a pair of contradictory mea-
sures: When the precision is high, the recall tends to be
low, and when the recall is high, the precision is often low.
F-Measure is expressed in (13).

precision =
N11

N11 + N10
(11)

recall =
N11

N11 + N01
(12)

In this experiment, F-Measure is used if β = 1:

F =
2 · precision · recall
precision+ recall

(13)
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FIGURE 9. The clustering results of Size5 by six clustering algorithms.

4) ARI METRIC
The Rand Index (RI) is expressed as follows:

RI =
N11 + N00

N11 + N00 + N10 + N01
(14)

ARI measure the degree of similarity between class label U
and class label V of the algorithm. E{RI (U ,V )} is the
expected Rand index between U and V . ARI is expressed as
follows:

ARI =
RI(U ,V )− E{RI (U ,V )}

max{RI (U ,V )}− E{RI (U ,V )}
(15)

5) STATISTICAL TEST
The T-test is a type of significance test that is used to detect
whether the difference between two distributions of data
is significant. First, we assume that there is no significant
difference between the two distributions of data, which is
called the null hypothesis. If the probabilityp<0.05, the null
hypothesis is rejected, namely, the two distributions of data
differ significantly. In contrast, if the probability p>0.05,
the null hypothesis is accepted, namely, the two dis-
tributions of data do not differ significantly. In the
experiment, the T-test is used to detect the difference
between the labels that are obtained by DP-DPCSNNS
and those that are obtained using the other comparison
algorithms.

B. EXPERIMENTAL RESULTS AND ANALYSIS
In this paper, the DP-DPCSNNS, DP-DPC, DP-KNNDPC,
DP-FKNNDPC, and IDP-Kmeans algorithms can automati-
cally identify clusters under specified parameter values. The
experiment used four UCI datasets and four synthetic datasets
to evaluate the performances of the algorithms in identifying
clusters. Table 4 lists the clustering results in terms of the
ACC, AMI, F-Measure, and ARI metrics of the four above
algorithms on UCI datasets and synthetic datasets. The values
in bold are superior experimental results.

Zoo is a commonly used dataset in clustering analy-
sis. It contains 101 samples and 7 clusters, which are lin-
ear and inseparable. Zoo is an animal dataset consisting
of 16 attributes, 15 of which are Boolean attribute val-
ues in (0, 1) and another one attribute is the number of
animal legs in (0, 2, 4, 6, 8). Since 15 attributes in Zoo
are Boolean attributes, more samples in the dataset have
the same attribute value. Therefore, the Euclidean distance
between the samples is zero, which makes dc is zero in the
DP-DPC algorithm, resulting in poor clustering performance.
DP-MCDBSCAN and IDP-Kmeans treat Euclidean distance
as the only measure of similarity, so clustering performance
is not great. However, DP-DPCSNNS algorithm avoids the
setting of the parameter dc, and combines the Euclidean
distance with the shared near neighbors similarity to calculate
the local density. Therefore, compared with the clustering
results of other algorithms, DP-DPCSNNS has great
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TABLE 4. Comparison of ACC, AMI, F-Measure and ARI metrics for 6 algorithms on datasets.

advantages. For the dataset Zoo, the ACC metric of
DP-DPCSNNS is about 76.3% higher than DP-DPC algo-
rithm, and about 60.5% higher than DP-MCDBSCAN. The
ARI metric of DP-DPCSNNS is 87.1% higher than that
of DP-DPC. The AMI metric of DP-DPCSNNS is 67.9%
higher than that of IDP-Kmeans. The clustering results of
DP-DPCSNNS and three comparison algorithms have signif-
icant difference according to T-test.

TheVote dataset contains 435 samples and two clusters and
each sample is represented by 16 attributes. The three com-
parison algorithms assign samples that belong to the second
cluster to the first cluster. The ACC, AMI, F-Measure and
ARI values of DP-DPCSNNS are optimal and the clustering
results are closest to the standard classification results. For
the dataset Vote, the AMI of DP-DPCSNNS is improved
by 71.8% compared with the DP-DPC algorithm. The
F-Measure of DP-DPCSNNS is 11.2% higher than that of
DP-MCDBSCAN. The ARI of DP-DPCSNNS is 93.3%

higher than that of DP-FKNNDPC. DP-DPCSNNS and the
four comparison algorithms differ significantly.

Aggregation is a commonly used synthetic dataset for
clustering, in which 788 samples are divided into seven
clusters. Due to the addition of noise, the overall cluster-
ing performance of the algorithm is slightly reduced. One
of seven clusters has 272 samples, the density of which
is high. Therefore, IDP-Kmeans, DP-DPC, DP-KNNDPC
and DP-FKNNDPC select multiple density peaks in the
same cluster. For the Aggregation dataset, the F-Measure
value of DP-DPCSNNS is 89% higher than that of the
DP-KNNDPC algorithm. The AMI value of DP-DPCSNNS
is 83% higher than that of DP-KNNDPC. The clustering
results of DP-DPCSNNS and the four comparison algorithms
differ significantly according to the T-test.

The Size5 dataset contains a total of 1000 samples in four
clusters. The first cluster contains 769 samples; the density
of this cluster is high and the distribution of samples is dense.
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However, the other three clusters each have 77 samples, the
densities of these clusters are low and the distributions of
samples are sparse. DP-DPCSNNS can correctly identify four
cluster centers and distribute the remaining samples. How-
ever, the DP-DPC algorithm allocates samples that belong to
the sparse second and third clusters to the dense first cluster,
which is due to the incorrect estimation of the similarity
between samples. Since the distribution of the first cluster
is dense, the IDP-Kmeans algorithm identifies two
cluster centers in the first cluster and the samples of the first
cluster are incorrectly allocated to two clusters. For the Size5
dataset, the ACC value of DP-DPCSNNS is 25.8% higher
than that of the IDP-Kmeans algorithm. The ARI value of
DP-DPCSNNS is 33.8% higher than that of DP-DPC. The
clustering results of DP-DPCSNNS and the four comparison
algorithms differ significantly according to the T-test.

From the p-values that are listed in Table 4, the cluster-
ing results of DP-DPCSNNS and the comparison algorithms
differ significantly on most datasets. For the Wpbc dataset,
DP-DPCSNNS and the comparison algorithms do not differ
significantly; this is because the total numbers of clusters and
records of dataset Wpbc are small. For the Long1 dataset,
the p-values of DP-DPCSNNS between DP-DPC and
IDP-Kmeans are 1; this is because these three algorithms all
obtain the optimal results.

From the above detailed analysis of the performance com-
parison of DP-DPCSNNS with other clustering algorithms
on UCI and synthetic datasets, the experimental results
show that DP-DPCSNNS performs well in clustering. Com-
paring DP-DPCSNNS with DP-DPC, the clustering results
are optimized though the local density calculation method
and the cluster center selection mechanism that are uti-
lized in DP-DPCSNNS. On the UCI and synthetic datasets,
DP-DPCSNNS has substantial advantages over the other
algorithms under the framework of the ε-differential-privacy-
preserving model.

Fig. 5 shows a comparison of the ACC values from the
six algorithms running on Zoo, Vote, Wpbc, Vehicle, Aggre-
gation, Eyes, Long1 and Size5. It can be seen from the
figure, the general trend is an increase of ACC as the privacy
budget ε increases. However, the noise is random. There
may be fluctuations in the ACC of some algorithms. The
DP-DPCSNNS algorithm has substantial advantages on
Wpbc, Vehicle and the four synthetic datasets. On the Zoo and
Vote datasets, the ACC of DP-DPCSNNS is low if ε is low;
however, as ε increases, the advantage of the DP-DPCSNNS
algorithm increases. Figs. 6-9 show the performances of the
six clustering algorithms on the synthetic datasets.

V. CONCLUSION
Differential privacy-preserving density peaks clustering
based on shared near neighbors similarity, which is
denoted as DP-DPCSNNS, was proposed in this paper. The
DP-DPCSNNS algorithm provides ε-differential privacy
preservation and improves the clustering performance. The
shared near neighbors similarity and the Euclidean distance

are combined to calculate the local density of samples, which
avoids the setting of the parameter dc. Laplace noise is added
in the calculations of the local density and the shortest dis-
tance under the framework of ε-differential privacy, which
overcomes the problem of privacy leakage that was encoun-
tered with the original DPC algorithm. From the detailed
analysis of the performance of DP-DPCSNNS compared to
other clustering algorithms on UCI and synthetic datasets,
the experimental results show that DP-DPCSNNS can accu-
rately select the cluster centers and ensure better clustering
performance under the framework of the differential privacy-
preserving model. In future work, the next step will be to use
privacy budget allocation strategies to improve the clustering
performance.

REFERENCES
[1] M.-S. Chen, J. Han, and P. S. Yu, ‘‘Data mining: An overview from

a database perspective,’’ IEEE Trans. Knowl. Data Eng., vol. 8, no. 6,
pp. 866–883, Dec. 1996.

[2] A. K. Jain and R. C. Dubes, ‘‘Algorithms for clustering data,’’ Technomet-
rics, vol. 32, no. 2, pp. 227–229, 1988.

[3] A. Rodriguez and A. Laio, ‘‘Clustering by fast search and find of density
peaks,’’ Science, vol. 344, no. 6191, pp. 1492–1496, 2014.

[4] L. Sweeney, ‘‘K-anonymity: Amodel for protecting privacy,’’ Int. J. Uncer-
tainty, Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570, 2002.

[5] A.Machanavajjhala,M.Venkitasubramaniam,D.Kifer, and J. Gehrke, ‘‘L-
diversity: Privacy beyond K-anonymity,’’ in Proc. IEEE 22nd Int. Conf.
Data Eng., Atlanta, GA, USA, Apr. 2006, pp. 1–12.

[6] N. Li, T. Li, and S. Venkatasubramanian, ‘‘T-closeness: Privacy beyond
K-anonymity and L-diversity,’’ in Proc. IEEE 23rd Int. Conf. Data Eng.,
Istanbul, Turkey, Apr. 2007, pp. 106–115.

[7] C. Dwork, ‘‘Differential privacy,’’ in Proc. 33rd Int. Colloq. Automata,
Lang., Program. Venice, Italy: Springer, 2006, pp. 1–12.

[8] C. Dwork, F. Mcsherry, A. Smith, and K. Nissim, ‘‘Calibrating noise to
sensitivity in private data analysis,’’ in Theory of Cryptography. Berlin,
Germany: Springer, 2006, pp. 637–648.

[9] C. Dwork and A. Roth, ‘‘The algorithmic foundations of differen-
tial privacy,’’ Found. Trends Theor. Comput. Sci., vol. 9, nos. 3–4,
pp. 211–407, 2014.

[10] J. Ren, Z. Yao, J. Xiong, Y. Zhang, and A. Ye, ‘‘A secure data deduplication
scheme based on differential privacy,’’ in Proc. IEEE Int. Conf. Parallel
Distrib. Syst., Shenzhen, China, Dec. 2017, pp. 1241–1246.

[11] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, ‘‘Sparse
representation for computer vision and pattern recognition,’’ Proc. IEEE,
vol. 98, no. 6, pp. 1031–1044, Jun. 2010.

[12] D. Liu, S.-F. Cheng, and Y. Yang, ‘‘Density peaks clustering approach
for discovering demand hot spots in city-scale taxi fleet dataset,’’ in Proc.
IEEE 18th Int. Conf. Intell. Transp. Syst., Las Palmas, Spain, Sep. 2015,
pp. 1–6.

[13] A. K. Jain, ‘‘Data clustering: 50 years beyond K-means,’’ Pattern Recognit.
Lett., vol. 31, no. 8, pp. 651–666, 2010.

[14] T. Opsahl and P. Panzarasa, ‘‘Clustering in weighted networks,’’ Social
Netw., vol. 31, no. 2, pp. 155–163, May 2009.

[15] K. Wakita and T. Tsurumi, ‘‘Finding community structure in mega-
scale social networks,’’ in Proc. 16th Int. Conf. World Wide Web, 2007,
pp. 1275–1276.

[16] M. S. Handcock, J. M. Tantrum, and A. E. Raftery, ‘‘Model-based cluster-
ing for social networks,’’ J. Roy. Stat. Soc. A, Statist. Soc., vol. 170, no. 2,
pp. 301–354, 2010.

[17] C. Yang, S. Liu, L. Bruzzone, R. Guan, and P. Du, ‘‘A feature-metric-
based affinity propagation technique for feature selection in hyperspectral
image classification,’’ IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5,
pp. 1152–1156, Sep. 2013.

[18] Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang, ‘‘Image clustering using
local discriminant models and global integration,’’ IEEE Trans. Image
Process., vol. 19, no. 10, pp. 2761–2773, Oct. 2010.

[19] J. Yu, R. Hong, M. Wang, and J. You, ‘‘Image clustering based on
sparse patch alignment framework,’’ Pattern Recognit., vol. 47, no. 11,
pp. 3512–3519, 2014.

VOLUME 7, 2019 89439



L. Sun et al.: Differential Privacy-Preserving Density Peaks Clustering Based on Shared Near Neighbors Similarity

[20] J. Macqueen, ‘‘Some methods for classification and analysis of multi-
variate observations,’’ in Proc. 5th Berkeley Symp. Math. Statist. Probab.
Berkeley, CA, USA: Univ. California Press, 1967, pp. 281–297.

[21] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc. 2nd
Int. Conf. Knowl. Discovery Data Mining, Sacramento, CA, USA, AAAI
Press, 1996, pp. 226–231.

[22] B. Wu and B. M. Wilamowski, ‘‘A fast density and grid based clustering
method for data with arbitrary shapes and noise,’’ IEEE Trans. Ind. Infor-
mat., vol. 13, no. 4, pp. 1620–1628, Aug. 2017.

[23] M. Du, S. Ding, and H. Jia, ‘‘Study on density peaks clustering based on k-
nearest neighbors and principal component analysis,’’ Knowl.-Based Syst.,
vol. 99, pp. 135–145, May 2016.

[24] J. Xie, H. Gao, and W. Xie, ‘‘K-nearest neighbors optimized clustering
algorithm by fast search and nding the density peaks of a dataset,’’ Scientia
Sinica, Informationis, vol. 46, no. 2, pp. 258–280, 2016.

[25] J. Xie, H. Gao, W. Xie, X. Liu, and P. W. Grant, ‘‘Robust clustering by
detecting density peaks and assigning points based on fuzzy weighted K-
nearest neighbors,’’ Inf. Sci., vol. 354, pp. 19–40, Aug. 2016.

[26] R. Mehmood, R. Bie, H. Dawood, and H. Ahmad, ‘‘Fuzzy clustering
by fast search and find of density peaks,’’ in Proc. IEEE Int. Conf.
Identificat., Inf., Knowl. Internet Things, Beijing, China, Oct. 2016,
pp. 785–793.

[27] J. Xu, G. Wang, and W. Deng, ‘‘DenPEHC: Density peak based effi-
cient hierarchical clustering,’’ Inf. Sci., vol. 373, no. 12, pp. 200–218,
2016.

[28] Q. Zhang, C. Zhu, L. T. Yang, Z. Chen, L. Zhao, and P. Li, ‘‘An incre-
mental CFS algorithm for clustering large data in industrial Internet of
Things,’’ IEEE Trans. Ind. Informat., vol. 13, no. 3, pp. 1193–1201,
Jun. 2017.

[29] S. Jia, G. Tang, J. Zhu, and Q. Li, ‘‘A novel ranking-based clustering
approach for hyperspectral band selection,’’ IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 1, pp. 88–102, Jan. 2016.

[30] M. Wang, W. Zuo, and Y. Wang, ‘‘An improved density peaks-based
clustering method for social circle discovery in social networks,’’ Neuro-
computing, vol. 179, pp. 219–227, Feb. 2016.

[31] A. Blum, C. Dwork, F. McSherry, and K. Nissim, ‘‘Practical privacy:
The SuLQ framework,’’ in Proc. 24th ACM SIGMOD-SIGACT-SIGART
Symp. Principles Database Syst., BaltimoreMD, USA, 2005, pp. 128–138.

[32] Q. Yu, Y. Luo, C. Chen, and X. Ding, ‘‘Outlier-eliminated K -means clus-
tering algorithm based on differential privacy preservation,’’ Appl. Intell.,
vol. 45, no. 4, pp. 1179–1191, 2016.

[33] L. Yang, H. Zhifeng, and W. Wen, ‘‘Research on differential provacy
preserving K-means clustering,’’ Comput. Sci., vol. 40, no. 3, pp. 287–290,
2013.

[34] Z.-Q. Gao and L.-J. Zhang, ‘‘DPHKMS: An efficient hybrid clustering
preserving differential privacy in spark,’’ in Proc. Int. Conf. Emerg. Inter-
networking, Data Web Technol., 2017, pp. 367–377.

[35] L. Ni, C. Li, X.Wang, H. Jiang, and J. Yu, ‘‘DP-MCDBSCAN: Differential
privacy preserving multi-core DBSCAN clustering for network user data,’’
IEEE Access, vol. 6, pp. 21053–21063, 2018.

[36] C. Dwork, ‘‘Differential privacy in new settings,’’ in Proc. ACM-SIAM
Symp. Discrete Algorithms. Austin, TX, USA: SIAM, 2010, pp. 174–183.

[37] A. Gionis, H. Mannila, and P. Tsaparas, ‘‘Clustering aggregation,’’ ACM
Trans. Knowl. Discovery Data, vol. 1, no. 1, pp. 1–30, 2007.

[38] X. Tao, R. Wang, R. Chang, C. Li, R. Liu, and J. Zou, ‘‘Spectral clustering
algorithm using density-sensitive distance measure with global and local
consistencies,’’ Knowl.-Based Syst., vol. 170, pp. 26–42, Apr. 2019.

[39] A. M. Gong, L. Jiao, L. Bo, W. Ling, and X. Zhang, ‘‘Image texture classi-
fication using a manifold-distance-based evolutionary clustering method,’’
Opt. Eng., vol. 47, no. 7, pp. 685–694, 2008.

[40] G. Carpaneto and P. Toth, ‘‘Algorithm 548: Solution of the assign-
ment problem,’’ ACM Trans. Math. Softw., vol. 6, no. 1, pp. 104–111,
1980.

[41] N. X. Vinh, J. Epps, and J. Bailey, ‘‘Information theoretic measures
for clusterings comparison: Variants, properties, normalization and cor-
rection for chance,’’ J. Mach. Learn. Res., vol. 11, pp. 2837–2854,
Jan. 2010.

[42] Y. Sasaki, ‘‘The truth of the F-measure,’’ Teach Tutor Mater, vol. 1, no. 5,
pp. 1–5, 2007.

[43] L. Hubert and P. Arabie, ‘‘Comparing partitions,’’ J. Classification, vol. 2,
no. 1, pp. 193–218, 1985.

LIPING SUN received the M.S. degree from the
School of Computer Science, Chongqing Univer-
sity, in 2008, and the Ph.D. degree from the School
of Geography and Tourism, Anhui Normal Uni-
versity, in 2015, where she has been a Professor
with the School of Computer and Information,
since 2017.

Her research interests include data mining and
information security.

SHUTING BAO received the B.E. degree in com-
puter science and technology from the Wangjiang
College, Anhui Normal University, in 2016, where
she is currently pursuing the M.S. degree with the
School of Computer and Information.

Her research interests include data mining and
information security.

SHANG CI received the B.E. degree from the
School of Computer and Information, AnqingNor-
mal University, in 2017. He is currently pursuing
the M.S. degree with the School of Computer and
Information, Anhui Normal University.

His research interests include cloud computing
security and data mining.

XIAOYAO ZHENG received the M.S. degree from
the School of Computer Science, Hefei Univer-
sity of Technology, in 2005, and the Ph.D. degree
from the School of Geography and Tourism, Anhui
Normal University, in 2018, where he has been an
Associate Professor with the School of Computer
and Information, since 2016.

His research interests include information secu-
rity and social networks.

LIANGMIN GUO received the Ph.D. degree from
the School of Computer Science and Technology,
University of Science and Technology of China,
in 2011.

Since 2013, she has been an Associate Professor
with the School of Computer and Information,
Anhui Normal University. Her research interests
include cloud computing, information security,
and recommender systems.

YONGLONG LUO received the Ph.D. degree from
the School of Computer Science and Technology,
University of Science and Technology of China,
in 2005.

Since 2007, he has been a Professor with the
School of Computer and Information, Anhui Nor-
mal University. He is currently the Director of
the Anhui Provincial Key Laboratory of Net-
work and Information Security. His research inter-
ests include information security and spatial data
processing.

89440 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	DP-DPCSNNS ALGORITHM
	DIFFERENTIAL PRIVACY-PRESERVING MODEL
	CORRECTNESS OF THE ALGORITHM
	TIME COMPLEXITY ANALYSIS
	PRIVACY ANALYSIS

	EXPERIMENT
	EVALUATION METRICS
	ACC METRIC
	AMI METRIC
	F-MEASURE METRIC
	ARI METRIC
	STATISTICAL TEST

	EXPERIMENTAL RESULTS AND ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	LIPING SUN
	SHUTING BAO
	SHANG CI
	XIAOYAO ZHENG
	LIANGMIN GUO
	YONGLONG LUO


